JP4815607B2 - Non-destructive measuring device and non-destructive measuring method of reinforcing bar diameter in reinforced concrete structure by electromagnetic wave radar - Google Patents

Non-destructive measuring device and non-destructive measuring method of reinforcing bar diameter in reinforced concrete structure by electromagnetic wave radar Download PDF

Info

Publication number
JP4815607B2
JP4815607B2 JP2007073353A JP2007073353A JP4815607B2 JP 4815607 B2 JP4815607 B2 JP 4815607B2 JP 2007073353 A JP2007073353 A JP 2007073353A JP 2007073353 A JP2007073353 A JP 2007073353A JP 4815607 B2 JP4815607 B2 JP 4815607B2
Authority
JP
Japan
Prior art keywords
reinforcing bar
diameter
electromagnetic wave
frequency analysis
bar diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007073353A
Other languages
Japanese (ja)
Other versions
JP2008232852A (en
Inventor
正吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2007073353A priority Critical patent/JP4815607B2/en
Publication of JP2008232852A publication Critical patent/JP2008232852A/en
Application granted granted Critical
Publication of JP4815607B2 publication Critical patent/JP4815607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、内部に鉄筋が埋め込まれた鉄筋コンクリート構造物中の鉄筋径の非破壊計測装置及び非破壊計測方法に関する。   The present invention relates to a non-destructive measuring device and a non-destructive measuring method of a reinforcing bar diameter in a reinforced concrete structure in which a reinforcing bar is embedded.

近年、耐震偽装問題等の社会問題が発生する等からも、鉄筋コンクリート構造物中の鉄筋の存在の有無のみならず、鉄筋径の計測にも関心が高まっている。
しかしながら、鉄筋コンクリート構造物中の鉄筋径の計測は極めて困難であり、これまで有用な方式は開発されていない。
In recent years, interests such as the presence of reinforcing bars in reinforced concrete structures as well as the measurement of the diameter of reinforcing bars have increased due to the occurrence of social problems such as seismic camouflage problems.
However, it is extremely difficult to measure the diameter of a reinforcing bar in a reinforced concrete structure, and no useful method has been developed so far.

特許文献1には、送信アンテナと受信アンテナとを備え、媒体表面に沿って送信アンテナと受信アンテナを移動させつつ、送信アンテナから媒体に向けて電磁波を発信し、媒体中の不可視物体から得られる反射波を受信アンテナによって受信し、これを画面上に表示する装置を用い、主鉄筋に沿ってアンテナを走行させ、反射波の三日月形の第1、第2、第3の画像を求め、第2の画像の頂点と第3の画像の頂点から半波長時間tを求め、バンド状の画像の上辺と第2の画像の頂点からの時間tを求め、時間t―tから推定する鉄筋径の電磁波往復伝播時間Tを求め、媒体中の比誘電率から求められる電磁波伝播速度をVとするとき、V×T/2から鉄筋の直径を推定する鉄筋径の推定方法が開示されている。 Patent Document 1 includes a transmission antenna and a reception antenna, and transmits electromagnetic waves from the transmission antenna toward the medium while moving the transmission antenna and the reception antenna along the medium surface, and is obtained from an invisible object in the medium. Using a device that receives the reflected wave by the receiving antenna and displays it on the screen, run the antenna along the main rebar, obtain the first, second, and third images of the crescent-shaped reflected wave, The half-wavelength time t 1 is obtained from the vertex of the second image and the vertex of the third image, the time t 2 from the top side of the band-like image and the vertex of the second image is obtained, and estimated from the time t 2 -t 1 A method for estimating the diameter of a reinforcing bar is disclosed in which the round-trip propagation time T of the reinforcing bar diameter is obtained and the diameter of the reinforcing bar is estimated from V × T / 2, where V is the electromagnetic wave propagation speed obtained from the relative dielectric constant in the medium. ing.

特許文献2には、本発明者により開発された、電磁波レーダの物理的特性と電磁波の媒質界面における反射及び屈折を含めた伝播特性に基づく予測受信信号波形と電磁波レーダによって測定した実際の受信信号とのパターンマッチングによって、コンクリート内の鉄筋の位置及び鉄筋の形状を求める計測方法が開示されている。
特開平5−323026号公報 特願2006−132996号
Patent Document 2 discloses a predicted received signal waveform based on physical characteristics of an electromagnetic wave radar developed by the present inventor and propagation characteristics including reflection and refraction at the medium interface of the electromagnetic wave, and an actual received signal measured by the electromagnetic wave radar. And a method for measuring the position of the reinforcing bar in the concrete and the shape of the reinforcing bar by pattern matching.
JP-A-5-323026 Japanese Patent Application No. 2006-132996

本発明の目的は、鉄筋コンクリート構造物中の鉄筋は、(1)異形鉄筋といって、鉄筋がコンクリート内に固定されやすいように鉄筋に沿って周期的に節が設けられていること、及び(2)この節の間隔が鉄筋の径によって定まっていることに着目し、鉄筋の径を簡便に計測する非破壊計測方式を提供することである。   The object of the present invention is that the reinforcing bars in the reinforced concrete structure are (1) deformed reinforcing bars, and nodes are periodically provided along the reinforcing bars so that the reinforcing bars are easily fixed in the concrete. 2) Focusing on the fact that the distance between the nodes is determined by the diameter of the reinforcing bar, and providing a non-destructive measurement method for simply measuring the diameter of the reinforcing bar.

これらの目的を達成するため本発明は次のように構成する。
請求項1に係る発明は、鉄筋コンクリート構造物中に配設された異形鉄筋の鉄筋径の非破壊計測方法であって、送信アンテナと受信アンテナとを備えた電磁波レーダを前記異形鉄筋に沿って前記鉄筋コンクリート構造物表面を走査し所定ピッチ毎に電磁波の送受信を繰り返すステップと、前記異形鉄筋から反射される電磁波の伝播時間を時系列的に格納するステップと、前記格納された前記伝播時間の時系列データを周波数分析するステップと、前記周波数分析による最大ピーク値に基づいて前記異形鉄筋の節の平均間隔を求めるステップと、前記平均間隔に従って、所定の対応表に基づいて鉄筋径を判断するステップと、を備えることを特徴とする鉄筋径の非破壊計測方法である。
また、請求項2に係る発明は、前記周波数分析は、最尤法により行われることを特徴とする請求項1に記載の鉄筋径の非破壊計測方法である。
また、請求項3に係る発明は、前記周波数分析は、高速フーリエ変換により行われることを特徴とする請求項1に記載の鉄筋径の非破壊計測方法である。
また、請求項4に係る発明は、前記周波数分析は、最大エントロピー法により行われることを特徴とする請求項1に記載の鉄筋径の非破壊計測方法である。
さらに、請求項5に係る発明は、鉄筋コンクリート構造物中に配設された異形鉄筋の鉄筋径の非破壊計測装置であって、前記鉄筋径の非破壊計測装置は、送信アンテナと受信アンテナとを備えた電磁波レーダと、前記電磁波レーダを前記異形鉄筋に沿って前記鉄筋コンクリート構造物表面を走査し所定ピッチ毎に電磁波の送受信を繰り返すことにより、前記異形鉄筋から反射される電磁波の伝播時間を時系列的に格納する格納手段と、前記格納手段に格納された前記伝播時間の時系列データを周波数分析する分析手段と、前記周波数分析による最大ピーク値に基づいて前記異形鉄筋の節の平均間隔を求める制御手段と、前記平均間隔に従って、所定の対応表に基づいて鉄筋径を判断する判断手段と、を備えることを特徴とする鉄筋径の非破壊計測装置である。
また、請求項6に係る発明は、前記周波数分析は、最尤法により行われることを特徴とする請求項5に記載の鉄筋径の非破壊計測装置である。
また、請求項7に係る発明は、前記周波数分析は、高速フーリエ変換により行われることを特徴とする請求項5に記載の鉄筋径の非破壊計測装置である。
さらに、請求項8に係る発明は、前記周波数分析は、最大エントロピー法により行われることを特徴とする請求項5に記載の鉄筋径の非破壊計測装置である。
In order to achieve these objects, the present invention is configured as follows.
The invention according to claim 1 is a non-destructive measuring method of a reinforcing bar diameter of a deformed reinforcing bar disposed in a reinforced concrete structure, wherein an electromagnetic wave radar including a transmitting antenna and a receiving antenna is provided along the deformed reinforcing bar. Scanning the surface of a reinforced concrete structure and repeating transmission / reception of electromagnetic waves at a predetermined pitch, storing a propagation time of electromagnetic waves reflected from the deformed rebar in a time series, and storing the time series of the stored propagation times Analyzing the frequency of the data; determining an average interval between the deformed reinforcing bars based on the maximum peak value obtained by the frequency analysis; and determining a reinforcing bar diameter based on a predetermined correspondence table according to the average interval. The non-destructive measuring method of the reinforcing bar diameter characterized by comprising.
The invention according to claim 2 is the non-destructive measurement method for reinforcing bar diameter according to claim 1, wherein the frequency analysis is performed by a maximum likelihood method.
The invention according to claim 3 is the non-destructive measuring method for reinforcing bar diameter according to claim 1, wherein the frequency analysis is performed by fast Fourier transform.
The invention according to claim 4 is the non-destructive measuring method for reinforcing bar diameter according to claim 1, wherein the frequency analysis is performed by a maximum entropy method.
Further, the invention according to claim 5 is a nondestructive measuring device for reinforcing bar diameter of deformed reinforcing bars arranged in a reinforced concrete structure, wherein the nondestructive measuring device for reinforcing bar diameter includes a transmitting antenna and a receiving antenna. The electromagnetic wave radar provided, and the electromagnetic wave radar scans the surface of the reinforced concrete structure along the deformed reinforcing bar and repeats transmission / reception of the electromagnetic wave at a predetermined pitch, so that the propagation time of the electromagnetic wave reflected from the deformed reinforcing bar is time-sequentially Storing means for storing the data, analyzing means for analyzing the frequency of the time series data of the propagation time stored in the storing means, and obtaining an average interval of the nodes of the deformed reinforcing bars based on the maximum peak value obtained by the frequency analysis Non-destructive reinforcing bar diameter, comprising control means and determining means for determining a reinforcing bar diameter based on a predetermined correspondence table according to the average interval It is a measuring apparatus.
The invention according to claim 6 is the non-destructive measuring apparatus for reinforcing bar diameter according to claim 5, wherein the frequency analysis is performed by a maximum likelihood method.
The invention according to claim 7 is the non-destructive measuring apparatus for reinforcing bar diameter according to claim 5, wherein the frequency analysis is performed by fast Fourier transform.
The invention according to claim 8 is the non-destructive measuring apparatus for reinforcing bar diameter according to claim 5, wherein the frequency analysis is performed by a maximum entropy method.

内部に鉄筋が埋め込まれた鉄筋コンクリート構造物中の鉄筋径を非破壊検査により、簡便に確度よく、計測、判断することができる。   The non-destructive inspection can easily and accurately measure and judge the diameter of a reinforcing bar in a reinforced concrete structure in which reinforcing bars are embedded.

鉄筋コンクリートとは、引張りに弱いコンクリートを補強するために鉄筋を配したコンクリートである。鉄筋には引張りが作用しても引き抜けないように、通常、図1、図2のように周期的に節のある異形鉄筋と呼ばれる鉄筋が用いられる。   Reinforced concrete is concrete in which reinforcing bars are arranged to reinforce concrete that is weak against tension. In order to prevent the reinforcing bars from being pulled out even if a tensile force acts on them, reinforcing bars called deformed reinforcing bars having periodic nodes as shown in FIGS. 1 and 2 are usually used.

この異形鉄筋は、鉄筋の径に応じて、節の間隔および高さが異なっており、表1に示すような規格がある(JIS―G3112−75)。

Figure 0004815607
表1によると、節の間隔に対しては、各径に対し少し自由度があり、節間隔がとるべき最大値が定められている。例えば、径が12.7mmの鉄筋に対しては節間隔の平均値の最大値は8.9mmであり、間隔平均値は、強度上の観点からはこれより小さいものは幾らでも小さくて良いが、コストの観点からはこの径よりも1規格低い異形鉄筋である径が9.53mmの異形鉄筋の平均間隔の最大値6.7mmより大きくするのが合理的であり、実際このように製造されていると考えられる。 This deformed reinforcing bar has different node intervals and heights depending on the diameter of the reinforcing bar, and has standards as shown in Table 1 (JIS-G3112-75).
Figure 0004815607
According to Table 1, there is a slight degree of freedom for each diameter with respect to the knot spacing, and the maximum value that the knot spacing should take is determined. For example, for a reinforcing bar with a diameter of 12.7 mm, the maximum value of the average value of the node interval is 8.9 mm, and the average value of the interval may be as small as possible from the viewpoint of strength. From the viewpoint of cost, it is reasonable to make the diameter of the deformed reinforcing bar 1 standard lower than this diameter larger than the maximum value of the average interval of the deformed reinforcing bar of 9.53 mm, which is actually 6.7 mm. It is thought that.

そこで、図1に示すように、電磁波レーダをコンクリート中の鉄筋に沿ってコンクリート表面を走査させる。   Therefore, as shown in FIG. 1, the electromagnetic wave radar scans the concrete surface along the reinforcing bars in the concrete.

電磁波レーダの送信アンテナから電磁波を発射すると、一部はまずコンクリート表面で反射され、受信アンテナに受信される(図1の経路AFE)。残りの電磁波は表面を通過し、コンクリート内部の鉄筋に到達し、ここで反射される。この時の反射波がコンクリート表面を再び透過して、受信アンテナに受信される(図1の経路ABCDE)。   When electromagnetic waves are emitted from the transmission antenna of the electromagnetic wave radar, a part is first reflected by the concrete surface and received by the receiving antenna (path AFE in FIG. 1). The remaining electromagnetic waves pass through the surface, reach the rebar inside the concrete and are reflected there. The reflected wave at this time passes through the concrete surface again and is received by the receiving antenna (path ABCDE in FIG. 1).

いま、図1において、電磁波の鉄筋における反射ポイントが節間の主軸部分にある場合と、節部分にある場合の経路をみると、節の部分で反射される場合の方が主軸部分で反射される場合よりも伝播経路が短いため、電磁波の往復伝播時間が短くなる。   Now, in FIG. 1, when the reflection point in the reinforcing bar of the electromagnetic wave is in the main axis part between the nodes and the path in the case where the reflection point is in the node part, the case where it is reflected in the node part is reflected in the main axis part. Since the propagation path is shorter than in the case of the electromagnetic wave, the round-trip propagation time of the electromagnetic wave is shortened.

本発明は、この事実を利用して節と節との平均間隔を計測し、表1に示されるような鉄筋の径と節間隔の相関関係より径を割り出すものである。   The present invention utilizes this fact to measure the average distance between nodes and calculates the diameter from the correlation between the diameter of the reinforcing bar and the distance between the nodes as shown in Table 1.

図3に示すように、鉄筋に沿ってレーダを走らせ、あるピッチごとに電磁波の送受信を繰り返すと、節がある間隔ごとに設けられているため鉄筋からの電磁波伝播時間が周期的に変化する。この伝播時間の時系列データを格納手段に格納すると共に、格納された伝播時間の時系列データを分析手段により周波数分析することにより、節の平均間隔が求められる。この周波数分析には、例えば、よく知られたFFT(高速フーリエ変換)やMEM(最大エントロピー法)等が利用できる。また、節が周期的に配置されていることを利用した物理モデルを利用した最尤法も考えられる。   As shown in FIG. 3, when the radar is run along the reinforcing bar and the transmission / reception of the electromagnetic wave is repeated at a certain pitch, the propagation time of the electromagnetic wave from the reinforcing bar periodically changes because the nodes are provided at certain intervals. The propagation time time series data is stored in the storage means, and the stored propagation time time series data is subjected to frequency analysis by the analysis means, whereby the average interval of the nodes is obtained. For this frequency analysis, for example, well-known FFT (Fast Fourier Transform) or MEM (Maximum Entropy Method) can be used. In addition, a maximum likelihood method using a physical model that uses the periodic arrangement of nodes is also conceivable.

以下、この最尤法について説明する。
いま、往復伝播時間の時系列データの平均値を求め、各伝播時間よりこの平均値を差し引く。これによりプラス・マイナスに値が振れる周期的な時系列信号が得られる。なお、このとき差し引いた時系列信号のバイアスは完全にはゼロにならないため、この時系列信号は連続時間では次のようのモデル化される。

Figure 0004815607
ここで、z0=a0
,z1=a1sin(ωx+ψ)である。また、ω=2πfで、fは節の繰り返し周波数である。つまり、節の平均間隔がLであればf=1/Lで与えられる。 Hereinafter, this maximum likelihood method will be described.
Now, the average value of the time series data of the round-trip propagation time is obtained, and this average value is subtracted from each propagation time. As a result, a periodic time-series signal whose value varies positively or negatively is obtained. In addition, since the bias of the time series signal subtracted at this time does not become zero completely, this time series signal is modeled as follows in continuous time.
Figure 0004815607
Where z 0 = a 0
, z 1 = a 1 sin (ωx + ψ). Also, ω = 2πf, and f is the node repetition frequency. That is, if the average interval between nodes is L, f = 1 / L.

いま、状態ベクトル

Figure 0004815607
を定義すれば、z(x)の従うダイナミックスは
Figure 0004815607
となる。ここで、(2)式のドットはxについての微分を表し、Aは次式で定義される。
Figure 0004815607
また、w(x)はw(x)=(w1,0,w2)Tなる遷移雑音であり、w1(x),w2(x)は平均値がゼロ、分散がσ1 22 2の互いに独立な白色ガウス雑音とする。この雑音を導入したのは、計測に際してのデータウインドウ内での時系列信号の((1)式による)モデル化誤差を補償するためである。(3)式をΔLでサンプリングすれば、次のサンプル値系表現が得られる。
Figure 0004815607
なお、zk,wkはそれぞれサンプリング地点k(ΔL)における状態ベクトル及び遷移雑音である。ここに、Fは次式で定義される遷移行列である。
Figure 0004815607
ここに、£−1[・]はラプラス逆変換を表わす。また、遷移雑音ベクトルwは平均値がゼロ、共分散行列が次式で与えられる白色ガウス雑音である。
Figure 0004815607
なお、
Figure 0004815607
なる対角行列である。 Now, state vector
Figure 0004815607
, The dynamics obeyed by z (x) is
Figure 0004815607
It becomes. Here, the dot in equation (2) represents the differentiation with respect to x, and A is defined by the following equation.
Figure 0004815607
Further, w (x) is a transition noise of w (x) = (w 1 , 0, w 2 ) T , and w 1 (x) and w 2 (x) have an average value of zero and a variance of σ 1 2 , σ 2 2 mutually independent white Gaussian noise. The reason for introducing this noise is to compensate for the modeling error (according to the equation (1)) of the time series signal in the data window at the time of measurement. If the expression (3) is sampled with ΔL, the following sample value system expression can be obtained.
Figure 0004815607
Z k and w k are a state vector and a transition noise at the sampling point k (ΔL), respectively. Here, F is a transition matrix defined by the following equation.
Figure 0004815607
Here, £ −1 [·] represents Laplace inversion. The transition noise vector w k is white Gaussian noise having an average value of zero and a covariance matrix given by the following equation.
Figure 0004815607
In addition,
Figure 0004815607
Is a diagonal matrix.

一方、この時系列信号{yk}はレーダ走査により得られるので、状態ベクトルzkの観測方程式として次式が与えられる。

Figure 0004815607
ここで、HはH=[1,1,0]である。なお、yk及びvkはサンプリング地点k(ΔL)における観測値(上記平均値を差し引いた時系列信号)及び観測雑音を表わす。 On the other hand, since this time series signal {y k } is obtained by radar scanning, the following equation is given as an observation equation of the state vector z k .
Figure 0004815607
Here, H is H = [1,1,0]. Y k and v k represent the observed value (time series signal obtained by subtracting the average value) and the observed noise at the sampling point k (ΔL).

このようにして、上で定義された時系列信号のダイナミックモデルが得られた。よって、zkの推定はつぎのカルマンフィルタによりなされる。

Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
なお、Vは観測雑音vkの分散である。 In this way, a dynamic model of the time series signal defined above was obtained. Therefore, z k is estimated by the following Kalman filter.
Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
Figure 0004815607
V is the variance of the observation noise v k .

カルマンフィルタの初期値としては、

Figure 0004815607
などを用いればよい。ここにc1, c2は時系列信号の値の大きさをみて適切に与えればよい。また、ωは不明なため、P0/−1の計算に当っては、予めFFTなどで求めたωの概略値を使うなどすればよい。 The initial value of the Kalman filter is
Figure 0004815607
Etc. may be used. Here, c 1 and c 2 may be appropriately given in view of the magnitude of the time series signal value. Further, since ω is unknown, an approximate value of ω obtained in advance by FFT or the like may be used for calculating P 0 / −1 .

しかしながら本計測法で求められていることは真に正確なωを求めることである。しかしながら、カルマンフィルタのF、Wはωの関数であり、しかもωは未知であるため、状態ベクトルの推定には直接カルマンフィルタを適用することができない。しかしながら、ωの候補を一旦与えれば、上記カルマンフィルタ適用することができ、そのパラメータの下での状態ベクトルの推定を行うことができる。 However, what is required by this measurement method is to obtain a truly accurate ω. However, since K and K of the Kalman filter are functions of ω and ω is unknown, the Kalman filter cannot be directly applied to the estimation of the state vector. However, once the candidate for ω is given, the Kalman filter can be applied, and the state vector can be estimated under the parameters.

このとき用いたパラメータωの確からしさは、観測値系列YK−1={y1,y2,…,yK−1}の下で得た次の尤度関数により評価できる。

Figure 0004815607
ここに、
Figure 0004815607
はそれぞれパラメータωの下でのカルマンフィルタにより求めた状態ベクトルの予測値
Figure 0004815607
及びΛkを表す。従って、結局は、(16)式をωについて最大化することにより、最適なω*を求めることができ、これにより節間隔L*(=2π/ω)を計算することができる。 The probability of the parameter ω used at this time can be evaluated by the following likelihood function obtained under the observed value series Y K−1 = {y 1 , y 2 ,..., Y K−1 }.
Figure 0004815607
here,
Figure 0004815607
Is the predicted value of the state vector obtained by the Kalman filter under each parameter ω
Figure 0004815607
And Λ k . Therefore, in the end, the optimum ω * can be obtained by maximizing the equation (16) with respect to ω, and thereby the node interval L * (= 2π / ω * ) can be calculated.

なお、ここでは、伝播時間よりその平均値を差し引いて定義される時系列信号のモデルとして、バイアスの加わった1つの正弦波関数を考えたが、2つ以上の正弦波関数を考えることもできる。また、注意すべきことは、電磁波の発射のピッチが小さければ小さいほど、節の繰り返し形状がよく把握できるため節間隔計測に対しては望ましい。そのため、レーダのピッチが粗ければ、例えばレーダを距離ベースではなく時間ベースの電磁波発射に切り換え、かつ十分小さな電磁波発射ピッチを実現するような速度で動かすようにすればよい。   Here, as a time-series signal model defined by subtracting the average value from the propagation time, one sine wave function with a bias applied is considered, but two or more sine wave functions can also be considered. . In addition, it should be noted that the smaller the pitch of the electromagnetic wave emission, the better the repetitive shape of the node, so it is desirable for the measurement of the interval between nodes. For this reason, if the radar pitch is rough, for example, the radar may be switched to time-based electromagnetic wave emission instead of distance-based and moved at a speed that realizes a sufficiently small electromagnetic wave emission pitch.

また、この最尤法のアプローチを採れば、レーダ走査を複数回行ったときに各時系列信号に対して求めた尤度関数を足し合わせ、これをωについて最大化することにより、信頼度を更に高めることもできる。   In addition, if this maximum likelihood approach is adopted, the likelihood function obtained for each time series signal when the radar scan is performed a plurality of times is added, and this is maximized with respect to ω, thereby improving the reliability. It can be further increased.

なお、鉄筋コンクリート中の異形鉄筋が錆びた場合の径計測であるが、このときも本来の異形鉄筋の形状を留めたコンクリート形状からの反射波による伝播時間情報を採取し、これを利用するようにすれば、鉄筋の本来の節間隔が計測でき、これにより鉄筋の径を計測できる。   In addition, it is the diameter measurement when the deformed reinforcing bar in the reinforced concrete is rusted. By doing so, it is possible to measure the original node spacing of the reinforcing bars and thereby measure the diameter of the reinforcing bars.

次に、伝播時間の計測法について説明する。
鉄筋からの受波信号r(t)は、鉄筋からの反射波r0(t)にコンクリート表面からの反射波rs(t)が重なって観測される。よって、各観測点において鉄筋までの電磁波往復伝播時間を求めるには、受信信号からコンクリート表面からの反射波rs(t)を差し引くことが合理的である(なお、rs(t)は事前に求められる)。
Next, a method for measuring the propagation time will be described.
The received signal r (t) from the reinforcing bar is observed by overlapping the reflected wave r 0 (t) from the reinforcing bar with the reflected wave r s (t) from the concrete surface. Therefore, it is reasonable to subtract the reflected wave r s (t) from the concrete surface from the received signal to obtain the electromagnetic wave round-trip propagation time to the reinforcing bar at each observation point (r s (t) Is required).

この差信号

Figure 0004815607
から鉄筋までの電磁波伝播時間を求めるのであるが、何も正確な往復伝播時間を求める必要はない。つまり、往復伝播時間と連動する相対的な時間変化が重要なのである。 This difference signal
Figure 0004815607
However, it is not necessary to obtain an accurate round-trip propagation time. In other words, the relative time change associated with the round-trip propagation time is important.

この観点から、ここでは往復伝播時間の変化状況を表す簡易法の一つとして、差信号

Figure 0004815607
の最大ピーク値を与える時刻の時系列を観測値として代用することを考える。そして、この時系列信号の平均値を求め、この平均値を各時系列信号から差し引いたものを、前節の{yk}とすればよい。 From this point of view, the difference signal is one of the simple ways to express the change in the round-trip propagation time.
Figure 0004815607
Consider substituting the time series that gives the maximum peak value as the observed value. Then, an average value of the time series signals is obtained, and a value obtained by subtracting the average value from each time series signal may be set as {y k } in the previous section.

なお、

Figure 0004815607
のデータは所定のサンプリング周期ごとに与えられるため、より正確なピーク時刻を求めるには、例えば以下に示すパターンマッチングの方法がある。 In addition,
Figure 0004815607
Since this data is given every predetermined sampling period, for example, there is a pattern matching method shown below to obtain a more accurate peak time.

いま、

Figure 0004815607
(ここでΔTはサンプリング周期)が与えられたとする。このとき、事前に鉄筋からの基準となる反射波信号s(kΔT)(k=0,1,…)を得ておき、より詳細な波形情報を与えるものとして、内挿法によりs(kΔT′)(k=0,1,2,…)を作成しておく。但し、ΔT′はΔT′=ΔT/N(Nは整数)。 Now
Figure 0004815607
Assume that (where ΔT is a sampling period). At this time, the reflected wave signal s (kΔT) (k = 0, 1,...) Serving as a reference from the reinforcing bar is obtained in advance, and more detailed waveform information is given. ) (k = 0,1,2, ...) is created. However, ΔT ′ is ΔT ′ = ΔT / N (N is an integer).

Figure 0004815607
のパターンマッチングがなされるよう{s(kΔT′)}を動かせ、これらの最適パターンマッチングが実現するときの{s(kΔT′)}の最大ピーク位置により
Figure 0004815607
の最大ピーク位置を(ΔTのサンプリング時刻ではなく、ΔTのN分割点の正確さ)で求めようとするものである。従って、N=10とすれば、本来のサンプリング周期の(1/10)きざみで正確な最大ピーク位置が求まる。
Figure 0004815607
{S (kΔT ′)} can be moved so that the following pattern matching is performed, and the maximum peak position of {s (kΔT ′)} when these optimum pattern matching is realized
Figure 0004815607
The maximum peak position is determined by (accuracy of N division points of ΔT, not sampling time of ΔT). Therefore, if N = 10, an accurate maximum peak position can be obtained in (1/10) increments of the original sampling period.

注意すべきことは、パターンマッチングとしてはkΔT(k=0,1,2,…)なる時刻での両波形のマッチング角

Figure 0004815607
で評価することである。ここに、(・,・)及び‖・‖はユークリッド空間の内積及びノルム記号である。 It should be noted that the matching angle of both waveforms at time kΔT (k = 0, 1, 2, ...) as pattern matching
Figure 0004815607
It is to evaluate with. Here, (·, ·) and ‖ · ‖ are inner products and norm symbols of Euclidean space.

いま、径が19.1mm、深度が60mm(従って、かぶりが50.45mm)の異形鉄筋の径の計測を考えてみる。
バイアスを差し引いた往復伝播時間の時系列信号を図4に示す。日本無線(株)製NJJ−95A(中心周波数800MHz)レーダを用いて、電磁波発射は1mmピッチで計測を行った。なお、このピッチは、時間ベースで0.05sおきに電磁波を発射するレーダを鉄筋に沿ってできるだけ等速で走らせたときのデータである。
Let's consider the measurement of the diameter of a deformed bar with a diameter of 19.1mm and a depth of 60mm (thus covering 50.45mm).
A time-series signal of the round-trip propagation time after subtracting the bias is shown in FIG. Electromagnetic wave emission was measured at a pitch of 1 mm using a Japan Radio Co., Ltd. NJJ-95A (central frequency 800 MHz) radar. This pitch is data when a radar that emits an electromagnetic wave every 0.05 s on a time base is run along the reinforcing bar at the same speed as possible.

この時系列信号に対して、(1)FFT、(2)MEM、(3)最尤法の各方式を用いたときの周波数解析結果を図5〜図7に示す。FFT、MEMによるスペクトルの最大ピークは、それぞれf=0.085Hz、f=0.069Hzで与えられる。節間隔L(=1/f)を逆算すると、それぞれ11.8mm、14.4mmとなる。   FIG. 5 to FIG. 7 show the frequency analysis results when (1) FFT, (2) MEM, and (3) maximum likelihood methods are used for this time series signal. The maximum spectrum peaks by FFT and MEM are given by f = 0.085 Hz and f = 0.069 Hz, respectively. Back-calculating the node spacing L (= 1 / f) gives 11.8 mm and 14.4 mm, respectively.

一方、最尤法による方法では、尤度の最大値を与える周波数f=0.085Hzとなる。なお、カルマンフィルタを用いる上で、σ=0.06、σ=0.1、c=0.1、c=0.3を用いた。これより、最尤法による節間隔LはL=1/f=11.8mmとなる。これら3つの節間隔は、FFT及び最尤法では、径が15.9mmに対する鉄筋の最大間隔11.1mmより大きく、径が19.1mmに対する鉄筋の最大間隔13.4mmよりも小さく、またMEMでは、径が15.9mmに対する鉄筋の最大間隔11.1mmより大きく、径が19.1mmに対する鉄筋の最大間隔13.4mmに極めて近く、いずれの方法でも鉄筋の径は19.1mmであることが高い確度でいえる。 On the other hand, in the method based on the maximum likelihood method, the frequency f = 0.085 Hz giving the maximum likelihood value is obtained. In using the Kalman filter, σ 1 = 0.06, σ 2 = 0.1, c 1 = 0.1, and c 2 = 0.3 were used. Thus, the node interval L by the maximum likelihood method is L = 1 / f = 11.8 mm. These three node spacings are larger than the maximum rebar spacing of 11.1 mm for a diameter of 15.9 mm in the FFT and maximum likelihood method, and smaller than 13.4 mm of the maximum rebar spacing for a diameter of 19.1 mm. In the MEM, the diameter is 15.9 mm. The maximum distance between the reinforcing bars for mm is 11.1 mm, and the diameter is very close to the maximum distance of 13.4 mm for the reinforcing bars for 19.1 mm. It can be said with any method that the diameter of the reinforcing bars is 19.1 mm with high accuracy.

電磁波レーダの電磁波伝播経路である。This is an electromagnetic wave propagation path of the electromagnetic wave radar. 異形鉄筋の外見を示す図である。It is a figure which shows the external appearance of a deformed bar. 鉄筋及びレーダの走査を示す図である。It is a figure which shows the scanning of a reinforcing bar and a radar. 観測値系列を示す図である。It is a figure which shows an observation value series. FFTによるスペクトルを示す図である。It is a figure which shows the spectrum by FFT. MEMによるスペクトルを示す図である。It is a figure which shows the spectrum by MEM. 最尤法による尤度関数を示す図である。It is a figure which shows the likelihood function by a maximum likelihood method.

Claims (8)

鉄筋コンクリート構造物中に配設された異形鉄筋の鉄筋径の非破壊計測方法であって、
送信アンテナと受信アンテナとを備えた電磁波レーダを前記異形鉄筋に沿って前記鉄筋コンクリート構造物表面を走査し所定ピッチ毎に電磁波の送受信を繰り返すステップと、
前記異形鉄筋から反射される電磁波の伝播時間を時系列的に格納するステップと、
前記格納された前記伝播時間の時系列データを周波数分析するステップと、
前記周波数分析による最大ピーク位置に基づいて前記異形鉄筋の節の平均間隔を求めるステップと、
前記平均間隔に従って、所定の対応表に基づいて鉄筋径を判断するステップと、
を備えることを特徴とする鉄筋径の非破壊計測方法。
A non-destructive measurement method for the diameter of a deformed reinforcing bar arranged in a reinforced concrete structure,
Scanning the surface of the reinforced concrete structure along the deformed reinforcing bar with an electromagnetic wave radar including a transmitting antenna and a receiving antenna and repeating transmission and reception of electromagnetic waves at a predetermined pitch; and
Storing the propagation time of electromagnetic waves reflected from the deformed reinforcing bars in time series;
Frequency analyzing the stored time series data of the propagation time;
Obtaining an average interval between the nodes of the deformed reinforcing bars based on the maximum peak position by the frequency analysis;
Determining a rebar diameter based on a predetermined correspondence table according to the average interval;
A non-destructive measuring method for reinforcing bar diameter, comprising:
前記周波数分析は、最尤法により行われることを特徴とする請求項1に記載の鉄筋径の非破壊計測方法。   The non-destructive measurement method for reinforcing bar diameter according to claim 1, wherein the frequency analysis is performed by a maximum likelihood method. 前記周波数分析は、高速フーリエ変換により行われることを特徴とする請求項1に記載の鉄筋径の非破壊計測方法。   The said frequency analysis is performed by a fast Fourier transform, The nondestructive measuring method of the reinforcing bar diameter of Claim 1 characterized by the above-mentioned. 前記周波数分析は、最大エントロピー法により行われることを特徴とする請求項1に記載の鉄筋径の非破壊計測方法。   The said frequency analysis is performed by the maximum entropy method, The non-destructive measuring method of the reinforcing bar diameter of Claim 1 characterized by the above-mentioned. 鉄筋コンクリート構造物中に配設された異形鉄筋の鉄筋径の非破壊計測装置であって、前記鉄筋径の非破壊計測装置は、
送信アンテナと受信アンテナとを備えた電磁波レーダと、
前記電磁波レーダを前記異形鉄筋に沿って前記鉄筋コンクリート構造物表面を走査し所定ピッチ毎に電磁波の送受信を繰り返すことにより、前記異形鉄筋から反射される電磁波の伝播時間を時系列的に格納する格納手段と、
前記格納手段に格納された前記伝播時間の時系列データを周波数分析する分析手段と、
前記周波数分析による最大ピーク位置に基づいて前記異形鉄筋の節の平均間隔を求める制御手段と、
前記平均間隔に従って、所定の対応表に基づいて鉄筋径を判断する判断手段と、
を備えることを特徴とする鉄筋径の非破壊計測装置。
A non-destructive measuring apparatus for reinforcing bar diameter of deformed reinforcing bars arranged in a reinforced concrete structure, wherein the non-destructive measuring apparatus for reinforcing bar diameter is
An electromagnetic wave radar having a transmitting antenna and a receiving antenna;
Storage means for storing the propagation time of the electromagnetic wave reflected from the deformed reinforcing bar in time series by scanning the surface of the reinforced concrete structure along the deformed reinforcing bar with the electromagnetic wave radar and repeating the transmission and reception of the electromagnetic wave at a predetermined pitch. When,
Analyzing means for frequency analysis of time series data of the propagation time stored in the storage means;
Control means for obtaining an average interval of the nodes of the deformed reinforcing bars based on the maximum peak position by the frequency analysis;
In accordance with the average interval, a determination means for determining a reinforcing bar diameter based on a predetermined correspondence table;
A non-destructive measuring apparatus for reinforcing bar diameter, comprising:
前記周波数分析は、最尤法により行われることを特徴とする請求項5に記載の鉄筋径の非破壊計測装置。   The said frequency analysis is performed by the maximum likelihood method, The reinforcing bar diameter nondestructive measuring apparatus of Claim 5 characterized by the above-mentioned. 前記周波数分析は、高速フーリエ変換により行われることを特徴とする請求項5に記載の鉄筋径の非破壊計測装置。   The non-destructive measuring apparatus for reinforcing bar diameter according to claim 5, wherein the frequency analysis is performed by fast Fourier transform. 前記周波数分析は、最大エントロピー法により行われることを特徴とする請求項5に記載の鉄筋径の非破壊計測装置。   The said frequency analysis is performed by the maximum entropy method, The rebar diameter nondestructive measuring apparatus of Claim 5 characterized by the above-mentioned.
JP2007073353A 2007-03-20 2007-03-20 Non-destructive measuring device and non-destructive measuring method of reinforcing bar diameter in reinforced concrete structure by electromagnetic wave radar Active JP4815607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073353A JP4815607B2 (en) 2007-03-20 2007-03-20 Non-destructive measuring device and non-destructive measuring method of reinforcing bar diameter in reinforced concrete structure by electromagnetic wave radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073353A JP4815607B2 (en) 2007-03-20 2007-03-20 Non-destructive measuring device and non-destructive measuring method of reinforcing bar diameter in reinforced concrete structure by electromagnetic wave radar

Publications (2)

Publication Number Publication Date
JP2008232852A JP2008232852A (en) 2008-10-02
JP4815607B2 true JP4815607B2 (en) 2011-11-16

Family

ID=39905821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073353A Active JP4815607B2 (en) 2007-03-20 2007-03-20 Non-destructive measuring device and non-destructive measuring method of reinforcing bar diameter in reinforced concrete structure by electromagnetic wave radar

Country Status (1)

Country Link
JP (1) JP4815607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088358A (en) * 2017-12-18 2018-05-29 电子科技大学 One kind is based on more baseline radar track deformation detecting methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149582A1 (en) * 2016-02-29 2017-09-08 三井造船株式会社 Data processing method and measurement device
CN113566692B (en) * 2021-07-23 2023-12-08 国网天津市电力公司电力科学研究院 Nondestructive testing method for quality of cable cement protection cover plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165982A (en) * 1987-12-22 1989-06-29 Japan Radio Co Ltd Measuring apparatus of tube diameter of buried reinforcement inside concrete
JPH06174855A (en) * 1992-12-03 1994-06-24 Osaka Gas Co Ltd Method for detecting joint position of buried pipe
WO2003048758A1 (en) * 2001-11-30 2003-06-12 Masayuki Hirose Ultrasonic detecting device and ultrasonic detecting method using the device
JP2005331404A (en) * 2004-05-20 2005-12-02 Shogo Tanaka Method and apparatus for diagnosing reinforced concrete structure
JP2007327935A (en) * 2006-05-11 2007-12-20 Yamaguchi Univ Method for measuring object in medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088358A (en) * 2017-12-18 2018-05-29 电子科技大学 One kind is based on more baseline radar track deformation detecting methods
CN108088358B (en) * 2017-12-18 2019-08-20 电子科技大学 One kind being based on more baseline radar track deformation detecting methods

Also Published As

Publication number Publication date
JP2008232852A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
KR101628154B1 (en) Multiple target tracking method using received signal strengths
US10180342B2 (en) Level finding using multiple search steps
CN105877783B (en) Two-dimensional shear wave elastic imaging method and device
JP2007327935A (en) Method for measuring object in medium
JP4815607B2 (en) Non-destructive measuring device and non-destructive measuring method of reinforcing bar diameter in reinforced concrete structure by electromagnetic wave radar
JP3595220B2 (en) Synthetic aperture radar device and target scattering point detection method
JP5247077B2 (en) Moving target detection device
US7654142B2 (en) Method of imaging using topologic energy calculation
JP6037273B2 (en) Radar signal processing apparatus, radar signal processing method, and radar signal processing program
JP5424588B2 (en) Radar cross section measuring apparatus and method, and radar cross section measuring program
JP5328477B2 (en) Wind measuring device
JP4691656B2 (en) Object search method in structure, computer program, and recording medium
JP4858117B2 (en) Object detection device
JP2011232053A (en) Distance measuring device
JP2016114577A (en) Signal processing device, signal processing method, and program
JP4266810B2 (en) Wind speed vector calculation device
JP4950474B2 (en) Object detection device
JP2020091129A (en) Aperture synthetic processing device, aperture synthetic processing method and program of the same
US12013373B2 (en) Free-encoder positioning system using acoustic features and IMU
JP3732491B2 (en) Ultrasonic flaw detection method and apparatus using longitudinal wave and transverse wave diffracted wave
JP2011232054A (en) Distance measuring device
JP2004361131A (en) Method and device for measuring oscillation
JP5553970B2 (en) Radar equipment
JP4506132B2 (en) How to increase non-ambiguity distance in FSK radar
KR101954811B1 (en) System and method for predicting thickness of damage of target object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150