JP4813704B2 - Method for producing amine oxide - Google Patents

Method for producing amine oxide Download PDF

Info

Publication number
JP4813704B2
JP4813704B2 JP2001269566A JP2001269566A JP4813704B2 JP 4813704 B2 JP4813704 B2 JP 4813704B2 JP 2001269566 A JP2001269566 A JP 2001269566A JP 2001269566 A JP2001269566 A JP 2001269566A JP 4813704 B2 JP4813704 B2 JP 4813704B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
amine
mass
reaction
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001269566A
Other languages
Japanese (ja)
Other versions
JP2003081932A (en
Inventor
章弘 佐藤
二男 涌井
Original Assignee
ライオン・アクゾ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン・アクゾ株式会社 filed Critical ライオン・アクゾ株式会社
Priority to JP2001269566A priority Critical patent/JP4813704B2/en
Publication of JP2003081932A publication Critical patent/JP2003081932A/en
Application granted granted Critical
Publication of JP4813704B2 publication Critical patent/JP4813704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、残存する過酸化水素が極めて少なく、かつ、色調が良好なアミンオキシドを、工業的に有利に製造するアミンオキシドの製造方法に関する。
【0002】
【従来の技術】
下記一般式(II)で表されるアミンオキシドは皮膚に対する刺激性が少ない界面活性剤として、シャンプーや台所洗剤等の洗浄剤、化粧品、香粧品などに幅広く使用されている有用な物質である。このようなアミンオキシドを得るためには、下記一般式(I)で表される第3級アミンに対し、過酸化水素を反応させることが広く知られている。
【0003】
【化2】

Figure 0004813704
【0004】
一般式(II)において、Rは、直鎖又は分岐鎖の8〜22の炭素原子を有するアルキル基又はアルケニル基であり、R及びRは、同一もしくは異なる1〜3の炭素原子を有するアルキル基又はヒドロキシエチル基である。
【0005】
【化3】
Figure 0004813704
【0006】
一般式(I)において、Rは、直鎖又は分岐鎖の8〜22の炭素原子を有するアルキル基又はアルケニル基であり、R及びRは、同一もしくは異なる1〜3の炭素原子を有するアルキル基又はヒドロキシエチル基である。
【0007】
しかしながら、得られたアミンオキシド水溶液中に、未反応アミンが多量に含まれている場合には、アミンオキシドの洗浄力、色調、臭気、皮膚刺激性等に悪い影響を与える。従って、特に、家庭用液体洗浄剤に使用されるアミンオキシドは、未反応アミンの含有量の少ないことが要求される。また、家庭用液体洗浄剤に使用されるアミンオキシドにおいては、過酸化水素の残存は好ましくなく、過剰の過酸化水素は、反応後に分解し、その濃度を0.1質量%以下にする必要がある。
そこで、第3級アミンの反応率(転化率)を99モル%以上とし、かつ、過酸化水素の過剰使用を抑制して、反応後の過酸化水素の残存量を0.10質量%以下とする方法として、種々の方法が提案されてきた。
【0008】
例えば、特開平10−182589号公報では、アミンオキシド化反応後、過剰の過酸化水素を活性白土や合成ゼオライトなどの吸着剤を使用して過酸化水素を低減する方法が提案されている。しかし、アミンオキシド製造後に、第3成分を添加することから、濾過等の分離操作が必要であるという問題があった。又、吸着剤に有効成分が吸着するため、有効成分のロスが起こるという問題があった。
更に、特開平11−92443号公報では、アミンオキシド化反応後、過酸化水素分解酵素を添加して過酸化水素を低減する方法が提案されている。しかし、この方法においても、濾過等の分離操作が必要であり、かつ、酵素が高価であるという問題があった。
【0009】
特開2000−281641号公報においては、アミンオキシドを亜硫酸塩又は漂白活性化剤で処理する方法が提案されている。しかしながら、過酸化水素分解後、亜硫酸塩又は漂白活性化剤を分離することは不可能であり、又、アミンオキシドの臭気も劣化してしまうという問題があった。
【0010】
【発明が解決しようとする課題】
本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、アミンをアミンオキシドに転化する転化率を高め、反応後の未反応過酸化水素の残存量が極めて少ない、効率的なアミンオキシドの製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 下記一般式(I)で表される第3級アミンと過酸化水素とを反応させて、アミンオキシドを得るアミンオキシドの製造方法であって、前記第3級アミン1.00モルに対し、過酸化水素を1.00〜1.50モル反応させ、反応液における過酸化水素の残存量が、0.05〜0.50質量%となった時点で、残存する過酸化水素量の40〜90モル%に相当する量の前記第3級アミンを、新たに添加することを特徴とするアミンオキシドの製造方法である。
【0012】
【化4】
Figure 0004813704
【0013】
一般式(I)において、Rは、直鎖又は分岐鎖の8〜22の炭素原子を有するアルキル基又はアルケニル基であり、R及びRは、同一もしくは異なる1〜3の炭素原子を有するアルキル基又はヒドロキシエチル基である。
【0014】
又、本発明においては、以下の態様等が好ましい。
<2> 第3級アミン1.00モルに対し、過酸化水素を1.01〜1.30モル反応させる前記<1>に記載のアミンオキシドの製造方法である。
<3> 反応の温度が、60〜95℃である前記<1>又は<2>に記載のアミンオキシドの製造方法である。
<4> 第3級アミンの添加量が、残存する過酸化水素量の50〜80モル%である前記<1>から<3>のいずれかに記載のアミンオキシドの製造方法である。
<5> 第3級アミンの添加を、反応液における過酸化水素の残存量が、0.15〜0.30質量%となった時点で行なう前記<1>から<4>のいずれかに記載のアミンオキシドの製造方法である。
<6> 第3級アミンからアミンオキシドへの転化率が、98モル%以上である前記<1>から<5>のいずれかに記載のアミンオキシドの製造方法である。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明のアミンオキシドの製造方法は、下記一般式(I)で表される第3級アミンと過酸化水素とを反応させて、アミンオキシドを得るアミンオキシドの製造方法であって、前記第3級アミン1.00モルに対し、過酸化水素を1.00〜1.50モル反応させ、反応液における過酸化水素の残存量が、0.05〜0.50質量%となった時点で、残存する過酸化水素量の40〜90モル%に相当する量の前記第3級アミンを、新たに添加することを特徴とするアミンオキシドの製造方法である。
【0016】
【化5】
Figure 0004813704
【0017】
一般式(I)において、Rは、直鎖又は分岐鎖の8〜22の炭素原子を有するアルキル基又はアルケニル基であり、R及びRは、同一もしくは異なる1〜3の炭素原子を有するアルキル基又はヒドロキシエチル基である。
【0018】
[第3級アミン]
前記第3級アミンとしては、例えば、炭素数8〜22の長鎖脂肪族基を有する第3級アミンが挙げられる。該長鎖脂肪族基を有する第3級アミンは、同一炭素鎖長の脂肪族基を有していてもよく、各々炭素数の異なるアミンの混合物であってもよい。長鎖脂肪族基を有する第3級アミンとしては、例えば、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルドデシルアミン、ジメチルテトラデシルアミン、ジメチルヘキサデシルアミン、ジメチルオクタデシルアミン、ジメチルオクタデセニルアミン、ジメチルヤシ油アルキルアミン、ジメチル牛脂アルキルアミン、ジメチル硬化牛脂アルキルアミン、ジエチルドデシルアミン、N,N−ビス(2−ヒドロキシエチル)ドデシルアミン等が挙げられる。
前記第3級アミンを、反応物における有効成分が、20〜40質量%、残りの部分が溶媒の水となるように仕込みをするのが好ましい。反応物における有効成分としては、25〜35質量%となるように仕込みをするのがより好ましい。
【0019】
[第3級アミンと過酸化水素との反応]
前記第3級アミンと過酸化水素とを反応させる際、前記過酸化水素の使用量としては、前記第3級アミン(原料アミン)1モルに対し1.00〜1.50モルであることが必要であり、1.01〜1.30モルであるのが好ましい。
前記使用量が、1.50モルを超えると、生成物中に過酸化水素が多量に残存し、追加に要する第3級アミンの量が多くなるため好ましくなく、一方、1.00モル未満であると、反応が完結しない。
【0020】
前記反応の温度としては、60〜95℃が好ましく、75〜90℃がより好ましい。
前記温度が、60℃未満であると、反応の進行が緩慢となり、反応時間の延長となることがある一方、95℃を超えると、反応液の着色や過酸化水素の分解が起こることがある。
【0021】
前記反応において使用する溶媒としては、メタノール、エタノール、イソプロパノール等の水溶性溶媒等が挙げられる。これらは、水溶液として用いてもよく、又、1種単独で使用してもよく2種以上を併用してもよい。
【0022】
[第3級アミンの添加]
前記第3級アミンの添加においては、前記反応により、反応液における過酸化水素の残存量が、0.05〜0.50質量%となった時点で、残存する過酸化水素量の40〜90モル%に相当する量の前記第3級アミンを、新たに添加する。
【0023】
前記第3級アミンの添加においては、前記反応後、その反応温度を保持し行うのが好ましい。該添加は、反応液における過酸化水素の残存量が、0.15〜0.30質量%となった時点で行うのが好ましい。
前記添加が、前記過酸化水素の残存量が0.05質量%未満となった時点で行なわれると、添加前にかかった反応時間が長いため、反応液の着色の原因となる一方、0.50質量%を超えた時点で行なわれると、添加するアミン量が多くなり、反応時間が長くなる。
【0024】
前記第3級アミンの添加量としては、前記残存する過酸化水素量の50〜80モル%に相当する量がより好ましい。
前記添加量が、40モル%未満であると、短時間で過酸化水素を削減することができず、一方90モル%を超えると、残存する第3級アミン量が多くなり、臭気劣化の原因となる。
【0025】
前記第3級アミンを、新たに添加した後、更に反応温度を保持し反応を継続することにより、未反応アミン量及び未反応過酸化水素量を抑え、下記一般式(II)で表されるアミンオキシドを効率的に得ることができる。
【0026】
【化6】
Figure 0004813704
【0027】
一般式(II)において、Rは、直鎖又は分岐鎖の8〜22の炭素原子を有するアルキル基又はアルケニル基であり、R及びRは、同一もしくは異なる1〜3の炭素原子を有するアルキル基又はヒドロキシエチル基である。
【0028】
以上説明した本発明のアミンオキシドの製造方法において、アミンからアミンオキシドへの転化率としては、98モル%以上が好ましく、99モル%以上がより好ましい。また、反応後の未反応過酸化水素の残存量としては、反応後の全化合物中、0.10質量%以下が好ましく、0.05質量%以下がより好ましい。
【0029】
本発明により得られるアミンオキシド(一般式(I)で表されるアミンオキシド)は、皮膚に対する刺激性が低い界面活性剤として、シャンプーや台所洗剤等の洗浄剤、化粧品、香粧品、更には、工業用洗浄剤等、幅広い用途に好適に用いることができる。本発明によれば、原料に使用する第3級アミンを、反応後、更に添加することにより、残存過酸化水素量が低減されるため、第3成分の混入はなく、従来の技術等における濾過などの分離操作が不要で、工業的に有利かつ安価のアミンオキシドの製造が可能である。更に、第3級アミンを添加した後、短時間で残存する過酸化水素を減らすことができるため、色調及び臭いの良好なアミンオキシドを製造することができるため、本発明は、工業的なアミンオキシドの製造方法として極めて有用である。
【0030】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0031】
(実施例1)
過酸化水素滴下装置、温度計、及び、攪拌装置を取り付けた1リットルの四つ口フラスコに、ラウリルジメチルアミン(ライオンアクゾ(株)製;アーミンDM12D)100g(0.461モル)、及び、水50gを入れ、攪拌しながら80℃に加熱した。尚、攪拌回転数は600rpmとした。
【0032】
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.100となるように、10%過酸化水素水を172.4g(0.507モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.25質量%、残存過酸化水素=0.072質量%であった。この時点でフレッシュなラウリルジメチルアミンを0.98g添加し、更に1時間反応を行ったところ、遊離アミン=0.19質量%、残存過酸化水素=0.025質量%のラウリルジメチルアミンオキシド水溶液を得た。尚、このラウリルジメチルアミンオキシド水溶液の色調は、5(APHA)であり、臭いも良好であった。
最終的に得られたラウリルジメチルアミンオキシドは転換率99.2モル%であり、反応液における有効成分は33.5質量%であった。過酸化水素滴下終了後からの反応時間は7.0時間であった。
【0033】
(実施例2)
実施例1と同じ装置を用い、ラウリルジメチルアミン100g、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.125となるように、10%過酸化水素水を176.3g(0.518モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。5.7時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.22質量%、残存過酸化水素=0.102質量%であった。この時点でフレッシュなラウリルジメチルアミンを1.45g添加し、更に1時間反応を行ったところ、遊離アミン=0.20質量%、残存過酸化水素=0.034質量%のラウリルジメチルアミンオキシド水溶液を得た。尚、このラウリルジメチルアミンオキシド水溶液の色調は5(APHA)であり、臭いも良好であった。
最終的に得られたラウリルジメチルアミンオキシドは転換率99.3モル%であり、反応液における有効成分は33.1質量%であった。過酸化水素滴下終了後からの反応時間は7.0時間であった。
【0034】
(実施例3)
実施例1と同じ装置を用い、ラウリルジメチルアミン100g、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.150となるように、10%過酸化水素水を180.2g(0.530モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。5.6時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.21質量%、残存過酸化水素=0.114質量%であった。この時点でフレッシュなラウリルジメチルアミンを1.54g添加し、更に1.2時間反応を行ったところ、遊離アミン=0.19質量%、残存過酸化水素=0.039質量%のラウリルジメチルアミンオキシド水溶液を得た。尚、このラウリルジメチルアミンオキシド水溶液の色調は5(APHA)であり、臭気も良好であった。
最終的に得られたラウリルジメチルアミンオキシドは転換率99.4モル%であり、反応液における有効成分は33.2質量%であった。過酸化水素滴下終了後からの反応時間は7.5時間であった。
【0035】
(実施例4)
実施例1と同じ装置を用い、ラウリルジメチルアミン(ライオンアクゾ(株)製;アーミンDM12D)100g(0.461モル)、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.050となるように、10%過酸化水素水を164.5g(0.484モル)、反応容器内容物の温度を70℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.30質量%、残存過酸化水素=0.063質量%であった。この時点でフレッシュなラウリルジメチルアミンを0.68g添加し、更に、1.0時間反応を行ったところ、遊離アミン=0.28質量%、残存過酸化水素=0.032質量%のラウリルジメチルアミンオキシド水溶液を得た。なお、このラウリルジメチルアミンオキシド水溶液の色調は5(APHA)であり、臭いも良好であった。
最終的に得られたラウリルジメチルアミンオキシドは、転換率99.1モル%であり、反応液における有効成分は33.3質量%であった。過酸化水素滴下終了後からの反応時間は7.0時間であった。
【0036】
(実施例5)
実施例1と同じ装置を使用して、ラウリルジメチルアミン(ライオンアクゾ製アーミンDM12D)100g(0.461モル)、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.30となるように、10%過酸化水素水を188.0g(0.553モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。4.5時間反応した後反応液の分析を行ったところ、遊離アミン=0.12質量%、残存過酸化水素=0.160質量%であった。この時点でフレッシュなラウリルジメチルアミンを2.91g添加し、更に、2.0時間反応を行ったところ、遊離アミン=0.11質量%、残存過酸化水素=0.013質量%のラウリルジメチルアミンオキシド水溶液を得た。尚、このラウリルジメチルアミンオキシド水溶液の色調は5(APHA)であり、臭いも良好であった。
最終的に得られたラウリルジメチルアミンオキシドは転換率99.6モル%であり、反応液における有効成分は33.3質量%であった。過酸化水素滴下終了後からの反応時間は6.5時間であった。
【0037】
(実施例6)
実施例1と同じ装置を用い、ラウリルジメチルアミン(ライオンアクゾ(株)製;アーミンDM12D)100g(0.461モル)、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素、及び、アミンのモル比(過酸化水素/アミン)=1.10となるように、10%過酸化水素水を175.6g(0.563モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応した後反応液の分析を行ったところ、遊離アミン=0.22質量%、残存過酸化水素=0.078質量%であった。この時点でフレッシュなラウリルジメチルアミンを0.68g添加し、更に、1.0時間反応を行ったところ、遊離アミン=0.23質量%、残存過酸化水素=0.020質量%のラウリルジメチルアミンオキシド水溶液を得た。尚、このラウリルジメチルアミンオキシド水溶液の色調は5(APHA)であり、臭いも良好であった。
最終的に得られたラウリルジメチルアミンオキシドは転換率99.7モル%であり、反応液における有効成分は、33.2質量%であった。過酸化水素滴下終了後からの反応時間は7.0時間であった。
【0038】
(実施例7)
実施例1と同じ装置を用い、ラウリルジメチルアミン(ライオンアクゾ(株)製;アーミンDM12D)100g(0.461モル)、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.100となるように、10%過酸化水素水を175.6g(0.563モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応した後反応液の分析を行ったところ、遊離アミン=0.23質量%、残存過酸化水素=0.080質量%であった。この時点でフレッシュなラウリルジメチルアミンを1.45g添加し、更に1.0時間反応を行ったところ、遊離アミン=0.19質量%、残存過酸化水素=0.032質量%のラウリルジメチルアミンオキシド水溶液を得た。尚、このラウリルジメチルアミンオキシド水溶液の色調は5(APHA)であり、臭いも良好であった。
最終的に得られたラウリルジメチルアミンオキシドは転換率99.6モル%であり、反応液における有効成分は33.4質量%であった。過酸化水素滴下終了後からの反応時間は7.0時間であった。
【0039】
(比較例1)
実施例1と同じ装置を用い、ラウリルジメチルアミン100g、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.125となるように、10%過酸化水素水を176.3g(0.518モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.23質量%、残存過酸化水素=0.111質量%であった。
その後、前記アミンを添加せずに5時間反応を継続したところ、遊離アミン=0.17質量%、残存過酸化水素=0.067質量%となった。過酸化水素滴下後からの反応時間は11.0時間であり、このラウリルジメチルアミンオキシド水溶液の色調は20(APHA)と色調劣化が認められた。また、臭いについても、若干の劣化がみられた。
【0040】
(比較例2)
実施例1と同じ装置を用い、ラウリルジメチルアミン100g、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=0.950となるように、10%過酸化水素水を151.6g(0.446モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応した後反応液の分析を行ったところ、遊離アミン=0.40質量%、残存過酸化水素=0.007質量%であった。
その後、アミンを添加せずに5時間反応を継続したところ、遊離アミン=0.39質量%、残存過酸化水素=0.006質量%となった。過酸化水素滴下後からの反応時間は11.0時間であり、このラウリルジメチルアミンオキシド水溶液の色調は40(APHA)と色調劣化が認められた。また、臭いについても、若干の劣化がみられた。
【0041】
(比較例3)
実施例1と同じ装置を用い、ラウリルジメチルアミン100g、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.600となるように、10%過酸化水素水を255.4g(0.751モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.02質量%、残存過酸化水素=0.320質量%であった。
この時点で、フレッシュなラウリルジメチルアミンを4.05g添加し、更に1.0時間反応を行ったところ、遊離アミン=0.00質量%、残存過酸化水素=0.290質量%となった。このラウリルジメチルアミンオキシド水溶液の色調は10(APHA)と良好であり、臭いも良好であったが、過酸化水素が大量に残存した。
【0042】
(比較例4)
実施例1と同じ装置を用い、ラウリルジメチルアミン100g、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.150となるように、10%過酸化水素水を183.6g(0.540モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.21質量%、残存過酸化水素=0.113質量%であった。
この時点でフレッシュなラウリルジメチルアミンを2.15g添加し、更に1.0時間反応を行ったところ、遊離アミン=0.39質量%、残存過酸化水素=0.025質量%となった。このラウリルジメチルアミンオキシド水溶液の色調は10(APHA)と良好であったが、アミンの残存量が多いことから、臭いの劣化が認められた。
【0043】
(比較例5)
実施例1と同じ装置を用い、ラウリルジメチルアミン100g、及び、水50gを入れ、攪拌しながら80℃に加熱した。
その後、過酸化水素及びアミンのモル比(過酸化水素/アミン)=1.150となるように、10%過酸化水素水を183.6g(0.540モル)、反応容器内容物の温度を80℃に保持しながら、1時間かけて滴下した。滴下終了後、反応温度を80℃として攪拌を継続した。6.0時間反応させた後、反応液の分析を行ったところ、遊離アミン=0.24質量%、残存過酸化水素=0.121質量%であった。
この時点でフレッシュなラウリルジメチルアミンを0.63g添加し、更に1.0時間反応を行ったところ、遊離アミン=0.19質量%、残存過酸化水素=0.110質量%となり、過酸化水素が大量に残存した。このラウリルジメチルアミンオキシド水溶液の色調は10(APHA)と良好であり、臭いも良好であった。
【0044】
実施例1〜7及び比較例1〜5における各条件及び結果を、表1〜2に示す。
【0045】
【表1】
Figure 0004813704
【0046】
【表2】
Figure 0004813704
【0047】
尚、表2中、「臭い」は、下記評価基準により評価したものである。
−臭いの評価基準−
○:臭いが良好である。
△:臭いが若干劣る。
×:臭い悪い。
【0048】
【発明の効果】
本発明によれば、アミンをアミンオキシドに転化する転化率を高め、反応後の未反応過酸化水素の残存量が極めて少ない、効率的なアミンオキシドの製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an amine oxide production method for industrially advantageously producing an amine oxide with very little residual hydrogen peroxide and good color tone.
[0002]
[Prior art]
Amine oxides represented by the following general formula (II) are useful substances widely used in detergents such as shampoos and kitchen detergents, cosmetics, cosmetics and the like as surfactants with little irritation to the skin. In order to obtain such an amine oxide, it is widely known to react hydrogen peroxide with a tertiary amine represented by the following general formula (I).
[0003]
[Chemical 2]
Figure 0004813704
[0004]
In the general formula (II), R 1 is a linear or branched alkyl group or alkenyl group having 8 to 22 carbon atoms, and R 2 and R 3 are the same or different 1 to 3 carbon atoms. An alkyl group or a hydroxyethyl group.
[0005]
[Chemical 3]
Figure 0004813704
[0006]
In the general formula (I), R 1 is a linear or branched alkyl group or alkenyl group having 8 to 22 carbon atoms, and R 2 and R 3 are the same or different 1 to 3 carbon atoms. An alkyl group or a hydroxyethyl group.
[0007]
However, when a large amount of unreacted amine is contained in the obtained amine oxide aqueous solution, it has a bad influence on the detergency, color tone, odor, skin irritation and the like of the amine oxide. Therefore, in particular, amine oxides used for household liquid detergents are required to have a low content of unreacted amines. In addition, in amine oxides used for household liquid cleaning agents, it is not preferable that hydrogen peroxide remains, and excess hydrogen peroxide is decomposed after the reaction, and its concentration needs to be 0.1% by mass or less. is there.
Therefore, the reaction rate (conversion rate) of the tertiary amine is set to 99 mol% or more, and excessive use of hydrogen peroxide is suppressed, and the residual amount of hydrogen peroxide after the reaction is set to 0.10 mass% or less. Various methods have been proposed to do this.
[0008]
For example, Japanese Patent Application Laid-Open No. 10-182589 proposes a method of reducing hydrogen peroxide by using an adsorbent such as activated clay or synthetic zeolite after the amine oxidation reaction. However, since the third component is added after the production of amine oxide, there is a problem that a separation operation such as filtration is necessary. Further, since the active ingredient is adsorbed on the adsorbent, there is a problem that the loss of the active ingredient occurs.
Furthermore, Japanese Patent Application Laid-Open No. 11-92443 proposes a method for reducing hydrogen peroxide by adding a hydrogen peroxide decomposing enzyme after the amine oxidation reaction. However, this method also has a problem that a separation operation such as filtration is required and the enzyme is expensive.
[0009]
Japanese Patent Application Laid-Open No. 2000-281642 proposes a method of treating amine oxide with sulfite or a bleach activator. However, after decomposition of hydrogen peroxide, it is impossible to separate sulfite or bleach activator, and the odor of amine oxide is also deteriorated.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to solve the conventional problems and achieve the following objects. That is, an object of the present invention is to provide an efficient method for producing an amine oxide in which the conversion rate of amine to amine oxide is increased and the residual amount of unreacted hydrogen peroxide after the reaction is extremely small.
[0011]
[Means for Solving the Problems]
Means for solving the problems are as follows. That is,
<1> A method for producing an amine oxide by reacting a tertiary amine represented by the following general formula (I) with hydrogen peroxide to obtain an amine oxide, comprising 1.00 mol of the tertiary amine. On the other hand, hydrogen peroxide is reacted at 1.00 to 1.50 mol, and when the remaining amount of hydrogen peroxide in the reaction solution becomes 0.05 to 0.50% by mass, In the method for producing an amine oxide, the tertiary amine in an amount corresponding to 40 to 90 mol% is newly added.
[0012]
[Formula 4]
Figure 0004813704
[0013]
In the general formula (I), R 1 is a linear or branched alkyl group or alkenyl group having 8 to 22 carbon atoms, and R 2 and R 3 are the same or different 1 to 3 carbon atoms. An alkyl group or a hydroxyethyl group.
[0014]
Further, in the present invention, the following aspects are preferred.
<2> The method for producing an amine oxide according to <1>, wherein 1.01 to 1.30 mol of hydrogen peroxide is reacted with 1.00 mol of the tertiary amine.
<3> The method for producing an amine oxide according to <1> or <2>, wherein the reaction temperature is 60 to 95 ° C.
<4> The method for producing an amine oxide according to any one of <1> to <3>, wherein the addition amount of the tertiary amine is 50 to 80 mol% of the remaining hydrogen peroxide amount.
<5> Any one of <1> to <4>, wherein the tertiary amine is added when the remaining amount of hydrogen peroxide in the reaction solution becomes 0.15 to 0.30% by mass. This is a method for producing an amine oxide.
<6> The method for producing an amine oxide according to any one of <1> to <5>, wherein the conversion rate from the tertiary amine to the amine oxide is 98 mol% or more.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The method for producing an amine oxide according to the present invention is a method for producing an amine oxide by reacting a tertiary amine represented by the following general formula (I) with hydrogen peroxide to obtain an amine oxide. When 1.00 to 1.50 mol of hydrogen peroxide is reacted with respect to 1.00 mol of the primary amine, and the remaining amount of hydrogen peroxide in the reaction solution becomes 0.05 to 0.50 mass%, In the method for producing amine oxide, the tertiary amine in an amount corresponding to 40 to 90 mol% of the remaining hydrogen peroxide amount is newly added.
[0016]
[Chemical formula 5]
Figure 0004813704
[0017]
In the general formula (I), R 1 is a linear or branched alkyl group or alkenyl group having 8 to 22 carbon atoms, and R 2 and R 3 are the same or different 1 to 3 carbon atoms. An alkyl group or a hydroxyethyl group.
[0018]
[Tertiary amine]
Examples of the tertiary amine include tertiary amines having a long chain aliphatic group having 8 to 22 carbon atoms. The tertiary amine having a long chain aliphatic group may have an aliphatic group having the same carbon chain length, and may be a mixture of amines each having a different carbon number. Examples of the tertiary amine having a long-chain aliphatic group include dimethyloctylamine, dimethyldecylamine, dimethyldodecylamine, dimethyltetradecylamine, dimethylhexadecylamine, dimethyloctadecylamine, dimethyloctadecenylamine, and dimethyl coconut oil. Examples include alkylamine, dimethyl beef tallow alkylamine, dimethyl-cured tallow alkylamine, diethyldodecylamine, N, N-bis (2-hydroxyethyl) dodecylamine and the like.
It is preferable to charge the tertiary amine so that the active ingredient in the reaction product is 20 to 40% by mass and the remaining part is the solvent water. As an active ingredient in the reaction product, it is more preferable to charge the mixture so as to be 25 to 35% by mass.
[0019]
[Reaction of tertiary amine and hydrogen peroxide]
When the tertiary amine and hydrogen peroxide are reacted, the hydrogen peroxide is used in an amount of 1.00 to 1.50 moles per mole of the tertiary amine (raw material amine). It is necessary, and it is preferable that it is 1.01-1.30 mol.
When the amount used exceeds 1.50 mol, a large amount of hydrogen peroxide remains in the product, and the amount of tertiary amine required for addition increases, which is not preferable. If so, the reaction is not complete.
[0020]
As temperature of the said reaction, 60-95 degreeC is preferable and 75-90 degreeC is more preferable.
When the temperature is less than 60 ° C., the reaction progresses slowly and the reaction time may be extended. On the other hand, when the temperature exceeds 95 ° C., coloring of the reaction solution or decomposition of hydrogen peroxide may occur. .
[0021]
Examples of the solvent used in the reaction include water-soluble solvents such as methanol, ethanol, and isopropanol. These may be used as an aqueous solution, or may be used alone or in combination of two or more.
[0022]
[Addition of tertiary amine]
In the addition of the tertiary amine, when the residual amount of hydrogen peroxide in the reaction solution becomes 0.05 to 0.50% by mass due to the reaction, the residual hydrogen peroxide amount is 40 to 90%. An amount of the tertiary amine corresponding to mol% is newly added.
[0023]
The addition of the tertiary amine is preferably performed after the reaction while maintaining the reaction temperature. The addition is preferably performed when the remaining amount of hydrogen peroxide in the reaction solution becomes 0.15 to 0.30% by mass.
If the addition is performed when the residual amount of hydrogen peroxide is less than 0.05% by mass, the reaction time taken before the addition is long, which causes coloring of the reaction solution. If it is carried out at a time exceeding 50% by mass, the amount of amine to be added increases and the reaction time becomes longer.
[0024]
The addition amount of the tertiary amine is more preferably an amount corresponding to 50 to 80 mol% of the remaining hydrogen peroxide amount.
If the amount added is less than 40 mol%, hydrogen peroxide cannot be reduced in a short time, while if it exceeds 90 mol%, the amount of remaining tertiary amine increases, causing odor deterioration. It becomes.
[0025]
After the tertiary amine is newly added, the reaction temperature is further maintained and the reaction is continued to suppress the amount of unreacted amine and unreacted hydrogen peroxide, and is represented by the following general formula (II). Amine oxide can be obtained efficiently.
[0026]
[Chemical 6]
Figure 0004813704
[0027]
In the general formula (II), R 1 is a linear or branched alkyl group or alkenyl group having 8 to 22 carbon atoms, and R 2 and R 3 are the same or different 1 to 3 carbon atoms. An alkyl group or a hydroxyethyl group.
[0028]
In the amine oxide production method of the present invention described above, the conversion rate from amine to amine oxide is preferably 98 mol% or more, more preferably 99 mol% or more. Further, the residual amount of unreacted hydrogen peroxide after the reaction is preferably 0.10% by mass or less, more preferably 0.05% by mass or less, in all the compounds after the reaction.
[0029]
The amine oxide obtained by the present invention (amine oxide represented by the general formula (I)) is a surfactant having low irritation to the skin, detergents such as shampoos and kitchen detergents, cosmetics, cosmetics, It can be suitably used for a wide range of applications such as industrial cleaning agents. According to the present invention, the tertiary amine used as a raw material is further added after the reaction, so that the amount of residual hydrogen peroxide is reduced. Therefore, it is possible to produce an industrially advantageous and inexpensive amine oxide. Furthermore, since the remaining hydrogen peroxide can be reduced in a short time after the tertiary amine is added, an amine oxide having a good color tone and odor can be produced. It is extremely useful as a method for producing oxide.
[0030]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples at all.
[0031]
(Example 1)
In a 1 liter four-necked flask equipped with a hydrogen peroxide dropping device, a thermometer, and a stirrer, 100 g (0.461 mol) of lauryldimethylamine (manufactured by Lion Akzo; Armin DM12D) and water 50 g was added and heated to 80 ° C. with stirring. The stirring rotation speed was 600 rpm.
[0032]
Thereafter, 172.4 g (0.507 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.100, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 6.0 hours, the reaction solution was analyzed to find that free amine = 0.25% by mass and residual hydrogen peroxide = 0.072% by mass. At this point, 0.98 g of fresh lauryl dimethylamine was added and the reaction was further continued for 1 hour. As a result, an aqueous solution of lauryl dimethylamine oxide containing 0.19% by mass of free amine and 0.025% by mass of residual hydrogen peroxide was obtained. Obtained. In addition, the color tone of this lauryl dimethylamine oxide aqueous solution was 5 (APHA), and the smell was also favorable.
The lauryl dimethylamine oxide finally obtained had a conversion rate of 99.2 mol%, and the active ingredient in the reaction solution was 33.5% by mass. The reaction time after completion of the dropwise addition of hydrogen peroxide was 7.0 hours.
[0033]
(Example 2)
Using the same apparatus as in Example 1, 100 g of lauryldimethylamine and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 176.3 g (0.518 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.125, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 5.7 hours, the reaction solution was analyzed. Free amine = 0.22 mass% and residual hydrogen peroxide = 0.102 mass%. At this point, 1.45 g of fresh lauryl dimethylamine was added and the reaction was further continued for 1 hour. As a result, an aqueous lauryl dimethylamine oxide solution having a free amine = 0.20 mass% and a residual hydrogen peroxide = 0.034 mass% was obtained. Obtained. The lauryl dimethylamine oxide aqueous solution had a color tone of 5 (APHA) and a good odor.
The finally obtained lauryldimethylamine oxide had a conversion rate of 99.3 mol%, and the active ingredient in the reaction solution was 33.1% by mass. The reaction time after completion of the dropwise addition of hydrogen peroxide was 7.0 hours.
[0034]
(Example 3)
Using the same apparatus as in Example 1, 100 g of lauryldimethylamine and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 180.2 g (0.530 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.150, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 5.6 hours, the reaction solution was analyzed. Free amine = 0.21 mass% and residual hydrogen peroxide = 0.114 mass%. At this point, 1.54 g of fresh lauryldimethylamine was added and the reaction was further continued for 1.2 hours. As a result, free amine = 0.19% by mass, residual hydrogen peroxide = 0.039% by mass, lauryldimethylamine oxide. An aqueous solution was obtained. The lauryl dimethylamine oxide aqueous solution had a color tone of 5 (APHA) and good odor.
The finally obtained lauryldimethylamine oxide had a conversion rate of 99.4 mol%, and the active ingredient in the reaction solution was 33.2% by mass. The reaction time after completion of the dropwise addition of hydrogen peroxide was 7.5 hours.
[0035]
Example 4
Using the same apparatus as in Example 1, 100 g (0.461 mol) of lauryl dimethylamine (manufactured by Lion Akzo Co., Ltd .; Armin DM12D) and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 164.5 g (0.484 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.050, and the temperature of the reaction vessel contents was adjusted. While maintaining at 70 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 6 hours, the reaction solution was analyzed. Free amine = 0.30 mass% and residual hydrogen peroxide = 0.06 mass%. At this point, 0.68 g of fresh lauryl dimethylamine was added and the reaction was further carried out for 1.0 hour. As a result, lauryl dimethylamine with free amine = 0.28 mass% and residual hydrogen peroxide = 0.032 mass% was obtained. An aqueous oxide solution was obtained. In addition, the color tone of this lauryl dimethylamine oxide aqueous solution was 5 (APHA), and the smell was also favorable.
The lauryl dimethylamine oxide finally obtained had a conversion rate of 99.1 mol%, and the active ingredient in the reaction solution was 33.3 mass%. The reaction time after completion of the dropwise addition of hydrogen peroxide was 7.0 hours.
[0036]
(Example 5)
Using the same apparatus as in Example 1, 100 g (0.461 mol) of lauryldimethylamine (Lion Akzo Armin DM12D) and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 188.0 g (0.553 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.30, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. When the reaction liquid was analyzed after reacting for 4.5 hours, it was found that free amine = 0.12% by mass and residual hydrogen peroxide = 0.160% by mass. At this point, 2.91 g of fresh lauryl dimethylamine was added and the reaction was further carried out for 2.0 hours. As a result, free amine = 0.11% by mass and residual hydrogen peroxide = 0.013% by mass of lauryl dimethylamine. An aqueous oxide solution was obtained. The lauryl dimethylamine oxide aqueous solution had a color tone of 5 (APHA) and a good odor.
The lauryl dimethylamine oxide finally obtained had a conversion of 99.6 mol%, and the active ingredient in the reaction solution was 33.3 mass%. The reaction time after completion of the dropwise addition of hydrogen peroxide was 6.5 hours.
[0037]
(Example 6)
Using the same apparatus as in Example 1, 100 g (0.461 mol) of lauryl dimethylamine (manufactured by Lion Akzo Co., Ltd .; Armin DM12D) and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 175.6 g (0.563 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide and amine (hydrogen peroxide / amine) = 1.10. While maintaining the temperature at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. When the reaction solution was analyzed after reacting for 6.0 hours, it was found that the free amine = 0.22% by mass and the residual hydrogen peroxide = 0.078% by mass. At this point, 0.68 g of fresh lauryl dimethylamine was added and the reaction was further carried out for 1.0 hour. As a result, lauryl dimethylamine having free amine = 0.23 mass% and residual hydrogen peroxide = 0.020 mass% An aqueous oxide solution was obtained. The lauryl dimethylamine oxide aqueous solution had a color tone of 5 (APHA) and a good odor.
The lauryl dimethylamine oxide finally obtained had a conversion of 99.7 mol%, and the active ingredient in the reaction solution was 33.2% by mass. The reaction time after completion of the dropwise addition of hydrogen peroxide was 7.0 hours.
[0038]
(Example 7)
Using the same apparatus as in Example 1, 100 g (0.461 mol) of lauryl dimethylamine (manufactured by Lion Akzo Co., Ltd .; Armin DM12D) and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 175.6 g (0.563 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.100, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. When the reaction solution was analyzed after reacting for 6.0 hours, free amine = 0.23 mass% and residual hydrogen peroxide = 0.080 mass%. At this point, 1.45 g of fresh lauryldimethylamine was added and the reaction was further continued for 1.0 hour. As a result, lauryldimethylamine oxide having free amine = 0.19% by mass and residual hydrogen peroxide = 0.032% by mass was obtained. An aqueous solution was obtained. The lauryl dimethylamine oxide aqueous solution had a color tone of 5 (APHA) and a good odor.
The lauryl dimethylamine oxide finally obtained had a conversion of 99.6 mol%, and the active ingredient in the reaction solution was 33.4% by mass. The reaction time after completion of the dropwise addition of hydrogen peroxide was 7.0 hours.
[0039]
(Comparative Example 1)
Using the same apparatus as in Example 1, 100 g of lauryldimethylamine and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 176.3 g (0.518 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.125, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 6.0 hours, the reaction solution was analyzed to find that free amine = 0.23 mass% and residual hydrogen peroxide = 0.111 mass%.
Thereafter, the reaction was continued for 5 hours without adding the amine. As a result, free amine = 0.17 mass% and residual hydrogen peroxide = 0.067 mass%. The reaction time after the dropwise addition of hydrogen peroxide was 11.0 hours, and the color tone of this aqueous lauryldimethylamine oxide solution was 20 (APHA), and color tone deterioration was observed. Also, the odor was slightly degraded.
[0040]
(Comparative Example 2)
Using the same apparatus as in Example 1, 100 g of lauryldimethylamine and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 151.6 g (0.446 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 0.950, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. When the reaction solution was analyzed after reacting for 6.0 hours, free amine = 0.40 mass% and residual hydrogen peroxide = 0.007 mass%.
Thereafter, when the reaction was continued for 5 hours without adding an amine, free amine = 0.39 mass% and residual hydrogen peroxide = 0.006 mass%. The reaction time after the dropwise addition of hydrogen peroxide was 11.0 hours, and the color tone of this lauryldimethylamine oxide aqueous solution was 40 (APHA), and color tone deterioration was observed. Also, the odor was slightly degraded.
[0041]
(Comparative Example 3)
Using the same apparatus as in Example 1, 100 g of lauryldimethylamine and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 255.4 g (0.751 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.600, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 6.0 hours, the reaction solution was analyzed to find that free amine = 0.02 mass% and residual hydrogen peroxide = 0.320 mass%.
At this point, 4.05 g of fresh lauryl dimethylamine was added and the reaction was further carried out for 1.0 hour. As a result, free amine = 0.00 mass% and residual hydrogen peroxide = 0.290 mass%. The color tone of this lauryl dimethylamine oxide aqueous solution was as good as 10 (APHA) and the odor was good, but a large amount of hydrogen peroxide remained.
[0042]
(Comparative Example 4)
Using the same apparatus as in Example 1, 100 g of lauryldimethylamine and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 183.6 g (0.540 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.150, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 6.0 hours, the reaction solution was analyzed. Free amine = 0.21 mass% and residual hydrogen peroxide = 0.113 mass%.
At this time, 2.15 g of fresh lauryldimethylamine was added and the reaction was further carried out for 1.0 hour. As a result, free amine = 0.39% by mass and residual hydrogen peroxide = 0.025% by mass. The color tone of this lauryl dimethylamine oxide aqueous solution was as good as 10 (APHA), but since the remaining amount of amine was large, the deterioration of odor was recognized.
[0043]
(Comparative Example 5)
Using the same apparatus as in Example 1, 100 g of lauryldimethylamine and 50 g of water were added and heated to 80 ° C. with stirring.
Thereafter, 183.6 g (0.540 mol) of 10% aqueous hydrogen peroxide was added so that the molar ratio of hydrogen peroxide to amine (hydrogen peroxide / amine) = 1.150, and the temperature of the reaction vessel contents was adjusted. While maintaining at 80 ° C., the solution was added dropwise over 1 hour. After completion of the dropping, the reaction temperature was 80 ° C. and stirring was continued. After reacting for 6.0 hours, the reaction solution was analyzed. Free amine = 0.24% by mass and residual hydrogen peroxide = 0.121% by mass.
At this time, 0.63 g of fresh lauryldimethylamine was added and the reaction was further carried out for 1.0 hour. As a result, free amine = 0.19% by mass and residual hydrogen peroxide = 0.110% by mass were obtained. Remained in large quantities. The color of this lauryldimethylamine oxide aqueous solution was as good as 10 (APHA), and the odor was also good.
[0044]
Each condition and result in Examples 1-7 and Comparative Examples 1-5 are shown in Tables 1-2.
[0045]
[Table 1]
Figure 0004813704
[0046]
[Table 2]
Figure 0004813704
[0047]
In Table 2, “odor” is evaluated according to the following evaluation criteria.
-Odor evaluation criteria-
○: Smell is good.
Δ: Slightly inferior in odor
X: Bad smell.
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the conversion rate which converts an amine into an amine oxide can be improved, and the manufacturing method of an efficient amine oxide can be provided with very little remaining amount of the unreacted hydrogen peroxide after reaction.

Claims (1)

下記一般式(I)で表される第3級アミンと過酸化水素とを反応させて、アミンオキシドを得るアミンオキシドの製造方法であって、前記第3級アミン1.00モルに対し、過酸化水素を1.00〜1.50モル反応させ、反応液における過酸化水素の残存量が、0.05〜0.50質量%となった時点で、残存する過酸化水素量の40〜90モル%に相当する量の前記第3級アミンを、新たに添加することを特徴とするアミンオキシドの製造方法。
Figure 0004813704
一般式(I)において、Rは、直鎖又は分岐鎖の8〜22の炭素原子を有するアルキル基又はアルケニル基であり、R及びRは、同一もしくは異なる1〜3の炭素原子を有するアルキル基又はヒドロキシエチル基である。
A method for producing an amine oxide by reacting a tertiary amine represented by the following general formula (I) with hydrogen peroxide to obtain an amine oxide. Hydrogen oxide is reacted at 1.00 to 1.50 mol, and when the remaining amount of hydrogen peroxide in the reaction solution becomes 0.05 to 0.50% by mass, the remaining hydrogen peroxide amount is 40 to 90%. A method for producing an amine oxide, wherein the tertiary amine in an amount corresponding to mol% is newly added.
Figure 0004813704
In the general formula (I), R 1 is a linear or branched alkyl group or alkenyl group having 8 to 22 carbon atoms, and R 2 and R 3 are the same or different 1 to 3 carbon atoms. An alkyl group or a hydroxyethyl group.
JP2001269566A 2001-09-05 2001-09-05 Method for producing amine oxide Expired - Fee Related JP4813704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269566A JP4813704B2 (en) 2001-09-05 2001-09-05 Method for producing amine oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269566A JP4813704B2 (en) 2001-09-05 2001-09-05 Method for producing amine oxide

Publications (2)

Publication Number Publication Date
JP2003081932A JP2003081932A (en) 2003-03-19
JP4813704B2 true JP4813704B2 (en) 2011-11-09

Family

ID=19095364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269566A Expired - Fee Related JP4813704B2 (en) 2001-09-05 2001-09-05 Method for producing amine oxide

Country Status (1)

Country Link
JP (1) JP4813704B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754923B2 (en) 2006-03-08 2010-07-13 Kao Corporation Method for producing nitrogen-containing compound
ES2604755T3 (en) * 2012-07-24 2017-03-09 The Procter & Gamble Company Continuous process for the manufacture of amine oxide
CN103086927B (en) * 2012-12-06 2014-11-26 广西民族大学 Tertiary amine oxide with rosinyl three-membered phenanthrene ring structure and preparation method of tertiary amine oxide
CN103012219B (en) * 2012-12-20 2015-02-11 北京桑普生物化学技术有限公司 Preparation method for trimethylamine oxide
JP2014185122A (en) * 2013-03-25 2014-10-02 Matsumoto Yushi Seiyaku Co Ltd Method for manufacturing amine oxide
CN109096143B (en) * 2018-10-09 2021-08-27 南京工业大学 Method for synthesizing diethylhydroxylamine by adopting peroxyacetic acid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120848A (en) * 1983-12-01 1985-06-28 Mitsubishi Petrochem Co Ltd Preparation of mixed tertiary amine oxide
JPH08157443A (en) * 1994-12-08 1996-06-18 Lion Akzo Kk Production of amine oxide aqueous solution
JP2998667B2 (en) * 1996-12-26 2000-01-11 日本油脂株式会社 Method for producing amine oxide
JPH1192443A (en) * 1997-09-24 1999-04-06 Nof Corp Production of amine oxide
JP3505366B2 (en) * 1997-09-25 2004-03-08 花王株式会社 Method for producing amine oxide type surfactant

Also Published As

Publication number Publication date
JP2003081932A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
CA2348920C (en) Process for preparing mono-long chain amine oxide surfactants with low nitrite, nitrosamine and low residual peroxide level
US5188769A (en) Process for reducing the levels of fatty acid contaminants in polyhydroxy fatty acid amide surfactants
JP3047145B2 (en) Amphoteric surfactant compound
EP0647469B2 (en) Process for the preparation of imidazoline derived amphoacetates surfactants of higher purity
JP4813704B2 (en) Method for producing amine oxide
US5298636A (en) Process for reducing the levels of unreacted amino polyol contaminants in polyhydroxy fatty acid amide surfactants
CN1134145A (en) Process for reducing levels of nitrite contaminants in amine oxide surfactants
EP1426354B1 (en) Process for preparing a quaternary ammonium composition
AU709654B2 (en) Process for the preparation of tertiary amine oxides
JP2002285469A5 (en)
JP3132975B2 (en) Method for producing benzalkonium-based cationic surfactant
JPH08157443A (en) Production of amine oxide aqueous solution
JP4124524B2 (en) Method for producing N-substituted β-alanine or salt thereof and surfactant composition containing N-substituted β-alanine or salt thereof
JP3127480B2 (en) Method for producing aliphatic tertiary amine and surfactant
JP2001181242A (en) Method for synthesizing substituted amine
US2871091A (en) Method of disinfecting
JPH10168052A (en) Production of amine oxide
JPH11152260A (en) Production of amidamine oxide compound excellent in stability and surface active composition derived from the same compound
JP4602928B2 (en) Process for producing aliphatic amine ethylene oxide adduct
JPS62198649A (en) Production of carboxylic acid salt
JPH1135537A (en) Production of amidoaminomonocarboxylic acid compound and surfactant composition containing the same
JP4788044B2 (en) Method for producing high purity quaternary ammonium carboxylate
CN116987512A (en) Amido-containing heterocyclic surfactant, and preparation method and application thereof
JP4856406B2 (en) Method for producing amine oxide
CN116478078A (en) Nitrogen-containing five-membered heterocyclic surfactant, and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees