JP4815587B2 - Judgment method of apple fruit harvest time - Google Patents

Judgment method of apple fruit harvest time Download PDF

Info

Publication number
JP4815587B2
JP4815587B2 JP2005238855A JP2005238855A JP4815587B2 JP 4815587 B2 JP4815587 B2 JP 4815587B2 JP 2005238855 A JP2005238855 A JP 2005238855A JP 2005238855 A JP2005238855 A JP 2005238855A JP 4815587 B2 JP4815587 B2 JP 4815587B2
Authority
JP
Japan
Prior art keywords
apple
mdacs3a
fruit
harvest time
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005238855A
Other languages
Japanese (ja)
Other versions
JP2007049961A (en
Inventor
竹雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2005238855A priority Critical patent/JP4815587B2/en
Publication of JP2007049961A publication Critical patent/JP2007049961A/en
Application granted granted Critical
Publication of JP4815587B2 publication Critical patent/JP4815587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、簡易かつ精度よく適切なリンゴ果実の収穫時期を判定する方法に関する。   The present invention relates to a method for determining an appropriate harvest time of apple fruit simply and accurately.

リンゴ果実の収穫時期は、果実品質や日持ち性(貯蔵性)に大きく影響し、商品価値を左右するので、その決定は慎重に行う必要がある。一般に、収穫が早すぎた場合には、食味が劣り、貯蔵中に糖度が不足するばかりでなくヤケ病発生といった生理障害が起こりやすい。一方、収穫が遅すぎた場合には、ボケ(老熟)しやすく、腐敗が進行し、老化による果心部褐変が生じやすい。しかし、果実の発育や成熟は、同一品種でも生育中の気象、地域、開花の時期、樹勢、栽培管理などの複合的要因に基づくことから、正確な収穫時期の把握は極めて困難である。従って、現状においては、満開期からの日数や成熟現象の把握などによって経験的に収穫時期が決定されているが、同一の樹内でも外側の枝と内側の枝とでは成熟度は異なるので、このような方法は極めて大雑把なものであると言わざるを得ない。   The apple fruit harvest time has a great influence on the fruit quality and shelf life (storability), and affects the commercial value. In general, when harvesting is too early, the taste is poor, and not only the sugar content is insufficient during storage, but also physiological disorders such as the occurrence of burn disease are likely to occur. On the other hand, when the harvest is too slow, it is easy to blur (aged), rot progresses, and browning due to aging is likely to occur. However, since the growth and ripening of fruits are based on multiple factors such as weather, region, flowering time, tree vigor, and cultivation management even during the same cultivar, it is extremely difficult to accurately grasp the harvest time. Therefore, in the present situation, the harvest time is determined empirically by grasping the number of days from the full bloom period and the maturation phenomenon, but the maturity level is different between the outer branch and the inner branch even in the same tree. It must be said that such a method is extremely rough.

そこで本発明は、簡易かつ精度よく適切なリンゴ果実の収穫時期を判定する方法を提供することを目的とする。   Then, an object of this invention is to provide the method of determining the harvest time of an appropriate apple fruit simply and accurately.

リンゴは、果実完熟に伴いエチレン合成が急激に上昇し、それと同時に細胞壁分解酵素などが機能し、果実組織の軟化が始まることが知られている。これらの一連の生理現象を解明するため、関連する遺伝子の解析が本発明者らの研究グループを含め、いくつかの研究グループで行われているが、今般、本発明者らは、リンゴの完熟果実で特異的に発現していることが知られているエチレンの生合成に関与する1-アミノシクロプロパン-1-カルボン酸合成酵素(ACS)遺伝子の1つであるMdACS3(Rosenfield C-L, Kiss E, Hrazdina G (1996) MdACS2 (Accession No. U73815) and MdACS3 (Accession No. U73816): Two new 1-aminocyclopropane-1-carboxylate synthases in ripening apple fruit. Plant Physiol 112: 1735)のサブファミリー遺伝子であるMdACS3aが、果実が完熟を本格的に開始する少し前から発現することを突き止め、この現象を利用して、MdACS3aのプロモーター領域の機能発現タイミングを指標にすれば、簡易かつ精度よく適切なリンゴ果実の収穫時期を判定することができることを見出した。   In apples, it is known that ethylene synthesis rapidly increases as the fruit ripens, and at the same time, cell wall degrading enzymes and the like function and fruit tissue begins to soften. In order to elucidate a series of these physiological phenomena, analysis of related genes has been carried out in several research groups including our research group. MdACS3 (Rosenfield CL, Kiss E), one of the 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes involved in ethylene biosynthesis known to be specifically expressed in fruits , Hrazdina G (1996) MdACS2 (Accession No. U73815) and MdACS3 (Accession No. U73816): Two new 1-aminocyclopropane-1-carboxylate synthases in ripening apple fruit. Plant Physiol 112: 1735) However, if we find out that the fruit is expressed shortly before full-fledged ripening and use this phenomenon as an indicator of the functional expression timing of the promoter region of MdACS3a, it is simple and accurate. Harvest time It found that can be constant.

即ち、本発明のリンゴ果実の収穫時期の判定方法は、請求項1記載の通り、リンゴのACS遺伝子であるMdACS3aの、配列番号1で表される塩基配列の少なくとも一部を含んでなるプロモーターが活性化するタイミングを指標にして行うことを特徴とする


That is, the determination method of the harvest time of the apple of the invention, as claimed in claim 1 wherein, the MdACS3a an ACS gene apple, a promoter comprising at least part of the nucleotide sequence as shown in SEQ ID NO: 1 It is characterized by performing the activation timing as an index .


本発明によれば、簡易かつ精度よく適切なリンゴ果実の収穫時期を判定する方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the method of determining the harvest time of an appropriate apple fruit simply and accurately is provided.

本発明のリンゴ果実の収穫時期の判定方法は、リンゴのACS遺伝子であるMdACS3aのプロモーター領域の機能発現タイミングを指標にして行うことを特徴とするものである。MdACS3aのプロモーター領域の塩基配列は、配列番号1で表される塩基配列の少なくとも一部を含んでなる。なお、MdACS3aのcDNAの塩基配列は配列番号2で表され、これは前述の文献で開示されているMdACS3のcDNAの塩基配列に相当するが、前述の文献にはプロモーター領域の塩基配列の開示はない。図1にMdACS3aのプロモーター領域の少なくとも一部を含む翻訳コドン上流域の塩基配列を示す(下線のない領域が配列番号1で表される塩基配列を有する領域であり下線部が転写領域であり太字が翻訳開始点である)。本発明者らの研究によれば、MdACS3にはMdACS3a,MdACS3b,MdACS3cの3種類のサブファミリー遺伝子が存在し、MdACS3aとMdACS3cは前述の文献で開示されている446個のアミノ酸からなる蛋白質を、MdACS3bはそれより1つ少ない445個のアミノ酸からなる蛋白質をコードしているが、それぞれの遺伝子の第3エキソン領域のCAPSを利用して行った発現解析から、MdACS3aのみが果実の完熟過程を通して発現を示し、MdACS3bとMdACS3cは発現が認められないことが判明している。この原因として、MdACS3bとMdACS3cのプロモーター領域には、MdACS3aのプロモーター領域には存在しない333bpの挿入配列が存在することが考えられ、MdACS3bとMdACS3cはこの挿入配列の存在により発現が抑制されているものと推察される。従って、本発明においては、MdACS3aのプロモーター機能のみが利用できることになる。   The method for determining the harvest time of apple fruit according to the present invention is characterized in that it is performed using the function expression timing of the promoter region of MdACS3a, which is an ACS gene of apple, as an index. The base sequence of the promoter region of MdACS3a comprises at least part of the base sequence represented by SEQ ID NO: 1. The base sequence of the cDNA of MdACS3a is represented by SEQ ID NO: 2, which corresponds to the base sequence of the cDNA of MdACS3 disclosed in the above-mentioned document, but the above-mentioned document discloses the base sequence of the promoter region. Absent. Fig. 1 shows the base sequence in the upstream region of the translation codon including at least part of the promoter region of MdACS3a (the region without the underline is the region having the base sequence represented by SEQ ID NO: 1, the underline is the transcription region, and bold Is the starting point of translation). According to the study by the present inventors, MdACS3 has three types of subfamily genes, MdACS3a, MdACS3b, and MdACS3c, and MdACS3a and MdACS3c are proteins consisting of 446 amino acids disclosed in the above-mentioned literature, MdACS3b encodes a protein consisting of 445 amino acids, one less than that, but only MdACS3a is expressed throughout the fruit ripening process based on the expression analysis performed using CAPS in the third exon region of each gene. MdACS3b and MdACS3c are known not to be expressed. This may be because the MdACS3b and MdACS3c promoter regions contain a 333 bp insertion sequence that does not exist in the MdACS3a promoter region, and the expression of MdACS3b and MdACS3c is suppressed by the presence of this insertion sequence. It is guessed. Therefore, in the present invention, only the promoter function of MdACS3a can be used.

本発明において、リンゴ果実の収穫時期であると判定するMdACS3aのプロモーター領域の機能発現タイミングは、後述する実施例の方法などにより、MdACS3aのプロモーターの本来の機能であるMdACS3aの発現をもとに知ることもできるが、例えば、レポーター遺伝子としてブドウのmyb遺伝子VlmybA1-2(Science 14 May 2004; 304: 982)を用い、自体公知の手法によりこれをMdACS3aのプロモーター領域(プロモーター領域を含むDNAは例えば配列番号1で表される塩基配列の情報から適当なプライマーをデザインしてリンゴ由来のゲノムDNAライブラリーをテンプレートにPCRを行うことにより増幅させて調製することができる)の下流に連結するとともに、レポーター遺伝子の下流に適当なターミネータを付加し、アグロバクテリウム(EHA105株)のバイナリーベクター(pBI121)に組み込んで作製されるベクターを、自体公知の手法によりリンゴ栽培種に導入してこれを形質転換させ(必要であれば例えばMatsuda et al. Plant Cell Reports 24: 45-51 2005.を参照のこと)、果実が完熟を本格的に開始する少し前、即ち、収穫時期の直前におけるプロモーター機能の発現によって果実にVlmybA1-2の発現に基づくアントシアニンが蓄積することで果実の少なくとも一部に赤色の沈着が現れる現象をもとに知ることもできる(図2参照)。なお、この方法は、赤色の沈着を確認しやすい黄色の果皮色品種(例えば“王林”や“ゴールデンデリシャス”など)に対してとりわけ有効である。赤色の果皮色品種(例えば“ふじ”や“つがる”など)に対しては判定が難しいとも考えられるが、赤色の果皮色品種でも果実の下の部分は黄色であることから、その部位での沈着から判定が可能である。この方法を赤色の果皮色品種に対して適用した場合、もともと果実全体が赤色なので、外観的な商品価値上の問題が発生することがないという利点がある。   In the present invention, the functional expression timing of the promoter region of MdACS3a, which is determined to be the harvest time of apple fruits, is known based on the expression of MdACS3a, which is the original function of the promoter of MdACS3a, by the method of the example described later. However, for example, the grape myb gene VlmybA1-2 (Science 14 May 2004; 304: 982) is used as a reporter gene, and this is expressed by a known method by using a promoter region of MdACS3a It can be prepared by designing an appropriate primer from the information of the base sequence represented by No. 1 and amplifying it by PCR using an apple-derived genomic DNA library as a template) and a reporter Appropriate terminator was added downstream of the gene, and Agrobacterium (EHA105 strain) binary vector (pBI 121) are introduced into apple cultivars by a method known per se and transformed (see, for example, Matsuda et al. Plant Cell Reports 24: 45-51 2005. if necessary). At least part of the fruit due to the accumulation of anthocyanins based on the expression of VlmybA1-2 in the fruit due to the expression of the promoter function just before the fruit fully begins ripeness, that is, immediately before the harvest period It is also possible to know based on the phenomenon of the deposition of (see Fig. 2). This method is particularly effective for yellow skin color varieties (for example, “Wang Lin” and “Golden Delicious”) in which red deposition is easy to confirm. It may be difficult to judge for red skin color varieties (eg “Fuji” or “Tsugaru”), but the red skin color varieties are yellow in the lower part of the fruit. Judgment is possible from deposition. When this method is applied to a red skin color variety, since the whole fruit is originally red, there is an advantage that there is no problem in appearance commercial value.

以下、本発明を実施例によって詳細に説明するが、本発明は、以下の記載に何ら限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted at all.

参考例:リンゴ由来のゲノムDNAライブラリーの作製とゲノムクローンの選抜、MdACS3aのシークエンス・構造解析
(a)リンゴの幼葉(品種:ゴールデンデリシャス)3gを用いてVaradarajan et al.(1991)法によって全DNAを抽出した。得られたDNA 50μgをSau3AI 0.8unitで部分分解した後に0.5%アガロースゲル電気泳動によりサイズ分画した。19〜23kbのDNA断片を含む領域を切り出し、GENECLEAN IIのプロトコールに従ってゲルからDNA断片を抽出した。これらのDNA断片をクレノー酵素存在下でλFIX IIのpartial fill-inベクターに組み込んだ。ベクターへのライゲーションは、TAKARA DNA Ligation Kit Ver.2を用いて行った。反応は、16℃で1晩行った。パッケイジングは、Gigapack II Gold Packaging Extract(Stratagene社)のプロトコールに従って行った。
Reference examples: Preparation of genomic DNA library derived from apples and selection of genomic clones, sequence and structural analysis of MdACS3a (a) Using 3g of apple young leaves (variety: Golden Delicious) by the method of Varadarajan et al. (1991) Total DNA was extracted. 50 μg of the obtained DNA was partially decomposed with Sau3AI 0.8 unit, and size fractionated by 0.5% agarose gel electrophoresis. A region containing a 19-23 kb DNA fragment was excised, and the DNA fragment was extracted from the gel according to the GENECLEAN II protocol. These DNA fragments were incorporated into a λFIX II partial fill-in vector in the presence of Klenow enzyme. Ligation to the vector was performed using TAKARA DNA Ligation Kit Ver.2. The reaction was performed overnight at 16 ° C. Packaging was performed according to the protocol of Gigapack II Gold Packaging Extract (Stratagene).

(b)MdACS3のcDNA(Accession No. U73816)の1086-1573bpをPCRで増幅し、32Pでラベルした。それをプローブに上記のゲノムライブラリー1×105プラークを高いストリンジェンシー条件下(0.1×SSC,0.1% SDS,68℃)でスクリーニングし、3つの陽性クローンをとりだし、純化した。続いて、ファージDNAを精製し、そのゲノムクローンを切り出した。そして、各クローンの制限酵素地図を作製した。これらのクローンはpBluescriptにサブクローニングし、大腸菌よりアルカリSDS法を用いてプラスミド抽出し、シーケンス反応を行った。解析はLI-COR社のDNAシーケンサー“Model 40 シリーズ Based Image IR software”を用いた。また、一度で解析が完了しなかった塩基配列を再度サブクローニングし、シーケンス解析受託サービス(MACROGEN,Korea)及びABI PRISM 310 Genetic Analyzer(ABI)を用いて解析した。以上の操作により、MdACS3aのプロモーター領域を含む塩基配列を明らかにした(配列番号1と配列番号2)。 (B) 1086-1573 bp of cDNA (Accession No. U73816) of MdACS3 was amplified by PCR and labeled with 32 P. Using this as a probe, the above genomic library 1 × 10 5 plaques were screened under high stringency conditions (0.1 × SSC, 0.1% SDS, 68 ° C.), and three positive clones were taken out and purified. Subsequently, the phage DNA was purified and its genomic clone was excised. And the restriction enzyme map of each clone was produced. These clones were subcloned into pBluescript, and plasmids were extracted from E. coli using the alkaline SDS method and subjected to a sequencing reaction. For the analysis, a DNA sequencer “Model 40 Series Based Image IR software” of LI-COR was used. In addition, a base sequence that could not be analyzed once was subcloned again and analyzed using a sequence analysis service (MACROGEN, Korea) and ABI PRISM 310 Genetic Analyzer (ABI). By the above operation, the base sequence including the promoter region of MdACS3a was clarified (SEQ ID NO: 1 and SEQ ID NO: 2).

実施例1:RNAゲルブロットによるリンゴ果実の開花直後から収穫までの各種遺伝子の発現変動解析(果実の横径との関係)
(実験方法)
(1)実験材料
リンゴ果実(品種:ゴールデンデリシャス)を国立大学法人弘前大学附属藤崎農場にて毎週(5月6日より11月4日まで)5果サンプリングした。これらのサンプルの発現解析には、6月3日までは花托全体、それ以降は果肉部分を用いた。
Example 1: Analysis of changes in expression of various genes from immediately after flowering to harvesting by RNA gel blotting (relationship with lateral diameter of fruit)
(experimental method)
(1) Experimental materials Five fruits of apple fruits (variety: Golden Delicious) were sampled every week (from May 6 to November 4) at Hirosaki University attached Fujisaki Farm. In the expression analysis of these samples, the whole florets were used until June 3rd, and the pulp part was used thereafter.

(2)追跡対象遺伝子
MdACS3aの他、リンゴの完熟果実で特異的に発現していることが知られている、MdACS1(Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A: Inheritance of Md-ACS1 gene and its relationship to fruit softening in apple (Malus X domestica Borkh.). Theor Appl Genet 108: 1526-1533 (2004))、MdACO1(Ross GS, Knighton ML, Lay-Yee M (1992) An ethylene-related cDNA from ripening apple. Plant Mol Biol 19: 231-238)、MdPG1(Atkinson RG (1994) A cDNA clone for endopolygalacturonase from apple. Plant Physiol 105: 1437-1438)、MdERF2(育種学研究, 第6巻, 別冊2号, 182頁, 2004年)を追跡対象遺伝子とした。
(3)RNA抽出
Dong et al.(1991)の方法を改良して、リンゴ果肉組織よりTotal RNAを抽出した。即ち、5gの果肉を液体窒素を用いてパウダー化し、サンプルの1/10量のpolyvinyl pyrrolidoneを加え混合した。20mlのLysis buffer(4.0M guanidine thiocyanate,10mM EDTA,300mM Tris-HCl,pH7.5,1% 2-mercaptoethanol,0.5% sodium lauroyl sarcosine)を加え、室温で30分間放置後、4℃の冷蔵庫内で2時間放置した。これを4℃,8000rpmで15分間遠心し、上澄みをミラクロスにて濾過して回収した。CsClによる平衡密度勾配遠心で得られたペレットを滅菌水に溶解し、フェノール・クロロホルム処理後、エタノール沈殿させたRNA分画を滅菌水に溶解した。
(2) Targeted genes
In addition to MdACS3a, MdACS1 (Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A: Inheritance of Md-ACS1 gene and its relationship to fruit softening in apple (Malus X domestica Borkh.). Theor Appl Genet 108: 1526-1533 (2004)), MdACO1 (Ross GS, Knighton ML, Lay-Yee M (1992) An ethylene-related cDNA from ripening apple. Plant Mol Biol 19: 231-238), MdPG1 (Atkinson RG (1994) A cDNA clone for endopolygalacturonase from apple. Plant Physiol 105: 1437-1438), MdERF2 (Research on Breeding, Vol. 6, Annex 2, page 182, 2004) was the target gene.
(3) RNA extraction
Total RNA was extracted from apple flesh tissue by improving the method of Dong et al. (1991). That is, 5 g of pulp was powdered using liquid nitrogen, and 1/10 amount of polyvinyl pyrrolidone of the sample was added and mixed. Add 20ml Lysis buffer (4.0M guanidine thiocyanate, 10mM EDTA, 300mM Tris-HCl, pH7.5, 1% 2-mercaptoethanol, 0.5% sodium lauroyl sarcosine) Left for 2 hours. This was centrifuged at 4 ° C. and 8000 rpm for 15 minutes, and the supernatant was collected by filtration through Miracloth. The pellet obtained by equilibrium density gradient centrifugation with CsCl was dissolved in sterilized water. After phenol / chloroform treatment, the ethanol-precipitated RNA fraction was dissolved in sterilized water.

(4)RNAゲルブロット解析
Total RNA 5μgをbuffer(1×MOPS,50% formamide,2.2M formaldehyde,10mM EDTA)に溶解し、65℃,15分間変性させた後、氷上で急冷した。これを1.2%アガロースゲル (1×MOPS,0.66M formaldehyde)で40V,3時間の電気泳動を行った。ゲルを10×SSCで20分間の洗浄を2回行った後、20×SSCによりナイロンメンブレン(Magna Nylon Transfer Membrane,MSI)上にトランスファーした。UVクロスリンカー(UV Stratalinker 2400,STRATAGENE)にて固定後、50% formamide,5×Denhardt's solution,0.5% SDS,5×SSPE,20μg/ml salmon sperm DNAを含むbuffer内でプレハイブリダイゼーションを行い、32PでラベルしたプローブDNAを加え、42℃で一晩ハイブリダイゼーションを行った。なお、各プローブの調製は、各cDNAクローンをテンプレートとしたPCR産物をPCR purification Kit(QIAGEN)により精製することで行った。各遺伝子のプローブ領域および使用したプライマーは次の通りである。MdACS3a(Accession No. U73816(MdACS3),1086-1573bp,5’-GACAAATAGAAAGGACTGAGACG-3’(配列番号3)と5’-CCATCGATTATACAAACTGATTGTG-3’(配列番号4))、MdACS1(Accession No. U89156,4056-4153bp,5’-GATGAAGGTACCTGTCTGA-3’(配列番号5)と5’-TACACTAATCACATTGTAG-3’(配列番号6))、MdACO1(Accession No. AF030859,3558-3780bp,5’-TGAAATCCAAGCCAAGGAG-3’(配列番号7)と5’-TTCAACTACCAAACAGAGTGG-3’(配列番号8))、MdPG1(Accession No. L27743,433-1650bp,5’-AGGTCATGGAATTGATCAGGCC-3’(配列番号9)と5’-ATGCCATGCCCATAATTATGACCC-3’(配列番号10))。MdERF2に関しては、Tournier et al.(2003)のdegenerate primer(5’-CCRTGGGGRAAATKKGCGGCK-3’(配列番号11)と5’-CATAAGCVAVAKBGCRGCTTCYTC-3’(配列番号12))を用い、適期収穫されたゴールデンデリシャス果実を24℃,6日間完熟を進行させた果肉より抽出した全RNAをテンプレートとして、Gene Amp RNA PCR Kit(Perkin-Elmer)を用いてRT-PCRを行い、得られたcDNAをシーケンシングしてMdERF2であることを確認し、さらに3’RACE法により3’非翻訳領域のクローニングを行い、この領域をプライマー(5’-TATGCTGGCAATTGGCGAGC-3’(配列番号13)と5’-ATGACCAATCCCGCACTCAC-3’(配列番号14))により増幅し、プローブとして用いた。
(4) RNA gel blot analysis
5 μg of total RNA was dissolved in buffer (1 × MOPS, 50% formamide, 2.2 M formaldehyde, 10 mM EDTA), denatured at 65 ° C. for 15 minutes, and then rapidly cooled on ice. This was electrophoresed on a 1.2% agarose gel (1 × MOPS, 0.66M formaldehyde) at 40 V for 3 hours. The gel was washed twice with 10 × SSC for 20 minutes and then transferred onto a nylon membrane (Magna Nylon Transfer Membrane, MSI) with 20 × SSC. After fixation with a UV crosslinker (UV Stratalinker 2400, STRATAGENE), prehybridization is performed in a buffer containing 50% formamide, 5 × Denhardt's solution, 0.5% SDS, 5 × SSPE, 20 μg / ml salmon sperm DNA. 32 Probe DNA labeled with P was added, and hybridization was performed at 42 ° C. overnight. Each probe was prepared by purifying a PCR product using each cDNA clone as a template with a PCR purification Kit (QIAGEN). The probe region of each gene and the primers used are as follows. MdACS3a (Accession No. U73816 (MdACS3), 1086-1573bp, 5'-GACAAATAGAAAGGACTGAGACG-3 '(SEQ ID NO: 3) and 5'-CCATCGATTATACAAACTGATTGTG-3' (SEQ ID NO: 4)), MdACS1 (Accession No. U89156, 4056- 4153bp, 5'-GATGAAGGTACCTGTCTGA-3 '(SEQ ID NO: 5) and 5'-TACACTAATCACATTGTAG-3' (SEQ ID NO: 6)), MdACO1 (Accession No. AF030859, 3558-3780bp, 5'-TGAAATCCAAGCCAAGGAG-3 '(SEQ ID NO: 7) and 5'-TTCAACTACCAAACAGAGTGG-3 '(SEQ ID NO: 8)), MdPG1 (Accession No. L27743, 433-1650bp, 5'-AGGTCATGGAATTGATCAGGCC-3' (SEQ ID NO: 9) and 5'-ATGCCATGCCCATAATTATGACCC-3 '(sequence) Number 10)). For MdERF2, see Tournier et al. (2003) degenerate primer (5'-CCRTGGGGRAAATKKGCGGCK-3 '(SEQ ID NO: 11) and 5'-CATAAGCVAVAKBGCRGCTTCYTC-3' (SEQ ID NO: 12)), ripe golden delicious fruits harvested at the appropriate time for 6 days RT-PCR was performed using Gene Amp RNA PCR Kit (Perkin-Elmer) using total RNA extracted from the processed pulp as a template, and the resulting cDNA was sequenced to confirm that it was MdERF2. Furthermore, 3 'untranslated region was cloned by 3'RACE method, and this region was amplified with primers (5'-TATGCTGGCAATTGGCGAGC-3' (SEQ ID NO: 13) and 5'-ATGACCAATCCCGCACTCAC-3 '(SEQ ID NO: 14)). Used as a probe.

(実験結果)
図3に果実の横径の変動(5果の平均値)と遺伝子の発現変動の関係を示す。図3から明らかなように、MdACS3aは、他の遺伝子に先行して完熟直前の10月7日あたりから発現することがわかった。
(Experimental result)
Fig. 3 shows the relationship between changes in the lateral diameter of fruits (average of 5 fruits) and changes in gene expression. As is clear from FIG. 3, it was found that MdACS3a was expressed from around October 7 immediately before ripeness preceding other genes.

実施例2:RNAゲルブロットによるリンゴ果実の収穫直前から収穫までの各種遺伝子の発現変動解析(エチレン生成量との関係)
(実験方法)
リンゴ果実(品種:ゴールデンデリシャス)を国立大学法人弘前大学附属藤崎農場にて10月1日より11月4日まで隔日で5果ずつサンプリングし、収穫後1時間以内にエチレン生成量を測定した。エチレン生成量の測定は、サンプリングした果実を1.3m3の容器に密封し、24℃の部屋に1時間静置した後、この容器内気体1mlを注射器で回収し、直径3mm,長さ2mのアルミナカラムのFID-ガスクロマトグラフィー(GC-8A,Shimadzu,Japan)を用いて行った。エチレン生成量を測定した後、直ちに果肉をスライスして液体窒素で凍結した。果実個体間のバラツキを少なくする目的で、3日分のサンプル15果をまとめ、これを中間日で表す一つのサンプルとした。即ち、10月3日の結果は10月1日、3日、5日のエチレン測定量の平均値でもって表した。また、これらの凍結保存サンプルを均等に混合した材料から抽出したRNAでゲルブロットを実施例1と同様にして行い、遺伝子の発現変動を解析した。
Example 2: Analysis of changes in the expression of various genes from just before harvesting of apple fruits by RNA gel blotting (relationship with ethylene production)
(experimental method)
Apple fruits (variety: Golden Delicious) were sampled every 5 days from October 1 to November 4 at Fujisaki Farm, Hirosaki University, and the amount of ethylene produced was measured within 1 hour after harvest. The amount of ethylene produced was measured by sealing the sampled fruit in a 1.3m 3 container and leaving it in a room at 24 ° C for 1 hour, then collecting 1ml of the gas in the container with a syringe and measuring 3mm in diameter and 2m in length. It was performed using FID-gas chromatography (GC-8A, Shimadzu, Japan) on an alumina column. After measuring the amount of ethylene produced, the pulp was immediately sliced and frozen in liquid nitrogen. For the purpose of reducing variation among fruit individuals, 15 samples for 3 days were collected and used as one sample represented by an intermediate day. That is, the result of October 3 was expressed by the average value of the measured amount of ethylene on October 1, 3 and 5. In addition, gel blotting was performed in the same manner as in Example 1 using RNA extracted from a material obtained by uniformly mixing these cryopreserved samples, and gene expression fluctuations were analyzed.

(実験結果)
図4にエチレン生成量の変動と遺伝子の発現変動の関係を示す。図4から明らかなように、MdACS3aは、果実の完熟に伴うエチレン合成が本格的に始まる直前(10月3日)から他の遺伝子に先行して発現することがわかった。
(Experimental result)
Fig. 4 shows the relationship between fluctuations in ethylene production and gene expression. As is clear from FIG. 4, MdACS3a was found to precede other genes just before the start of full-scale ethylene synthesis (October 3) accompanying fruit ripening.

実施例1と実施例2の結果から、MdACS3aは、リンゴの果実が完熟してから発現するのではなく、その直前から発現することが明らかになった。この現象は、上記の実施例で用いた品種である“ゴールデンデリシャス”の他、“ふじ”、“ひめかみ”、“きたろう”、“こうたろう”などの13品種でも同様に起こることを別途の試験で確認した。従って、例えば、完熟前の果実のごくわずかな果皮を切り取ってMdACS3aの発現の有無を調べる方法や、レポーター遺伝子を用いてその発現の有無を調べる方法により知ることができる、MdACS3aのプロモーター領域の機能発現タイミングを指標にすれば、リンゴ果実の収穫時期を簡易かつ精度よく適切に判定することができることがわかった。   From the results of Example 1 and Example 2, it was revealed that MdACS3a is expressed not just after the apple fruit is fully ripe, but just before that. In addition to the “Golden Delicious” varieties used in the above example, this phenomenon also occurs in 13 varieties such as “Fuji”, “Himekami”, “Kitarou”, and “Kotarou”. Confirmed with. Therefore, for example, the function of the promoter region of MdACS3a, which can be known by cutting out a few pericarps of unripe fruit and examining the presence or absence of MdACS3a expression, or by examining the presence or absence of expression using a reporter gene Using the expression timing as an index, it was found that the harvest time of apple fruits can be determined easily, accurately and appropriately.

本発明は、簡易かつ精度よく適切なリンゴ果実の収穫時期を判定する方法を提供することができる点において、産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for easily and accurately determining an appropriate harvest time for apple fruits.

MdACS3aのプロモーター領域の少なくとも一部を含む翻訳コドン上流域の塩基配列である。This is a nucleotide sequence upstream of the translation codon including at least part of the promoter region of MdACS3a. レポーター遺伝子を用いて行うリンゴ果実の収穫時期の判定方法の概念図である。It is a conceptual diagram of the determination method of the harvest time of the apple fruit performed using a reporter gene. 実施例における果実の横径の変動(5果の平均値)と遺伝子の発現変動の関係を示す図である。It is a figure which shows the relationship of the fluctuation | variation (average value of 5 fruits) of the lateral diameter of the fruit in an Example, and the expression fluctuation | variation of a gene. 同、エチレン生成量の変動と遺伝子の発現変動の関係を示す図である。It is a figure which shows the relationship between the fluctuation | variation of ethylene production amount and a gene expression fluctuation | variation similarly.

Claims (1)

リンゴの1−アミノシクロプロパン−1−カルボン酸合成酵素(ACS)遺伝子であるMdACS3aの、配列番号1で表される塩基配列の少なくとも一部を含んでなるプロモーターが活性化するタイミングを指標にして行うことを特徴とするリンゴ果実の収穫時期の判定方法 Using MdACS3a, which is a 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene of apple , as an index, the activation timing of a promoter comprising at least a part of the base sequence represented by SEQ ID NO: 1 method for determining the harvest time of the apple, which comprises carrying out.
JP2005238855A 2005-08-19 2005-08-19 Judgment method of apple fruit harvest time Active JP4815587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238855A JP4815587B2 (en) 2005-08-19 2005-08-19 Judgment method of apple fruit harvest time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238855A JP4815587B2 (en) 2005-08-19 2005-08-19 Judgment method of apple fruit harvest time

Publications (2)

Publication Number Publication Date
JP2007049961A JP2007049961A (en) 2007-03-01
JP4815587B2 true JP4815587B2 (en) 2011-11-16

Family

ID=37914839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238855A Active JP4815587B2 (en) 2005-08-19 2005-08-19 Judgment method of apple fruit harvest time

Country Status (1)

Country Link
JP (1) JP4815587B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852725B (en) * 2019-04-12 2021-11-02 山东农业大学 Method for identifying fruit storage tolerance of apple plants and specific primer pair used by method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ500741A (en) * 1997-04-09 2001-06-29 Ministry Of Agriculture And Fo Inducible plant promoters selected from apple beta-galactosidase (ABG1) or 1-aminocyclopropane-1-carboxylate synthase (ACC synthase)

Also Published As

Publication number Publication date
JP2007049961A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4275538B2 (en) Gene encoding acetolactate synthase
Boss et al. A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development
Guillet et al. A fruit-specific phospho enol pyruvate carboxylase is related to rapid growth of tomato fruit
Kim et al. Molecular characterization of cDNAs for two anionic peroxidases from suspension cultures of sweet potato
CN110845590B (en) Wild grape VyPPR gene and application of encoding protein thereof in drought stress
WO2019038417A1 (en) Methods for increasing grain yield
Wakasa et al. Divergent expression of six expansin genes during apple fruit ontogeny
CA2716846C (en) Genetically modified reduced-browning fruit-producing plant and produced fruit thereof, and method of obtaining such
Thomas et al. Cloning and characterization of an actin depolymerizing factor gene from grape (Vitis vinifera L.) expressed during rooting in stem cuttings
Mbéguié-A-Mbéguié et al. Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene
US7381810B2 (en) Polyphenol oxidase genes from lettuce
EP2621943A1 (en) Modulation of solanaceae fruit ripening
JP2000507445A (en) Fruit ripening
TW201041900A (en) Isoforms of eIF-5A: senescence-induced eIF5A; wounding-induced eIF-5A; growth eIF-5A; and DHS
JP4815587B2 (en) Judgment method of apple fruit harvest time
KR20140135719A (en) Modulation of seed vigor
CN115960855B (en) SlPRMT5 gene and application of protein thereof in regulating tomato fruit ripening
Morcillo et al. Regulation of 7S globulin gene expression in zygotic and somatic embryos of oil palm
CN114891804B (en) Application of TST1 gene in enhancing low-temperature saccharification resistance of potatoes
Hrazdina et al. Down regulation of ethylene production in'Royal Gala'apples
KR100832257B1 (en) DNA encoding a plant deoxyhypusin synthase, a plant eukaryotic initiation factor 5A, transgenic plants and a method for controlling senescence programmed and cell death in plants
EP2255006B1 (en) Process for producing tomato plants with long-life characteristics
CN114875044B (en) Wild grape VyVTE gene, protein coded by same and application thereof
CN114561404B (en) Apple MdSHN1 gene and application thereof in improving waterlogging tolerance of plants
Burger et al. Characterisation of the gene encoding the Merlot ripening-induced protein 1 (mrip1): evidence that this putative protein is a distinct member of the plant proline-rich protein family

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150