JP4815602B2 - Dioxins and other responsive plasmids, dioxin and other transgenic cells, and detection methods and biosensors using the same - Google Patents

Dioxins and other responsive plasmids, dioxin and other transgenic cells, and detection methods and biosensors using the same Download PDF

Info

Publication number
JP4815602B2
JP4815602B2 JP2006513687A JP2006513687A JP4815602B2 JP 4815602 B2 JP4815602 B2 JP 4815602B2 JP 2006513687 A JP2006513687 A JP 2006513687A JP 2006513687 A JP2006513687 A JP 2006513687A JP 4815602 B2 JP4815602 B2 JP 4815602B2
Authority
JP
Japan
Prior art keywords
dioxins
cells
gene
seap
polycyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006513687A
Other languages
Japanese (ja)
Other versions
JPWO2005113767A1 (en
Inventor
正敬 北村
秀一郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2006513687A priority Critical patent/JP4815602B2/en
Publication of JPWO2005113767A1 publication Critical patent/JPWO2005113767A1/en
Application granted granted Critical
Publication of JP4815602B2 publication Critical patent/JP4815602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1086Preparation or screening of expression libraries, e.g. reporter assays

Description

本発明は、ダイオキシン類、多環芳香族炭化水素などの内分泌撹乱物質や一部の発がん物質等が、細胞内受容体である芳香族炭化水素受容体(以下、AhR)を介して作用することに基づく有害化学物質の簡便、迅速かつ高感度な検出方法または定量方法、及び検出物質、並びにダイオキシン類検出バイオセンサーに関する。   In the present invention, endocrine disrupting substances such as dioxins and polycyclic aromatic hydrocarbons and some carcinogenic substances act via an aromatic hydrocarbon receptor (hereinafter referred to as AhR) that is an intracellular receptor. The present invention relates to a simple, rapid and sensitive detection or quantification method for harmful chemical substances based on the above, a detection substance, and a dioxin detection biosensor.

現代社会の深刻な問題の一つである環境汚染への対応策を確立するためには、環境中の有害化学物質への曝露の程度を正確に評価することが必要である。このためには、簡便で、感度や再現性の高い有害化学物質の分析方法が確立されていることが不可欠である。   In order to establish countermeasures against environmental pollution, one of the serious problems of modern society, it is necessary to accurately evaluate the degree of exposure to harmful chemical substances in the environment. For this purpose, it is indispensable to establish a method for analyzing harmful chemical substances that is simple and has high sensitivity and reproducibility.

ダイオキシン類は、極微量で種々の有害作用を惹起する。従って、鋭敏かつ迅速にダイオキシン類を検出する方法の確立は、ダイオキシン類への曝露を正確に評価し、健康障害を予防するために、緊急の課題と考えられる。また、ダイオキシン類と同じように環境中の有害物質である多環芳香族炭化水素、及びこれらを複合的に含有するタバコ煙の生物学的毒性の総体的かつ定量的評価も大きな課題である。   Dioxins cause various harmful effects in a very small amount. Therefore, the establishment of a method for detecting dioxins sensitively and quickly is considered an urgent issue in order to accurately evaluate exposure to dioxins and prevent health problems. In addition, overall and quantitative evaluation of the biological toxicity of polycyclic aromatic hydrocarbons, which are harmful substances in the environment like dioxins, and tobacco smoke containing these in a complex manner is also a major issue.

環境中のダイオキシン類等を検出するための代表的な手法としては、内因性のバイオマーカー、例えば薬物代謝酵素であるチトクロームP-4501A1の利用、 培養細胞を用いたバイオアッセイ、酵素免疫アッセイ、クロマトグラフィーを用いた方法などがある。特に遺伝子工学技術を用いたバイオアッセイは、その簡便性と感度の高さから、近年注目を集めている。   Typical methods for detecting dioxins in the environment include the use of endogenous biomarkers such as cytochrome P-4501A1, a drug metabolizing enzyme, bioassay using cultured cells, enzyme immunoassay, chromatography There are methods that use graphy. In particular, bioassays using genetic engineering techniques have recently attracted attention due to their simplicity and high sensitivity.

こうした遺伝子工学的バイオアッセイは、幾つかの基本ユニットにより構成されている。かかる基本ユニットは、(1)細胞、(2)細胞に組み込む遺伝子構造の2つである。ここで、かかる遺伝子構造はさらにダイオキシン類のセンサーとして機能するDNA配列であるダイオキシン類応答DNA配列と、マーカータンパクを規定するマーカータンパク遺伝子とにより成り立っている。   Such genetic engineering bioassays are composed of several basic units. Such basic units are (1) cells and (2) gene structures to be incorporated into cells. Here, such a gene structure further comprises a dioxin-responsive DNA sequence, which is a DNA sequence that functions as a sensor for dioxins, and a marker protein gene that defines a marker protein.

こうした遺伝子構造を細胞に導入し、細胞の染色体DNAに安定に組み込むことにより、ダイオキシン類等に反応するセンサー細胞を作製することが可能である。   By introducing such a gene structure into a cell and stably incorporating it into the chromosomal DNA of the cell, it is possible to produce a sensor cell that reacts with dioxins and the like.

こうした遺伝子導入細胞がダイオキシン類等を含む試料に曝露されると、まずダイオキシン類等が細胞内のAhRと結合し、さらに転写促進共役因子であるコアクチベーター(以下、Arnt)と複合体を形成、その複合体が転写因子としてダイオキシン類応答DNA配列を活性化させる。その結果、遺伝子配列下流のマーカータンパク遺伝子の発現が促進される。   When such transgenic cells are exposed to samples containing dioxins, dioxins, etc. first bind to intracellular AhR, and then form a complex with a coactivator (hereinafter referred to as Arnt), a transcription-promoting coupling factor. The complex activates a dioxin-responsive DNA sequence as a transcription factor. As a result, the expression of the marker protein gene downstream of the gene sequence is promoted.

かかるマーカータンパク遺伝子が発現することによりマーカータンパクが産生され、当該タンパクを定量化することにより、試料中にどのくらいの濃度のダイオキシン類等が存在するかを評価することができる。   By expressing such a marker protein gene, a marker protein is produced, and by quantifying the protein, it is possible to evaluate how much dioxins or the like are present in the sample.

マーカータンパク遺伝子としては、これまでクロラムフェニコ−ル・アシルリボシル・トランスフェラ−ゼ、β-ガラクトシダーゼ、ルシフェラーゼ、などの酵素遺伝子や緑色螢光タンパク遺伝子が用いられてきた。   As marker protein genes, enzyme genes such as chloramphenicol / acylribosyl transferase, β-galactosidase, luciferase, and green fluorescent protein genes have been used so far.

しかし、これまでのバイオアッセイでは、(1)マーカータンパクが分泌されないため、その定量のためには細胞を破壊してマーカータンパクを抽出する操作が必要、(2)環境中の極微量な有害物質を検出する上で感度が不十分であり、高感度なシステムでも2、3、7、8-tetrachlorodibenzo-p-dioxin(以下、TCDD)換算で1pMが検出の限界、(3)バイオアッセイに2日〜3日必要、(4)1サンプルあたり60、000個から100、000個の細胞数が必要、このため、培養コスト、人件費などの経費が高くつく、などの問題点を挙げることができる。特に(2)〜(4)は、多数のサンプルを効率良くスクリーニングしてゆく上で大きな障害となっていた。
P.A. Behnisch、 K. Hosoe、 S. Sakai、 Bioanalytical screening methods for dioxins and dioxin-like compounds:a review of bioassay/biomarker technology、 Environ. Int. 27 (2001) 413-439. 特願2004-135662「ダイオキシン類測定用形質転換体並びにそれを用いたダイオキシン類の検出方法、定量分析方法及びスクリーニング方法」
However, in conventional bioassays, (1) since marker protein is not secreted, it is necessary to destroy the cells and extract the marker protein for quantification. (2) Trace amounts of harmful substances in the environment Sensitivity is inadequate for detection, and even in high-sensitivity systems, 1, 3, 7, and 8-tetrachlorodibenzo-p-dioxin (TCDD) conversion, 1 pM is the limit of detection, and (3) 2 for bioassay 3-4 days required (4) 60,000 to 100,000 cells per sample are required, which can lead to high costs such as culture and labor costs. it can. In particular, (2) to (4) are serious obstacles to efficiently screening a large number of samples.
PA Behnisch, K. Hosoe, S. Sakai, Bioanalytical screening methods for dioxins and dioxin-like compounds: a review of bioassay / biomarker technology, Environ. Int. 27 (2001) 413-439. Japanese Patent Application No. 2004-135662 “Transformant for measuring dioxins and detection method, quantitative analysis method and screening method of dioxins using the same”

そこで本発明は、従来のルシフェラーザや緑色蛍光タンパクを用いたダイオキシン類検出のバイオアッセイに比較し、(1)バイオアッセイプロセスの簡便化、(2)検出感度の向上、(3)バイオアッセイ時間の大幅な短縮、(4)培養コスト、人件費等の経費の削減、を課題とするものである。   Therefore, the present invention is compared with the conventional bioassay for detecting dioxins using luciferase or green fluorescent protein, (1) simplification of bioassay process, (2) improvement of detection sensitivity, (3) bioassay time. (4) Reduction of expenses such as culture costs and labor costs.

本発明は、ダイオキシン類、及び/又は多環芳香族炭化水素に反応して活性化されるダイオキシン類及び/又は多環芳香族炭化水素高感受性遺伝子配列の下流に、分泌型マーカータンパク遺伝子を組み込んだダイオキシン類及び/又は多環芳香族炭化水素応答性プラスミドである。   The present invention incorporates a secretory marker protein gene downstream of a dioxin and / or polycyclic aromatic hydrocarbon hypersensitive gene sequence activated in response to dioxins and / or polycyclic aromatic hydrocarbons. It is a dioxin and / or polycyclic aromatic hydrocarbon responsive plasmid.

前記分泌型マーカータンパク遺伝子は、分泌型アルカリホスファターゼ遺伝子であることは好適である。   The secretory marker protein gene is preferably a secretory alkaline phosphatase gene.

本発明は、上述したダイオキシン類及び/又は多環芳香族炭化水素応答性プラスミドが、芳香族炭化水素受容体を高発現する培養細胞に導入され、前記芳香族炭化水素受容体がダイオキシン類及び/又は多環芳香族炭化水素に結合し、分泌型マーカータンパクを産生するダイオキシン類及び/又は多環芳香族炭化水素測定用遺伝子導入細胞である。   In the present invention, the dioxins and / or polycyclic aromatic hydrocarbon-responsive plasmids described above are introduced into cultured cells that highly express an aromatic hydrocarbon receptor, and the aromatic hydrocarbon receptor is a dioxin and / or Alternatively, it is a gene-introduced cell for measuring dioxins and / or polycyclic aromatic hydrocarbons that binds to a polycyclic aromatic hydrocarbon and produces a secreted marker protein.

前記芳香族炭化水素受容体を高発現する培養細胞は、Hepa-1c1c7であることは好適である。   The cultured cell that highly expresses the aromatic hydrocarbon receptor is preferably Hepa-1c1c7.

本発明は、上述したダイオキシン類及び/又は多環芳香族炭化水素測定用遺伝子導入細胞をダイオキシン類及び/又は多環芳香族炭化水素の検出センサーとして用いたバイオセンサーとするものである。   The present invention provides a biosensor using the above-described gene-transferred cell for measuring dioxins and / or polycyclic aromatic hydrocarbons as a detection sensor for dioxins and / or polycyclic aromatic hydrocarbons.

本発明は、ダイオキシン類、及び/又は多環芳香族炭化水素に反応して活性化されるダイオキシン類及び/又は多環芳香族炭化水素高感受性遺伝子配列と、前記遺伝子配列の下流に分泌型マーカータンパク遺伝子を組み込んだダイオキシン類及び/又は多環芳香族炭化水素応答性プラスミドを芳香族炭化水素受容体を高発現する細胞に導入し作製したダイオキシン類及び/又は多環芳香族炭化水素測定用遺伝子導入細胞を、ダイオキシン類、及び/又は多環芳香族炭化水素に曝露し、前記遺伝子導入細胞が分泌する分泌型マーカータンパクの活性を定量し、ダイオキシン類、及び/又は多環芳香族炭化水素を検出するダイオキシン類、及び/又は多環芳香族炭化水素の検出方法である。   The present invention relates to a dioxins and / or polycyclic aromatic hydrocarbon highly sensitive gene sequence activated in response to dioxins and / or polycyclic aromatic hydrocarbons, and a secretory marker downstream of the gene sequences. Genes for measuring dioxins and / or polycyclic aromatic hydrocarbons produced by introducing dioxins and / or polycyclic aromatic hydrocarbon-responsive plasmids incorporating protein genes into cells that highly express aromatic hydrocarbon receptors The introduced cells are exposed to dioxins and / or polycyclic aromatic hydrocarbons, the activity of the secreted marker protein secreted by the transgenic cells is quantified, and the dioxins and / or polycyclic aromatic hydrocarbons are quantified. This is a method for detecting dioxins to be detected and / or polycyclic aromatic hydrocarbons.

分泌型マーカータンパクは、分泌型アルカリホスファターゼであることは好適である。また、前記細胞は、Hepa-1c1c7であることは好適である。   It is preferable that the secretory marker protein is secretory alkaline phosphatase. The cell is preferably Hepa-1c1c7.

本発明は、ダイオキシン類、及び/又は多環芳香族炭化水素に反応して活性化されるダイオキシン類及び/又は多環芳香族炭化水素高感受性遺伝子配列と、前記遺伝子配列の下流に、分泌型マーカータンパク遺伝子を組み込んだダイオキシン類及び/又は多環芳香族炭化水素応答性プラスミドを芳香族炭化水素受容体を高発現する細胞に導入し作製したダイオキシン類及び/又は多環芳香族炭化水素測定用遺伝子導入細胞をタバコ煙に曝露させ、前記遺伝子導入細胞が分泌する分泌型マーカータンパクの活性を定量することにより、タバコ煙の生物学的毒性を評価するタバコ煙の生物学的毒性の定量的評価方法である。   The present invention relates to dioxins and / or polycyclic aromatic hydrocarbons highly sensitive gene sequences activated in response to dioxins and / or polycyclic aromatic hydrocarbons, and a secreted type downstream of the gene sequences. For measuring dioxins and / or polycyclic aromatic hydrocarbons produced by introducing dioxins and / or polycyclic aromatic hydrocarbon-responsive plasmids incorporating a marker protein gene into cells that highly express aromatic hydrocarbon receptors To evaluate the biological toxicity of tobacco smoke by exposing the transgenic cell to tobacco smoke and quantifying the activity of the secreted marker protein secreted by the transgenic cell. Is the method.

前記分泌型マーカータンパクは、分泌型アルカリホスファターゼであることは好適である。   The secretory marker protein is preferably secretory alkaline phosphatase.

本発明によれば、単純な化学発光計測等により、簡便にダイオキシン類や多環芳香族炭化水素を測定できる。また、細胞の播種から計測までのダイオキシン測定プロセスを、数時間で完了でき、更に本発明によれば、低コストで高感度なダイオキシン類及び/又は多環芳香族炭化水素の測定を行うことができる。   According to the present invention, dioxins and polycyclic aromatic hydrocarbons can be easily measured by simple chemiluminescence measurement or the like. In addition, the dioxin measurement process from cell seeding to measurement can be completed in a few hours, and according to the present invention, low-cost and highly sensitive dioxins and / or polycyclic aromatic hydrocarbons can be measured. it can.

本発明は、大気、河川、土壌、食品、生活器材に含まれるダイオキシン類及び/又は多環芳香族炭化水素を検出できる優れた発明である。   The present invention is an excellent invention capable of detecting dioxins and / or polycyclic aromatic hydrocarbons contained in the atmosphere, rivers, soil, foods, and household equipment.

発明を実施するための最良の形態について以下に述べる。   The best mode for carrying out the invention will be described below.

図1はダイオキシン類及び/又は多環芳香族炭化水素反応性プラスミドpDRE-SEAP10の構造図を示したものである。pDRE-SEAP10は、マウス乳ガンウイルスのプロモータ(以下、MM TV)の一部にダイオキシン類応答DNA配列(以下、DRE)を組み込んだダイオキシン類高感受性DNA配列(以下、MMTV-DRE11)およびその下流に位置する分泌型アルカリホスファターゼ(以下、SEAP)遺伝子12と、サルウイルス40(以下、SV40)由来のポリアデニレーションシグナル(以下、poly A13)とにより構成されている。   FIG. 1 shows a structural diagram of dioxins and / or polycyclic aromatic hydrocarbon reactive plasmid pDRE-SEAP10. pDRE-SEAP10 is a dioxin-sensitive DNA sequence (hereinafter MMTV-DRE11) that incorporates a dioxin-responsive DNA sequence (hereinafter DRE) into a part of the mouse breast cancer virus promoter (hereinafter MM TV) and downstream of it. It is composed of a secretory alkaline phosphatase (hereinafter referred to as SEAP) gene 12 and a polyadenylation signal (hereinafter referred to as poly A13) derived from simian virus 40 (hereinafter referred to as SV40).

従来、ダイオキシン類応答DNA配列としてDREが用いられてきたが、この実施例では、ダイオキシン類を感知するセンサーDNA配列として、MMTVの一部にDREを組み込んだMMTV-DREを用いた。これにより高感度なアッセイ系を確立した。   Conventionally, DRE has been used as a dioxin-responsive DNA sequence. In this example, MMTV-DRE in which DRE was incorporated into a part of MMTV was used as a sensor DNA sequence for sensing dioxins. This established a highly sensitive assay system.

MMTV-DRE11は、ダイオキシン類に応答して活性化されることが知られているDREを4個、MMTVのプロモーターの一部に組み込んだものである。DRE単独のものに比べ強力なダイオキシン類への応答性がある。   MMTV-DRE11 incorporates four DREs, which are known to be activated in response to dioxins, as part of the MMTV promoter. Responsive to dioxins that are stronger than those of DRE alone.

図2は、MMTV-DREとDREのセンサー能力を比較検討した結果である。MMTV-DREとDREのみをセンサー配列として持つSEAPリポータープラスミドを作成し、これらを各々Hepa-1c1c7細胞に遺伝子導入した。なお、遺伝子導入の詳細は後述する。その後、これらの細胞をTCDDで刺激し、SEAP活性の増加を比較した。DREのみをセンサー配列として持つSEAPリポータープラスミドを導入した細胞では、TCDDの刺激によってSEAP活性は4.5倍に上昇した。   Fig. 2 shows the results of a comparison of the sensor capabilities of MMTV-DRE and DRE. SEAP reporter plasmids having only MMTV-DRE and DRE as sensor sequences were prepared, and these genes were introduced into Hepa-1c1c7 cells. Details of gene transfer will be described later. These cells were then stimulated with TCDD and compared for increased SEAP activity. In cells into which a SEAP reporter plasmid having only DRE as a sensor sequence was introduced, SEAP activity increased 4.5-fold by TCDD stimulation.

これに対して、MMTV-DREをセンサー配列として持つSEAPリポータープラスミドを導入した細胞(Hepa1c1c7-DRE-SEAP細胞、以下、HeDS細胞)では、TCDDの刺激によってSEAP活性は43.2倍に上昇した。MMTVのみをセンサー配列として持つSEAPリポータープラスミドを導入した細胞では、TCDDによりSEAP活性の増加は見られなかった。このことはMMTVの配列が、DREのダイオキシンに対する応答性を強力に増幅することを意味している。MMTV-DREの高反応性は、アッセイの迅速性、低コストを可能とする。   In contrast, SEAP activity increased 43.2 times in the cells into which the SEAP reporter plasmid having MMTV-DRE as a sensor sequence was introduced (Hepa1c1c7-DRE-SEAP cells, hereinafter referred to as HeDS cells) by TCDD stimulation. In cells into which a SEAP reporter plasmid having only MMTV as a sensor sequence was introduced, SEAP activity was not increased by TCDD. This means that the MMTV sequence strongly amplifies DRE response to dioxins. The high reactivity of MMTV-DRE enables rapid assay and low cost.

実施例1では、マーカータンパクとしてSEAPを用いた。SEAPを含め、これまで分泌型マーカータンパクを用いたダイオキシン類のバイオアッセイ系は確立されていなかった。SEAPはルシフェラーゼと並び高感度にダイオキシン類を検出しうるマーカータンパクであるが、ルシフェラーゼと異なり細胞外に分泌されるため、細胞を破壊してタンパクを抽出する操作が不要である。   In Example 1, SEAP was used as a marker protein. A bioassay system for dioxins using secreted marker protein has not been established so far, including SEAP. SEAP is a marker protein that can detect dioxins with high sensitivity along with luciferase, but unlike luciferase, SEAP is secreted outside the cell, so it is not necessary to destroy the cell and extract the protein.

図3は5000個のHeDS細胞でTCDDの検出感度を測定したグラフである。従来のルシフェラーゼを用いたダイオキシンアッセイでは1pMのTCDDを検出するために60、000個〜100、000個の細胞数が必要なのに対し、図3に示す通り、5000個のHeDS細胞で0.5pMのTCDDの検出が可能である。   FIG. 3 is a graph in which the detection sensitivity of TCDD was measured with 5000 HeDS cells. The conventional dioxin assay using luciferase requires 60,000 to 100,000 cells to detect 1 pM TCDD, whereas 0.5 pM TCDD in 5000 HeDS cells, as shown in FIG. Can be detected.

SEAPをマーカータンパクとして用いることにより、僅か5μlという極めて微量な培養上清のサンプルのみで、ダイオキシン類のアッセイが可能である。SEAP遺伝子12の転写レベルとSEAPタンパクの分泌レベルは極めて良く相関し、その活性はルミノメーターなどの化学発光の検出システムで容易に検出・定量化が可能である。なお、polyA13はメッセンジャーRNAが作られてからタンパクに翻訳される過程で不可欠な遺伝子配列である。   By using SEAP as a marker protein, dioxins can be assayed with only a very small sample of the culture supernatant of only 5 μl. The transcription level of SEAP gene 12 and the secretion level of SEAP protein correlate very well, and the activity can be easily detected and quantified by a chemiluminescence detection system such as a luminometer. PolyA13 is an essential gene sequence in the process of messenger RNA being made and then translated into protein.

pDRE-SEAP10は遺伝子工学的常法により作製する。即ち、制限酵素により切り出し精製したMMTV-DRE11の断片を、プロモーターを持たないSEAPプラスミドのSEAP遺伝子12の上流に、T4DNAリガーゼを用いて組み込む。   pDRE-SEAP10 is prepared by conventional genetic engineering methods. That is, the MMTV-DRE11 fragment excised and purified by a restriction enzyme is incorporated upstream of the SEAP gene 12 of the SEAP plasmid without a promoter using T4 DNA ligase.

T4DNAリガーゼは、隣接するDNA鎖の5'末端と3'末端とを連結する酵素である。作製したpDRE-SEAP10は大腸菌に導入して大量に増やし、遺伝子工学的常法によりpDRE-SEAP10を精製する。   T4 DNA ligase is an enzyme that links the 5 ′ end and 3 ′ end of adjacent DNA strands. The prepared pDRE-SEAP10 is introduced into Escherichia coli to increase in quantity, and pDRE-SEAP10 is purified by a genetic engineering routine.

作製したpDRE-SEAPを、図4のような手順によりマウスの肝臓癌細胞株であるHepa-1c1c7細胞に遺伝子導入し、安定な組換え細胞を樹立する。ここで発明者がHepa-1c1c7細胞を選択したのは、(1)ダイオキシン類のバイオアッセイ系を確立するためには、芳香族炭化水素受容体(以下、AhR)を産生する細胞を用いることが不可欠であること、(2)高感度のアッセイ系を樹立するには、AhRを高度に発現している細胞を選択することが必須構成要件であること、との観点からである。   The prepared pDRE-SEAP is introduced into Hepa-1c1c7 cells, which are mouse liver cancer cell lines, according to the procedure shown in FIG. 4 to establish stable recombinant cells. Here, the inventor selected Hepa-1c1c7 cells because (1) in order to establish a bioassay system for dioxins, cells that produce an aromatic hydrocarbon receptor (hereinafter, AhR) are used. This is because it is indispensable and (2) in order to establish a highly sensitive assay system, it is essential to select cells that highly express AhR.

かかる観点から発明者は鋭意検討した結果、肝臓癌細胞由来の細胞系、Hepa-1c1c7を選択したものである。作製したpDRE-SEAPをHepa-1c1c7細胞に導入し、安定な組換え細胞を樹立した手順は図4に示す通りである。   As a result of intensive studies from this viewpoint, the inventor has selected Hepa-1c1c7, a cell line derived from liver cancer cells. The procedure for introducing the prepared pDRE-SEAP into Hepa-1c1c7 cells and establishing stable recombinant cells is as shown in FIG.

トリプシンで培養皿から剥離した4×106個のHepa-1c1c7細胞をリン酸緩衝生理食塩水であるPBSで良く洗浄した後、電気穿孔法(以下、エレクトロポレーション)用キュベット(バイオラド社製、品番165-2088)に入れる(S1)。20μgのpDRE-SEAPと2μgのネオマイシン耐性遺伝子を含むプラスミドpcDNA3.1を添加して混和、10分間氷上で静置する(S2)。After thoroughly washing 4 × 10 6 Hepa-1c1c7 cells detached from the culture dish with trypsin with PBS, which is a phosphate buffered saline, a cuvette for electroporation (hereinafter, electroporation) No. 165-2088) (S1). Add 20 μg of pDRE-SEAP and 2 μg of plasmid pcDNA3.1 containing neomycin resistance gene, mix, and leave on ice for 10 minutes (S2).

次に、ジーンパルサー (バイオラド社製)を用いて150mV、960μFの条件でエレクトロポレーションを施行、その1/10から1/20の細胞数を100 mm培養皿に播種し、37℃、CO2濃度5% 、10%の牛胎児血清(以下、FBS)存在下で3日間培養する(S3)。Next, electroporation was performed under conditions of 150 mV and 960 μF using Gene Pulser (manufactured by Bio-Rad), and 1/10 to 1/20 of the number of cells was seeded in a 100 mm culture dish at 37 ° C., CO 2 The cells are cultured for 3 days in the presence of 5% and 10% fetal bovine serum (hereinafter FBS) (S3).

培養液はα-MEM(ギブコ社製、品番12561-056)を用いた。その後500μg/mlのネオマイシン存在下で1〜2週間培養することにより、非組換え細胞は死滅し(S4)、pDRE-SEAPが染色体DNAに安定に組み込まれた組換え細胞のみが生存・増殖して集塊を形成する。   As a culture solution, α-MEM (manufactured by Gibco, product number 12561-056) was used. Subsequently, by culturing for 1 to 2 weeks in the presence of 500 μg / ml neomycin, non-recombinant cells die (S4), and only recombinant cells in which pDRE-SEAP is stably integrated into the chromosomal DNA survive and proliferate To form agglomerates.

この細胞集塊を個別にトリプシン処理して剥離し、各々を2穴づつ96穴培養プレートに移し1週間培養を継続する(S5)。細胞が飽和状態になった後、各穴の培養液を1%のFBSを含有するα-MEM100μlに交換し、10pMのTCDD存在下、または非存在下で24時間培養、その培養上清5μlを用いて所定のSEAPアッセイを行ない、低濃度のダイオキシンに最も鋭敏に反応するHeDS細胞を樹立、ダイオキシン類検出バイオアッセイに用いる(S6)。本明細書ではこのバイオアッセイ法をDRE-based Sensing of dioxin via Secreted Alkalined phosphatase(以下、DRESSA法)という。   The cell clumps are individually detached by trypsin treatment and detached, and each of them is transferred to a 96-well culture plate with 2 holes, and the culture is continued for 1 week (S5). After the cells are saturated, the culture medium in each well is replaced with 100 μl of α-MEM containing 1% FBS, and cultured for 24 hours in the presence or absence of 10 pM TCDD. A predetermined SEAP assay is used to establish HeDS cells that react most sensitively to dioxins at low concentrations and are used in bioassays for detecting dioxins (S6). In this specification, this bioassay method is referred to as DRE-based Sensing of dioxin via Secreted Alkalined phosphatase (hereinafter, DRESSA method).

樹立したHeDS細胞のダイオキシン類への応答メカニズムを図5に示す。HeDS細胞では、その染色体DNAの中にpDRE-SEAP10の各コンポーネント、即ちMMTV-DRE11およびその下流のSEAP遺伝子12とポリアデニレーションシグナル13が安定に組み込まれている。この細胞がダイオキシン類20に曝露されると、ダイオキシン類20はまず細胞膜を通過し、細胞質内に存在するAhR14に結合する。   FIG. 5 shows the response mechanism of established HeDS cells to dioxins. In HeDS cells, each component of pDRE-SEAP10, that is, MMTV-DRE11, and its downstream SEAP gene 12 and polyadenylation signal 13 are stably integrated in its chromosomal DNA. When these cells are exposed to dioxins 20, the dioxins 20 first cross the cell membrane and bind to AhR14 present in the cytoplasm.

さらにAhR14は、コアクチベーターであるArnt15と複合体を形成し核内に入り、MMTV-DRE 11に結合してそれを活性化させる。結果として下流のSEAP遺伝子12の転写が促され、メッセンジャーRNA16が作られ、リボゾーム17でタンパク18に翻訳されて、SEAPタンパクとして細胞外に速やかに分泌される19。従って培養上清中のSEAPタンパクの活性を測定することにより、細胞がどれだけのレベルのダイオキシン類に曝露されているのかを定量することができる。   In addition, AhR14 forms a complex with Arnt15, a coactivator, enters the nucleus, binds to MMTV-DRE 11, and activates it. As a result, transcription of downstream SEAP gene 12 is promoted, messenger RNA16 is produced, translated into protein 18 by ribosome 17, and rapidly secreted extracellularly as SEAP protein19. Therefore, by measuring the activity of the SEAP protein in the culture supernatant, it is possible to quantify the level of dioxins exposed to the cells.

試料中のダイオキシン類の検出手順を、フローチャートとして図6に示す。まず96穴培養プレートの各穴にHeDS細胞を2 ×104/wellの密度で播種する。培養液は1% FBSを含むα-MEMを100μlづつ各穴に分注する(S1)。24時間培養して細胞を各穴の底に定着させた後、培養液を交換し、TCDDを含有する液体試料を1μlづつ添加する(S2)。24時間培養した後上清を5μlづつサンプリングし(S3)、以下に述べる手順でSEAPタンパク活性を測定する(S4)。The detection procedure for dioxins in the sample is shown in FIG. 6 as a flowchart. First, HeDS cells are seeded at a density of 2 × 10 4 / well in each well of a 96-well culture plate. As a culture solution, 100 μl of α-MEM containing 1% FBS is dispensed into each well (S1). After culturing for 24 hours to fix the cells to the bottom of each well, the culture medium is replaced, and 1 μl of a liquid sample containing TCDD is added (S2). After culturing for 24 hours, 5 μl of the supernatant is sampled (S3), and the SEAP protein activity is measured by the procedure described below (S4).

培養上清中のSEAPタンパク活性は、以下のようにして定量する。5μlの培養上清に15μlの緩衝液を加え、30分65℃でインキュベートし、内因性のアルカリホスファターゼ活性を失活させる。さらに内因性のアルカリホスファターゼの阻害剤であるL-ホモアルギニンを含む緩衝液を20μl加え5分放置した後、15μlの基質CSPDを加え、30分暗所にて静置した後、ルミノメーターで化学発光度を計測する。   The SEAP protein activity in the culture supernatant is quantified as follows. Add 15 μl buffer to 5 μl culture supernatant and incubate at 65 ° C. for 30 minutes to inactivate endogenous alkaline phosphatase activity. Add 20 μl of a buffer containing L-homoarginine, an inhibitor of endogenous alkaline phosphatase, leave it for 5 minutes, add 15 μl of substrate CSPD, leave it in the dark for 30 minutes, and then chemistry with a luminometer. Measure the luminous intensity.

図7は、HeDS細胞を6pMのTCDDで刺激し、その後の培養液中のSEAPタンパク活性の推移を経時的に10時間まで追ったものである。コントロールとして、TCDDの溶媒であるジメチルスルフォキサイド(以下、DMSO)を用いた。優位なSEAPタンパク活性の増大はTCDD添加後4時間で認められ、時間の経過とともに漸増した。   FIG. 7 shows HeDS cells stimulated with 6 pM TCDD, and the transition of SEAP protein activity in the culture medium thereafter was followed up to 10 hours over time. As a control, dimethyl sulfoxide (hereinafter, DMSO), which is a solvent of TCDD, was used. A significant increase in SEAP protein activity was observed 4 hours after the addition of TCDD, and gradually increased over time.

図8はその後のSEAPタンパク活性の推移を、さらに72時間まで追ったものである。SEAPタンパク活性の増加は刺激後48時間まで続き、その後平衡状態に達したことがわかる。   FIG. 8 shows the subsequent transition of SEAP protein activity up to 72 hours. It can be seen that the increase in SEAP protein activity lasted up to 48 hours after stimulation and then reached equilibrium.

図9は、HeDS細胞の感度を検討した結果である。HeDS細胞を0〜1pMの低濃度のTCDDに曝露し、培養液中のSEAPタンパク活性の上昇を検討した。優位なSEAPタンパク活性の増加は0.25pM (250fM)ですでに認められた。   FIG. 9 shows the results of examining the sensitivity of HeDS cells. HeDS cells were exposed to TCDD at a low concentration of 0 to 1 pM, and the increase in SEAP protein activity in the culture was examined. A significant increase in SEAP protein activity was already observed at 0.25 pM (250 fM).

このように、DRESSA法は従来のバイオアッセイの検出限界とされている1pM以下の濃度のTCDDを検出しうる。なお、発明者らは培養液中のSEAPタンパク活性が100 pMまで濃度依存的に上昇することを確認している。   Thus, the DRESSA method can detect TCDD at a concentration of 1 pM or less, which is the detection limit of conventional bioassays. The inventors have confirmed that the SEAP protein activity in the culture medium increases in a concentration-dependent manner up to 100 pM.

図10は、DRESSA法に必要な細胞数に関し検討を行なったものである。すなわちグラフに示された数の細胞を96穴培養プレートに播種し、その細胞を1nMのTCDDに曝露させた後、培養液中のSEAPタンパク活性を測定した。図10に示されるように、1試料(1穴)あたり50個の細胞が存在すれば、1nMのTCDDを十分に検出しうることが明らかになった。これは従来のアッセイに必要とされる細胞数60,000〜100,000/穴に比べ、1000分の1から2000分の1の数に相当する。   FIG. 10 shows the number of cells required for the DRESSA method. That is, the number of cells shown in the graph was seeded in a 96-well culture plate, the cells were exposed to 1 nM TCDD, and then the SEAP protein activity in the culture was measured. As shown in FIG. 10, it was revealed that 1nM TCDD can be sufficiently detected if 50 cells exist per sample (one hole). This corresponds to a number from 1/1000 to 1/2000 compared to the 60,000-100,000 cells / well required for conventional assays.

上述したDRESSA法を簡便、経済的かつ短時間に行なうため、前述した検出手順を、図11のように簡略化することが可能である。即ち、まず試料1μlを含む培養液を50μlづつ96穴培養プレートの各穴に分注し、直ちに50μlの培養液に浮遊させたHeDS細胞を添加する (total 100μl)(S1)。   Since the DRESSA method described above is performed simply, economically and in a short time, the detection procedure described above can be simplified as shown in FIG. That is, first, 50 μl of the culture solution containing 1 μl of sample is dispensed into each well of a 96-well culture plate, and immediately added HeDS cells suspended in 50 μl of the culture solution (total 100 μl) (S1).

3〜4時間後培養上清をサンプリングし(S2)、SEAPタンパク活性を測定する(S3)。この手法を用いることにより、現行の方法での検出限界とされる1pMのTCDDを、4〜5時間以内に検出することが可能である。この便法を、本明細書では、以下、迅速DRESSA法という。迅速DRESSA法は検出感度の上でも、DRESSA法と遜色がない。   After 3 to 4 hours, the culture supernatant is sampled (S2), and the SEAP protein activity is measured (S3). By using this technique, 1 pM TCDD, which is the detection limit of the current method, can be detected within 4 to 5 hours. Hereinafter, this expedient method is referred to as a rapid DRESSA method. The rapid DRESSA method is comparable to the DRESSA method in terms of detection sensitivity.

図12は、迅速DRESSA法によりHeDS細胞をTCDD (6pMおよび1nM)で刺激し、その後の培養液中のSEAPタンパク活性の推移を経時的に追ったものである。いずれの場合にも、優位なSEAPタンパク活性の増大はTCDD添加後3時間の時点で既に認められ、時間の経過とともに漸増した。   FIG. 12 shows the time course of the SEAP protein activity in the culture medium after HeDS cells were stimulated with TCDD (6 pM and 1 nM) by the rapid DRESSA method. In all cases, a significant increase in SEAP protein activity was already observed at 3 hours after addition of TCDD and gradually increased over time.

図13は、DRESSA法と迅速DRESSA法との感度を比較検討したものである。同数の細胞をDRESSA法では定着条件下で、また迅速DRESSA法では浮遊条件下で6 pMのTCDDに曝露させ、その後の培養液中のSEAPタンパク活性の上昇を経時的に比較検討した。その結果、図13に示す通り、刺激後24時間まで、ダイオキシン類の検出感度に関し両者に差は認められなかった。   FIG. 13 is a comparison of the sensitivity between the DRESSA method and the rapid DRESSA method. The same number of cells were exposed to 6 pM TCDD under fixed conditions in the DRESSA method and floating conditions in the rapid DRESSA method, and the subsequent increase in SEAP protein activity in the culture broth was compared over time. As a result, as shown in FIG. 13, there was no difference between the two in terms of the detection sensitivity of dioxins until 24 hours after stimulation.

図14はHeDS細胞を多環芳香族炭化水素である1μMの3-methylcholanthrene (3-MC)、benzo[a]pyrene (B[a]P) 、β-naphthoflavone (βNF)で各々刺激した後の、培養上清中のSEAPタンパク活性を示している。いずれの場合にも、コントロール刺激であるDMSOに比べ、著明なSEAPタンパク活性の誘導が認められた。このようにHeDS細胞は、AhRを介して作用するダイオキシン類以外の有害化学物質である 3-MC、B[a]P、βNF)にも反応しSEAPタンパクを分泌する。   FIG. 14 shows the results after stimulation of HeDS cells with 1 μM 3-methylcholanthrene (3-MC), benzo [a] pyrene (B [a] P), and β-naphthoflavone (βNF), which are polycyclic aromatic hydrocarbons. , SEAP protein activity in the culture supernatant. In either case, a significant induction of SEAP protein activity was observed compared to DMSO, which was a control stimulus. In this way, HeDS cells also react with 3-MC, B [a] P, βNF), which are harmful chemical substances other than dioxins that act via AhR, and secrete SEAP protein.

タバコ煙には、ダイオキシン類や多環芳香族炭化水素などの有害化学物質が複合的に含まれている。こうしたタバコ煙中の有害化学物質と結合したAhRは、DREに結合してその生物学的毒性を発揮する。そこで、タバコ煙のAhR活性化能を、同等のAhR活性化を引き起こすTCDDの量に換算した値として示すことが可能である。かかる換算値をDRE-activating potential value (以下、DAP値)とし、タバコ煙の生物学的毒性の指標として、タバコ煙のAhR活性化能を定量的に評価した。なお、この評価法は喫煙の健康への影響度を定量化する上で極めて有用である。   Tobacco smoke contains a combination of harmful chemical substances such as dioxins and polycyclic aromatic hydrocarbons. AhR combined with these toxic chemicals in tobacco smoke binds to DRE and exerts its biological toxicity. Therefore, it is possible to show the AhR activation ability of tobacco smoke as a value converted to the amount of TCDD causing the equivalent AhR activation. The converted value was defined as DRE-activating potential value (hereinafter referred to as DAP value), and the AhR activation ability of tobacco smoke was quantitatively evaluated as an indicator of the biological toxicity of tobacco smoke. This evaluation method is extremely useful for quantifying the degree of influence of smoking on health.

タール含量が各々1,6,10,14,20 mg/本である5種類のタバコ銘柄を用いて、10.5 l/minの吸引速度でタバコ煙を生成、タバコ1本あたりの煙を50mlのPBSに溶解する。   Using 5 types of tobacco brands with tar content of 1,6,10,14,20 mg / tube, tobacco smoke is generated at a suction rate of 10.5 l / min. Dissolve in

HeDS細胞を96穴培養プレートに5000細胞/穴で播種し、上記タバコ煙抽出液(5種、各n=4)を100〜1000倍の希釈で添加する。基準となる化学物質として、1 〜100pMのTCDDを同様に添加する。16時間培養後、培養上清を5μlづつ採取し、SEAP活性を測定する。   HeDS cells are seeded in a 96-well culture plate at 5000 cells / well, and the tobacco smoke extract (5 species, each n = 4) is added at a dilution of 100 to 1000 times. As a reference chemical substance, add 1 to 100 pM TCDD in the same manner. After 16 hours of culture, collect 5 μl of the culture supernatant and measure the SEAP activity.

TCDD濃度とSEAP活性との相関を示す検量線を作成し、それをもとに各タバコ煙抽出液中の有害物質の濃度をTCDDに換算する形で算出、各タバコ1本より生成する煙に含まれるAhR活性化能の総量を計算しDAP値として示したものが表-1である。
表-1に示されるように、タバコ煙には極めて高レベルのAhR活性化能が認められた。なお、タール含量とDAP値の間にはほぼ正の相関が認められるが、タール含量が1mgのものと20mgのものを比較した場合、前者のDAP値は後者のそれの1/20ではなく、1/3程度に過ぎない。また、DAP値はタール含量が20mgの銘柄よりも14mgの銘柄のほうが逆に高い。これらの事実は、一般に健康への影響度の指標として用いられているタール含量が、生物学的毒性の指標としては不充分であることを意味しており、より実用的な、新たな指標としてのDAP値の意義は高い。
A calibration curve showing the correlation between TCDD concentration and SEAP activity is created, and the concentration of harmful substances in each cigarette smoke extract is calculated based on this and converted to TCDD. Table 1 shows the total amount of AhR activation ability contained and shown as the DAP value.
As shown in Table 1, tobacco smoke showed a very high level of AhR activation ability. Although there is a nearly positive correlation between the tar content and the DAP value, when comparing the tar content of 1 mg and 20 mg, the former DAP value is not 1/20 that of the latter, Only about 1/3. On the other hand, the DAP value is higher on the 14 mg brand than on the 20 mg brand. These facts mean that tar content, which is generally used as an indicator of the degree of impact on health, is insufficient as an indicator of biological toxicity. The significance of the DAP value is high.

Figure 0004815602
Figure 0004815602

ダイオキシンおよび類似有害化学物質を簡便、迅速、安価かつ超高感度に検出しうる本発明は、工業排水のモニタリング、飲用の水質管理、食品の品質管理、また工業製品における内分泌撹乱物質の混入の監視など、産業上の利用価値も高い。   The present invention is capable of detecting dioxins and similar harmful chemical substances easily, quickly, inexpensively and with super sensitivity. Industrial wastewater monitoring, drinking water quality control, food quality control, and monitoring of endocrine disrupting substances in industrial products. Industrial value is also high.

ダイオキシン類等応答性プラスミド(pDRE-SEAP)の構造Structure of dioxins and other responsive plasmids (pDRE-SEAP) MMTV-DREとDREのセンサー能力を比較検討した図A comparison of the sensor capabilities of MMTV-DRE and DRE 5000個のHeDS細胞でTCDDの検出感度を測定した図Figure of TCDD detection sensitivity measured with 5000 HeDS cells HeDS細胞樹立の手順Procedure for HeDS cell establishment HeDS細胞のダイオキシン類感知メカニズムDioxin sensing mechanism of HeDS cells DRESSA法によるダイオキシン類検出の手順Procedure for detection of dioxins by DRESSA method HeDS細胞をTCDDで刺激した後の培養上清中SEAPタンパク活性の推移(短時間)Transition of SEAP protein activity in culture supernatant after stimulation of HeDS cells with TCDD (short time) HeDS細胞をTCDDで刺激した後の培養上清中SEAPタンパク活性の推移(長時間)Transition of SEAP protein activity in culture supernatant after stimulation of HeDS cells with TCDD (long time) HeDS細胞を0〜1pMの低濃度のTCDDに曝露し、培養液中のSEAPタンパク活性の上昇をグラフにより示した図Graphical representation of elevated SEAP protein activity in culture medium after exposure of HeDS cells to TCDD at low concentrations of 0 to 1 pM RESSA法に必要なHeDS細胞数をグラフにより示した図Graphical representation of the number of HeDS cells required for the RESSA method 迅速DRESSA法によるダイオキシン類検出の手順Procedure for detection of dioxins by rapid DRESSA method 迅速DRESSA法により細胞をTCDDで刺激した後の培養上清中SEAPタンパク活性の推移Transition of SEAP protein activity in culture supernatant after cells were stimulated with TCDD by rapid DRESSA method DRESSA法と迅速DRESSA法との検出感度の比較を示した図Diagram showing comparison of detection sensitivity between DRESSA method and rapid DRESSA method HeDS細胞をダイオキシン類似化学物質で刺激した後の培養上清中SEAPタンパク活性の上昇をグラフで示した図Graphical representation of increased SEAP protein activity in culture supernatant after stimulation of HeDS cells with dioxin-like chemicals

符号の説明Explanation of symbols

1 HeDS細胞
10 ダイオキシン類応答性プラスミド(pDRE-SEAP)
11 ダイオキシン類高感受性遺伝子配列(MMTV-DRE)
12 分泌型マーカータンパク遺伝子(SEAP)
13 ポリアデニレーションシグナル(polyA)
14 芳香族炭化水素受容体(AhR)
15 コアクチベーター(Arnt)
16 SEAP遺伝子のメッセンジャーRNA
17 リボゾーム
18 SEAPタンパク
19 細胞外へのSEAPタンパクの分泌
20 ダイオキシン類

1 HeDS cells
10 Dioxin responsive plasmid (pDRE-SEAP)
11 Dioxin high sensitivity gene sequence (MMTV-DRE)
12 Secreted marker protein gene (SEAP)
13 Polyadenylation signal (polyA)
14 Aromatic hydrocarbon receptor (AhR)
15 Co-activator (Arnt)
16 Messenger RNA of SEAP gene
17 Ribosome
18 SEAP protein
19 Secretion of SEAP protein outside the cell
20 Dioxins

Claims (4)

マウス乳癌ウイルスのプロモータ(以下、MMTVという。)の一部にダイオキシン類及び/又は多環芳香族炭化水素に反応して活性化される遺伝子(以下、DRE遺伝子という。)を組み込んだ遺伝子配列(以下、MMTV−DREという。)と、前記DRE遺伝子の下流に分泌型アルカリフォスファターゼ遺伝子とを含むプラスミドを、マウスの癌細胞株(Hepa−1c1c7)に導入したことを特徴とするダイオキシン類及び/又は多環芳香族炭化水素を測定するための遺伝子導入細胞。A gene sequence (hereinafter referred to as DRE gene) in which a gene activated by reacting with dioxins and / or polycyclic aromatic hydrocarbons (hereinafter referred to as DRE gene) is incorporated into a part of a mouse mammary tumor virus promoter (hereinafter referred to as MMTV). (Hereinafter referred to as MMTV-DRE)) and a plasmid containing a secreted alkaline phosphatase gene downstream of the DRE gene into a mouse cancer cell line (Hepa-1c1c7) and / or dioxins and / or A transgenic cell for measuring polycyclic aromatic hydrocarbons. 請求項1に記載の遺伝子導入細胞を含み、該遺伝子導入細胞をダイオキシン類及び/又は多環芳香族水素の検出に用いることを特徴とするバイオセンサー。    A biosensor comprising the gene-introduced cell according to claim 1, wherein the gene-introduced cell is used for detection of dioxins and / or polycyclic aromatic hydrogen. 請求項1に記載の遺伝子導入細胞を評価試料に曝露させたときに前記遺伝子導入細胞が分泌する分泌型マーカータンパクの活性を測定することによりダイオキシン類及び/又は多環芳香族水素を検出することを特徴とするダイオキシン類及び/又は多環芳香族炭化水素の検出方法。    Dioxins and / or polycyclic aromatic hydrogens are detected by measuring the activity of a secreted marker protein secreted by the transgenic cells when the transgenic cells of claim 1 are exposed to an evaluation sample. A method for detecting dioxins and / or polycyclic aromatic hydrocarbons. 請求項1に記載の遺伝子導入細胞をタバコ煙に曝露させたときに前記遺伝子導入細胞が分泌する分泌型マーカータンパクの活性を測定することによりタバコ煙の生物学的毒性を評価することを特徴とするタバコ煙の生物学的毒性の評価方法。    The biological toxicity of tobacco smoke is evaluated by measuring the activity of a secreted marker protein secreted by the transgenic cell when the transgenic cell according to claim 1 is exposed to tobacco smoke. To evaluate the biological toxicity of tobacco smoke.
JP2006513687A 2004-05-24 2005-05-16 Dioxins and other responsive plasmids, dioxin and other transgenic cells, and detection methods and biosensors using the same Active JP4815602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513687A JP4815602B2 (en) 2004-05-24 2005-05-16 Dioxins and other responsive plasmids, dioxin and other transgenic cells, and detection methods and biosensors using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004153293 2004-05-24
JP2004153293 2004-05-24
JP2006513687A JP4815602B2 (en) 2004-05-24 2005-05-16 Dioxins and other responsive plasmids, dioxin and other transgenic cells, and detection methods and biosensors using the same
PCT/JP2005/008875 WO2005113767A1 (en) 2004-05-24 2005-05-16 Plasmid responsive to dioxin, etc., transgenic cell for assay of dioxin, etc. and utilizing the same, dioxin, etc. detecting method and biosensor

Publications (2)

Publication Number Publication Date
JPWO2005113767A1 JPWO2005113767A1 (en) 2008-07-31
JP4815602B2 true JP4815602B2 (en) 2011-11-16

Family

ID=35428406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006513687A Active JP4815602B2 (en) 2004-05-24 2005-05-16 Dioxins and other responsive plasmids, dioxin and other transgenic cells, and detection methods and biosensors using the same

Country Status (5)

Country Link
US (1) US7732185B2 (en)
EP (1) EP1767622B1 (en)
JP (1) JP4815602B2 (en)
DE (1) DE602005026660D1 (en)
WO (1) WO2005113767A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007004361A1 (en) * 2005-07-01 2009-01-22 国立大学法人山梨大学 Transgenic non-human mammal and method for monitoring harmful chemical substances in the environment using the same
TWI572354B (en) * 2010-09-09 2017-03-01 明治股份有限公司 Composition for suppressing inflammation
KR101272315B1 (en) * 2010-09-10 2013-06-07 경희대학교 산학협력단 New biological detection method of dioxins in serum, and its diagnostic use in metabolic syndrome and related conditions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355301B1 (en) 1999-11-16 2002-10-12 학교법인 포항공과대학교 Biological method for analysis of dioxin using transformed cell line having recombinant reporter gene
JP2004135662A (en) 2002-09-27 2004-05-13 Frontier Science Co Ltd Transformant for measuring dioxins, method for detecting same by using same, method for quantitatively analyzing same and method for screening same
JP2005237326A (en) 2004-02-27 2005-09-08 Univ Nihon Method for detecting dioxin

Also Published As

Publication number Publication date
EP1767622A1 (en) 2007-03-28
US20080050766A1 (en) 2008-02-28
US7732185B2 (en) 2010-06-08
EP1767622B1 (en) 2011-03-02
WO2005113767A1 (en) 2005-12-01
JPWO2005113767A1 (en) 2008-07-31
EP1767622A4 (en) 2008-05-28
DE602005026660D1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
Eltzov et al. Whole-cell aquatic biosensors
Denison et al. Recombinant cell bioassay systems for the detection and relative quantitation of halogenated dioxins and related chemicals
CA2200678C (en) Bioassay for detecting 2,3,7,8-tetrachlorodibenzo-para-dioxin and tcdd-like compounds and novel recombinant cell line useful therefor
Goldspink et al. Models and tools for studying enteroendocrine cells
Bassoni et al. Measurements of β-arrestin recruitment to activated seven transmembrane receptors using enzyme complementation
JP2014515608A (en) In vitro method for high-throughput screening of genotoxic substances in eukaryotic cells
Bernhard et al. Two novel real time cell-based assays quantify beta-blocker and NSAID specific effects in effluents of municipal wastewater treatment plants
JP4815602B2 (en) Dioxins and other responsive plasmids, dioxin and other transgenic cells, and detection methods and biosensors using the same
Eggen et al. The potential of mechanism-based bioanalytical tools in ecotoxicological exposure and effect assessment
JP6419139B2 (en) Compositions and methods for monitoring transmembrane transport
US20070105160A1 (en) Detection of intracellular enzyme complex
Ripp et al. Biosensors as environmental monitors
Kasai et al. DRESSA: biosensing of dioxin and dioxin-like chemicals using secreted alkaline phosphatase
WO2007139080A1 (en) Continuous assay method for measuring receptor- and ion channel-mediated calcium response and subsequent gene expression
Kim et al. Application of recombinant fluorescent mammalian cells as a toxicity biosensor
Boursier et al. Equilibrium and Kinetic Measurements of Ligand Binding to HiBiT-tagged GPCRs on the Surface of Living Cells
Abu‐Bakar et al. Cyp2a5 Promoter‐based Gene Reporter Assay: A Novel Design of Cell‐based Bioassay for Toxicity Prediction
JP4935134B2 (en) Improved promoter assay method
Vacchini et al. Analysis of G Protein and β-Arrestin Activation in Chemokine Receptors Signaling
US8658363B2 (en) Cell, method, and assay kit for measuring level of aryl hydrocarbon receptor transcriptional activation
JP7324656B2 (en) Method and kit for predicting drug cardiotoxicity
US20030013139A1 (en) Transgenic cells and a method for detecting disruptors for androgens by using said transgenic cells
JP2004135662A (en) Transformant for measuring dioxins, method for detecting same by using same, method for quantitatively analyzing same and method for screening same
JP2003079365A (en) Method for detecting environmentally harmful chemical substance in high sensitivity
Buchinger et al. Whole cell biosensors: applications to environmental health

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150