JP4813609B2 - Deodorant using ferric hydroxide-containing water-containing neutralized sludge as production raw material and method for producing the same - Google Patents

Deodorant using ferric hydroxide-containing water-containing neutralized sludge as production raw material and method for producing the same Download PDF

Info

Publication number
JP4813609B2
JP4813609B2 JP2010081298A JP2010081298A JP4813609B2 JP 4813609 B2 JP4813609 B2 JP 4813609B2 JP 2010081298 A JP2010081298 A JP 2010081298A JP 2010081298 A JP2010081298 A JP 2010081298A JP 4813609 B2 JP4813609 B2 JP 4813609B2
Authority
JP
Japan
Prior art keywords
concentration
sludge
deodorant
ferric hydroxide
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010081298A
Other languages
Japanese (ja)
Other versions
JP2011212537A (en
Inventor
希宜 星野
啓之 中島
裕次 谷村
洋介 桂
洋介 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2010081298A priority Critical patent/JP4813609B2/en
Publication of JP2011212537A publication Critical patent/JP2011212537A/en
Application granted granted Critical
Publication of JP4813609B2 publication Critical patent/JP4813609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水酸化第2鉄含有含水中和スラッジを製造原料とする、都市下水又は工場廃水等の廃水処理施設又は付帯施設等において硫化水素等が生成することにより発生する悪臭を抑制する液体消臭剤及びその製造方法に関する。
より詳しくは、都市下水又は工場廃水等の廃水処理施設又は付帯施設等において、悪臭物質である硫化水素を高濃度で発生させる濃縮汚泥貯留施設等に好適に使用することができる、金属処理工場等で排出される鉄化合物含有酸性水溶液を中和する際に生成する水酸化第2鉄含有含水中和スラッジを鉄の製造原料として用いる液体消臭剤及びその製造方法に関する。
The present invention is a liquid that suppresses bad odor generated by the production of hydrogen sulfide or the like in wastewater treatment facilities or incidental facilities such as municipal sewage or factory wastewater, using ferric hydroxide-containing water-containing neutralized sludge as a production raw material. The present invention relates to a deodorant and a method for producing the same.
More specifically, in a wastewater treatment facility or ancillary facilities such as urban sewage or factory wastewater, it can be suitably used for a concentrated sludge storage facility that generates hydrogen sulfide, which is a malodorous substance, at a high concentration, etc. The present invention relates to a liquid deodorant that uses ferric hydroxide-containing water-containing neutralized sludge that is generated when neutralizing an iron compound-containing acidic aqueous solution discharged in step 1 as an iron production raw material and a method for producing the same.

酸洗設備を備える製鉄所、焼き入れ工場、あるいは製線工場等の各種工場又は鉄鉱山等においては、第2鉄含有酸性廃水が発生し、これをそのまま排出放流することは、河川、海洋等を汚染し、また厳しい廃水規制も存在することから不可能である。そのため、この廃水は単独あるいは合併されて中和されるが、生成した水酸化第2鉄含有含水中和スラッジは、現状においては特に利用されることもなく通常廃棄物として処理されている。   Ferrous fermented acid wastewater is generated at various steelworks, quenching factories, wire mills, and other factories or iron mines with pickling facilities. It is impossible because of the pollution and strict wastewater regulations. For this reason, the wastewater is neutralized either alone or in combination, but the produced ferric hydroxide-containing water-containing neutralized sludge is currently treated as normal waste without being particularly used.

この廃棄処理されている水酸化第2鉄含有含水中和スラッジは処理量も多く、また有害物等の廃棄処理は、規制も非常に厳しくなっており、その処分場の確保も一段と困難となっている。そのため、該スラッジ中の鉄を有効活用し廃棄処理する量を少しでも低減させる技術の開発が望まれている。そのような中において、本発明者が所属する企業は下水処理の凝集剤であり、鉄を主成分とするポリ硫酸第2鉄を製造販売している。本発明者らは、このポリ硫酸第2鉄の製造に鉄または鉄化合物の廃物を活用し、低コストで製造し、低価額で販売提供することを既に提案している。   This waste fertilized hydroxide-containing neutralized sludge that has been disposed of has a large amount of treatment, and the disposal of hazardous materials has become very strict, making it difficult to secure a disposal site. ing. Therefore, it is desired to develop a technique for effectively reducing the amount of waste in the sludge by effectively utilizing iron in the sludge. Under such circumstances, the company to which the inventor belongs is a flocculant for sewage treatment, and manufactures and sells polyferric sulfate containing iron as a main component. The inventors of the present invention have already proposed that iron or iron compound waste is used for the production of polyferric sulfate, which is produced at a low cost and sold at a low price.

また、鉄の化合物である、第1鉄イオン、硫酸イオン及び硝酸イオンの存在下で第1鉄イオンを第2鉄イオンに酸化して生成される、第2鉄イオン、硝酸イオン及び硫酸イオンから形成される液状複合体が、悪臭の原因物質の一つである硫化水素の発生抑制能が優れていることを本発明者らが見出し、既に消臭剤として提案している(特許文献1)。
本発明者らは、この視点から水酸化第2鉄含有含水中和スラッジを活用する路を開拓する可能性について着目し既に検討した。
Further, from ferric ions, nitrate ions and sulfate ions produced by oxidizing ferrous ions to ferric ions in the presence of ferrous ions, sulfate ions and nitrate ions, which are iron compounds. The present inventors have found that the formed liquid composite has excellent ability to suppress the generation of hydrogen sulfide, which is one of the causes of malodors, and has already proposed it as a deodorant (Patent Document 1). .
The present inventors have already examined from this viewpoint, paying attention to the possibility of exploiting a ferric hydroxide-containing water-containing neutralized sludge.

その結果、水酸化第2鉄含有含水中和スラッジは、高濃度の硝酸(具体的には濃度20wt%以上の硝酸)によっては、常温では溶解し難いが70℃以上の温度では、比較的短時間で溶解し、第2鉄がFe23換算で7.1〜17wt%含有され、NO3/Feのモル比が2.3から3.0未満の範囲にある水溶液を作製することができ、それを用いて廃水処理施設等で発生する硫化水素による悪臭を抑制できることを確認して、特許出願し、既に特許を取得した(特許文献2)。 As a result, the ferric hydroxide-containing water-containing neutralized sludge is difficult to dissolve at room temperature depending on high-concentration nitric acid (specifically, nitric acid having a concentration of 20 wt% or more), but relatively short at a temperature of 70 ° C. or more. It is possible to prepare an aqueous solution that dissolves in time, contains ferric iron in an amount of 7.1 to 17 wt% in terms of Fe 2 O 3 , and has a NO 3 / Fe molar ratio in the range of 2.3 to less than 3.0. It was confirmed that it was possible to suppress the malodor caused by hydrogen sulfide generated in wastewater treatment facilities and the like, and a patent application was made and a patent was already obtained (Patent Document 2).

このような優れた性能を持つ消臭剤を下水処理施設等で使用することを促進すべく、該施設等に対して営業活動を行いサンプルを提供したところ、高濃度の硫化水素を発生する濃縮汚泥等を貯蔵する施設では、その消臭性能が十分なものではないとの感触があった。
そこで、高濃度の硫化水素を発生する濃縮汚泥に対して、特許文献2の消臭剤を用いて人間による簡便な消臭性能試験、すなわち人間による臭気感応試験を行ったところ僅かに臭気が感じれた。
In order to promote the use of such deodorants with excellent performance in sewage treatment facilities, etc., when sales activities were conducted for such facilities, etc., samples were provided, it was concentrated to generate high-concentration hydrogen sulfide. In facilities that store sludge, etc., there was a feeling that the deodorizing performance was not sufficient.
Therefore, a simple deodorization performance test by humans using the deodorant of Patent Document 2 on the concentrated sludge that generates high-concentration hydrogen sulfide, that is, a human odor sensitivity test, a slight odor is felt. It was.

特開平11−206863号公報JP-A-11-206863 特許第4,098,584号(特開2004−82006号公報)Patent No. 4,098,584 (Japanese Patent Laid-Open No. 2004-82006)

そのようなことから、この消臭剤について消臭性能に関し客観的データを取るべく、高濃度の硫化水素を発生する濃縮汚泥に対してガス検知管を用いて消臭性能試験を行ったところ消臭性能が特許文献2に記載されているような完璧なものではないことが判明した。
その原因を調査すべく、まず液体消臭剤の組成を調査したところ、硫酸根(SO4)が相当量、すなわち2.4wt%という量で存在することが判明した。
For this reason, in order to obtain objective data on the deodorizing performance of this deodorant, a deodorizing performance test was conducted using a gas detector tube on concentrated sludge that generates high-concentration hydrogen sulfide. It was found that the odor performance was not perfect as described in Patent Document 2.
In order to investigate the cause, first, the composition of the liquid deodorant was investigated, and it was found that sulfate radical (SO 4 ) was present in a considerable amount, that is, 2.4 wt%.

そこで、その硫酸根の由来を調査すべく、鉄原料の水酸化第2鉄含有含水中和スラッジの組成を分析したところ多量の硫酸根が存在することが判明した。すなわち、特許文献2に記載の消臭剤の製造原料である水酸化第2鉄含有含水中和スラッジには、13.9wt%(乾燥ベース)もの多量の硫酸根が存在することが判明した。
このことから、特許文献2の消臭剤には水酸化第2鉄含有含水中和スラッジ由来の硫酸根が相当量残存し、その硫酸根が嫌気性雰囲気においては硫酸塩還元菌により還元されて硫化水素が生成するものと推測し、含有硫酸根の少ない消臭剤を使用して消臭性能を行ったところ消臭性能が向上するとの知見を得た。
Then, in order to investigate the origin of the sulfate radical, the composition of the ferric hydroxide-containing water-containing neutralized sludge as an iron raw material was analyzed, and it was found that a large quantity of sulfate radical was present. That is, it was found that the ferric hydroxide-containing water-containing neutralized sludge, which is a raw material for producing the deodorant described in Patent Document 2, contains a large amount of 13.9 wt% (dry basis) sulfate radicals.
Therefore, a considerable amount of sulfate radicals derived from ferric hydroxide-containing water-containing neutralized sludge remain in the deodorizer of Patent Document 2, and the sulfate radicals are reduced by sulfate-reducing bacteria in an anaerobic atmosphere. It was estimated that hydrogen sulfide would be generated, and the deodorization performance was improved by using a deodorizer with a low content of sulfate radicals.

したがって、本発明は、水酸化第2鉄含有含水中和スラッジを鉄原料として用い、その上で前記知見を利用して、高濃度の硫化水素を発生させる濃縮汚泥等の発生源に対して優れた消臭性能を発揮する液体消臭剤及びその製造方法を提供することを発明の解決すべき課題とするものである。
より詳しくは、、本発明は、各種金属処理工場等で排出される鉄化合物含有酸性水溶液を中和する際に生成する水酸化第2鉄含有含水中和スラッジを製造原料として用いて製造される、すなわち廃棄物を有効活用して製造される液体消臭剤であるにもかかわらず、高濃度の硫化水素を発生する汚泥等の発生源に対して、優れた消臭性能を発揮する消臭剤及びその製造方法を提供することを発明の解決すべき課題とするものである。
Therefore, the present invention uses ferrous hydroxide-containing water-containing neutralized sludge as an iron raw material, and on the basis of the above knowledge, it is excellent for sources such as concentrated sludge that generates high-concentration hydrogen sulfide. Accordingly, it is an object of the present invention to provide a liquid deodorant exhibiting a deodorizing performance and a method for producing the same.
More specifically, the present invention is produced using ferric hydroxide-containing water-containing neutralized sludge produced when neutralizing an iron compound-containing acidic aqueous solution discharged at various metal processing plants or the like as a production raw material. In other words, it is a liquid deodorant manufactured by effectively utilizing waste, but it has excellent deodorizing performance against sources such as sludge that generate high-concentration hydrogen sulfide. It is an object of the present invention to provide an agent and a method for producing the same.

本発明は前記課題を達成するための液体消臭剤及びその製造方法を提供するものであり、その液体消臭剤は、鉄化合物含有酸性廃液を中和した際に生成する水酸化第2鉄含有含水スラッジを原料として製造される液体消臭剤であって、第2鉄がFe23換算で7〜35wt%含有され、NO3/Feモル比が3.0から6.0の範囲内にあり、かつSO4濃度が1.6wt%以下の水溶液であることを特徴とするものである。
また、その液体消臭剤は、第2鉄がFe23換算で9〜20wt%、NO3/Feモル比が3.5から5.5の範囲にあり、かつSO4濃度が0.8wt%以下であることが好ましい。
The present invention provides a liquid deodorant and a method for producing the same to achieve the above object, and the liquid deodorant is ferric hydroxide produced when an iron compound-containing acidic waste liquid is neutralized. a a water-containing sludge in a liquid deodorant which is produced as a raw material, a second iron contained 7~35Wt% in terms of Fe 2 O 3, NO 3 / Fe molar ratio in the range from 3.0 6.0 And an aqueous solution having a SO 4 concentration of 1.6 wt% or less.
The liquid deodorant has a ferric content of 9 to 20 wt% in terms of Fe 2 O 3 , a NO 3 / Fe molar ratio in the range of 3.5 to 5.5, and an SO 4 concentration of 0.8. It is preferable that it is 8 wt% or less.

そして、その液体消臭剤の製造方法は、鉄化合物含有酸性廃液を中和した際に発生する水酸化第2鉄含有含水スラッジに、濃度20wt%以上の硝酸をNO3/Feのモル比が3.0から6.0において混合し、温度60〜100℃で1〜12時間加熱溶解させることを特徴するものである。
また、その際の硝酸濃度は50wt%以上、温度は75〜100℃、加熱溶解する時間は4〜12時間が好ましい。
The manufacturing method of the liquid deodorant is a ferric-containing aqueous sludge hydroxide generated when neutralized iron compound-containing acidic waste liquid, the molar ratio of the nitric acid concentrations above 20wt% NO 3 / Fe is It mixes in 3.0 to 6.0, and is heat-dissolved at the temperature of 60-100 degreeC for 1 to 12 hours, It is characterized by the above-mentioned.
In addition, the nitric acid concentration at that time is preferably 50 wt% or more, the temperature is 75 to 100 ° C., and the heat dissolution time is preferably 4 to 12 hours.

本発明の液体消臭剤は、製造原料の1つである鉄原料に関し水酸化第2鉄含有含水中和スラッジを使用するものであるから、廃棄物を有効活用するもので、その低減に貢献するものである。
また、本発明で用いる鉄原料の水酸化第2鉄含有含水中和スラッジは、SO4濃度が低いことから、濃度が高いものに比し溶解し難いと考えられていたが、それを効率的に溶解することを条件を見出したものであり、更なる廃棄物の有効活用に路を拓いたものである。
Since the liquid deodorant of the present invention uses ferric hydroxide-containing water-containing neutralized sludge with respect to the iron raw material that is one of the manufacturing raw materials, it effectively uses waste and contributes to the reduction. To do.
Moreover, the ferric hydroxide-containing water-containing neutralized sludge of the iron raw material used in the present invention was thought to be difficult to dissolve compared to a high concentration because of its low SO 4 concentration. As a result, it has been found that it can be dissolved in water, and has paved the way for further effective use of waste.

そして、本発明を開発する過程においては、特許文献2に記載の消臭剤の消臭性能が十分ではなく、それを改良すべく鋭意検討している間に、その消臭剤において鉄原料として用いた水酸化第2鉄含有含水中和スラッジ中に高濃度のSO4が含有され、それに由来する硫酸根が製造された消臭剤にも残留することが判明し、これが更なる悪臭物質の硫化水素を発生させる原因になっている可能性が推測され、本発明は、この推測の当否を確認し、それを解決することにより濃縮汚泥等の高濃度の硫化水素を発生する施設においても有効に消臭性能を発現する優れた消臭剤を提供するものである。 And in the process of developing the present invention, the deodorizing performance of the deodorant described in Patent Document 2 is not sufficient, and while deliberately trying to improve it, It was found that the ferric hydroxide-containing water-containing neutralized sludge used contained a high concentration of SO 4 , and sulfate radicals derived from it remained in the manufactured deodorant. The possibility of causing hydrogen sulfide is presumed, and the present invention is effective in facilities that generate high-concentration hydrogen sulfide, such as concentrated sludge, by confirming the correctness of this assumption and solving it. It provides an excellent deodorant exhibiting deodorant performance.

すなわち、特許文献2で製造された消臭剤には鉄原料である水酸化第2鉄含有含水中和スラッジから持ち込まれたSO4が2.4%含有されており、このSO4が濃縮汚泥の貯槽のように高い嫌気性雰囲気(水中に酸素分子も硝酸イオンも存在しない状態)下ある環境においては、硫酸塩還元菌により還元されて硫化水素が生成するものと推測し、SO4濃度が低い水酸化第2鉄含有含水中和スラッジを鉄原料として消臭剤を製造したのが、本発明の消臭剤及びその製造方法であり、その結果、本発明では高濃度の硫化水素を発生する濃縮汚泥等に対して用いても良好な消臭性能を発現するものである。
That is, the deodorant manufactured in Patent Document 2 contains 2.4% SO 4 brought from ferric hydroxide-containing water-containing neutralized sludge, which is an iron raw material, and this SO 4 is concentrated sludge. in the high anaerobic atmosphere environment (oxygen molecule also nitrate ions state does not exist in the water) is under as reservoirs, and assumed to produce hydrogen sulfide is reduced by sulfate reducing bacteria, is sO 4 concentration The deodorant was produced using the low ferric hydroxide-containing water-containing neutralized sludge as the iron raw material, and as a result, the present invention produced a high concentration of hydrogen sulfide. Even if it is used for concentrated sludge, etc., it exhibits good deodorizing performance.

以下において、本発明について発明を実施するための形態に関し詳述するが、本発明は、この実施の形態によって何等限定されるものではなく、特許請求の範囲によって特定されるものであることはいうまでもない。   In the following, the present invention will be described in detail with reference to modes for carrying out the invention. However, the present invention is not limited in any way by these embodiments, but is specified by the scope of claims. Not too long.

本発明は前記したとおり液体消臭剤及びその製造方法を提供するものであり、その液体消臭剤は、鉄化合物含有酸性廃液を中和した際に発生する水酸化第2鉄含有含水スラッジを原料として製造される液体消臭剤であって、第2鉄がFe23換算で7〜35wt%含有され、NO3/Feモル比が3.0から6.0の範囲内にあり、かつSO4濃度が1.6wt%以下の水溶液であることを特徴とするものである。また、その液体消臭剤は、第2鉄がFe23換算で9〜20wt%、NO3/Feモル比が3.5から5.5の範囲にあり、かつSO4濃度が0.8wt%以下であることが好ましい。 As described above, the present invention provides a liquid deodorant and a method for producing the same, and the liquid deodorant contains ferric hydroxide-containing water-containing sludge generated when an iron compound-containing acidic waste liquid is neutralized. A liquid deodorant produced as a raw material, containing ferric iron in an amount of 7 to 35 wt% in terms of Fe 2 O 3 , and a NO 3 / Fe molar ratio in the range of 3.0 to 6.0, and it is characterized in that the SO 4 concentration is an aqueous solution of less 1.6 wt%. The liquid deodorant has a ferric content of 9 to 20 wt% in terms of Fe 2 O 3 , a NO 3 / Fe molar ratio in the range of 3.5 to 5.5, and an SO 4 concentration of 0.8. It is preferable that it is 8 wt% or less.

そして、その液体消臭剤の製造方法は、前記したとおり鉄化合物含有酸性廃液を中和した際に発生する水酸化第2鉄含有含水スラッジに、濃度20wt%以上の硝酸をNO3/Feのモル比が3.0から6.0において混合し、温度60〜100℃で1〜12時間加熱溶解させることを特徴とするものである。
また、その際の硝酸濃度は50wt%以上、温度は75〜100℃、加熱溶解する時間は4〜12時間が好ましい。
The manufacturing method of the liquid deodorant is a ferric-containing aqueous sludge hydroxide generated when neutralized iron compound-containing acidic waste liquid as described above, the nitric acid concentrations above 20 wt% of the NO 3 / Fe The mixture is mixed at a molar ratio of 3.0 to 6.0 and heated and dissolved at a temperature of 60 to 100 ° C. for 1 to 12 hours.
In addition, the nitric acid concentration at that time is preferably 50 wt% or more, the temperature is 75 to 100 ° C., and the heat dissolution time is preferably 4 to 12 hours.

本発明の液体消臭剤においては、第2鉄がFe23換算で7〜35wt%含有されることが必要であり、それは7wt%未満では鉄濃度が低すぎ硫化水素発生抑制効果が低下するためであり、35wt%を超えた場合には硝酸第2鉄の結晶が析出するためであるためである。なお、第2鉄の含有量についてはFe23換算で9〜20wt%含有されることが好ましい。 In the liquid deodorant of the present invention, it is necessary that ferric iron is contained in an amount of 7 to 35 wt% in terms of Fe 2 O 3 , and if it is less than 7 wt%, the iron concentration is too low and the effect of suppressing the generation of hydrogen sulfide is reduced. This is because, when it exceeds 35 wt%, ferric nitrate crystals are precipitated. It is preferable that the content of ferric contained 9~20Wt% in terms of Fe 2 O 3.

さらに、NO3/Feモル比は3.0から6.0の範囲内にあることが必要であり、それはNO3/Feモル比が3.0未満では、鉄の量が過剰で溶液が不安定となり、硝酸第2鉄の結晶が析出してしまうためであり、逆に6.0を超えた場合には、溶液中のNO3濃度が高くなってしまい、溶液の酸性度が強くなり過ぎるためである。
このモル比については、好ましくは3.5から5.5であることがよい。
Furthermore, the NO 3 / Fe molar ratio needs to be in the range of 3.0 to 6.0, which means that if the NO 3 / Fe molar ratio is less than 3.0, the amount of iron is excessive and the solution is incomplete. This is because crystals of ferric nitrate are precipitated, and when it exceeds 6.0, the concentration of NO 3 in the solution becomes high and the acidity of the solution becomes too strong. Because.
The molar ratio is preferably 3.5 to 5.5.

このモル比については、特許文献2に記載の液体消臭剤に比し高い値になっているが、水酸化第2鉄含有含水スラッジを硝酸で溶解する場合には、硫酸根の含有率が低い場合には、高い場合よりも溶解し難く、そのため短時間で効率的に溶解するには硝酸濃度が高く、使用量も増加することになる。
その結果、得られた液体消臭剤は、硝酸根の濃度が高く、NO3/Feモル比も高いものとなる。なお、前記したとおりであるから、特許文献2の製造方法に比し、溶解時の加熱温度が高くなり、溶解時間も長くなることは避けられない。
About this molar ratio, although it is a high value compared with the liquid deodorant of patent document 2, when melt | dissolving ferric hydroxide containing water-containing sludge with nitric acid, the content rate of a sulfate radical is When it is low, it is harder to dissolve than when it is high, so that the nitric acid concentration is high and the amount of use increases in order to efficiently dissolve in a short time.
As a result, the obtained liquid deodorant has a high nitrate radical concentration and a high NO 3 / Fe molar ratio. In addition, since it is as above-mentioned, compared with the manufacturing method of patent document 2, it is inevitable that the heating temperature at the time of melt | dissolution will become high and melt | dissolution time will also become long.

また、本発明の液体消臭剤においてはSO4濃度は1.6wt%以下であることが必要であり、これを超えた場合には、鉄原料である酸化第2鉄含有含水スラッジから液体消臭剤中に取り込まれたSO4が濃縮汚泥のように高い嫌気性雰囲気を形成する場合には、硫酸塩還元菌により還元されて硫化水素が生成し易くなり、その結果硫化水素発生抑制効果が低下してしまうためと考えている。 Further, in the liquid deodorant of the present invention, the SO 4 concentration needs to be 1.6 wt% or less, and if it exceeds this, the liquid deodorant is contained in the ferric oxide-containing water-containing sludge that is an iron raw material. When SO 4 incorporated in the odorant forms a highly anaerobic atmosphere like concentrated sludge, it is reduced by sulfate-reducing bacteria and hydrogen sulfide is likely to be produced. It is thought that it falls.

本発明では、鉄原料として廃棄物である鉄化合物含有酸性廃液を中和した際に発生する水酸化第2鉄含有含水スラッジを用いるものであり、本発明の液体消臭剤は、それを濃度20wt%以上の硝酸を用いて加熱溶解することにより製造されるものである。
その製造された消臭剤においては、その中に含有されるSO4が濃度1.6wt%以下であることが必要であり、0.8wt%以下であることが好ましいのであるが、このSO4 、すなわち硫酸根は、鉄原料である水酸化第2鉄含有含水スラッジから由来するものであり、製造された液体消臭剤中に残存するものである。
In the present invention, ferric hydroxide-containing hydrous sludge generated when neutralizing an iron compound-containing acidic waste liquid that is a waste as an iron raw material is used, and the liquid deodorant of the present invention has a concentration thereof. It is manufactured by heating and dissolving using 20 wt% or more nitric acid.
In that manufactured deodorant, SO 4 contained therein is required to be less concentration 1.6 wt%, although the preferably not more than 0.8 wt%, the SO 4 That is, the sulfate radical is derived from ferric hydroxide-containing water-containing sludge, which is an iron raw material, and remains in the manufactured liquid deodorant.

そのため、鉄原料である水酸化第2鉄含有含水スラッジ中のSO4濃度も自ずと制約され、溶解後得られる前記消臭剤中の硫酸根濃度が達成できる範囲内のものである。
すなわち、消臭剤中の硫酸根濃度を1.6wt%以下とするためには、前記スラッジ中の硫酸根濃度は、6.61wt%(乾燥ベースによる)であることが必要であり、消臭剤中の硫酸根濃度を0.8wt%以下とするためには、前記スラッジ中の硫酸根濃度は、3.96wt%(乾燥ベースによる)以下であることが必要である。
Therefore, the SO 4 concentration in the ferric hydroxide-containing water-containing sludge, which is an iron raw material, is naturally limited, and is within the range where the sulfate group concentration in the deodorant obtained after dissolution can be achieved.
That is, in order to make the sulfate group concentration in the deodorant 1.6 wt% or less, the sulfate group concentration in the sludge needs to be 6.61 wt% (based on the dry basis). In order to make the sulfate radical concentration in the agent 0.8 wt% or less, the sulfate radical concentration in the sludge needs to be 3.96 wt% (based on the dry base) or less.

そして、本発明の液体消臭剤は、前記したとおり第2鉄がFe23換算で7〜35wt%含有され、NO3/Feモル比が3.0から6.0で、かつSO4濃度が1.6wt%以下の水溶液であることが必要であり、それを製造するためには、水酸化第2鉄含有含水スラッジに、濃度20wt%以上の硝酸をNO3/Feモル比が3.0から6.0において混合し、温度60〜100℃で1〜12時間加熱溶解させることが必要である。 In the liquid deodorant of the present invention, as described above, ferric iron is contained in an amount of 7 to 35 wt% in terms of Fe 2 O 3 , the NO 3 / Fe molar ratio is 3.0 to 6.0, and SO 4 An aqueous solution having a concentration of 1.6 wt% or less is required, and in order to produce it, nitric acid having a concentration of 20 wt% or more is added to ferric hydroxide-containing water-containing sludge with a NO 3 / Fe molar ratio of 3 It is necessary to mix at 0.0 to 6.0 and dissolve by heating at a temperature of 60 to 100 ° C. for 1 to 12 hours.

本発明の液体消臭剤も、水酸化第2鉄含有含水スラッジを鉄原料とする点においては特許文献2の場合と共通するものであるが、本発明の液体消臭剤の製造方法で用いる水酸化第2鉄含有含水スラッジは、前記したとおり特許文献2で用いる水酸化第2鉄含有含水スラッジに比し、含有される硫酸根濃度が低いものである。
その結果、特許文献2に記載の製造方法に比し、硝酸により水酸化第2鉄含有含水スラッジの溶解する際の条件が厳しいものとなる。
The liquid deodorant of the present invention is also common to the case of Patent Document 2 in that ferric hydroxide-containing water-containing sludge is used as an iron raw material, but is used in the method for producing a liquid deodorant of the present invention. As described above, the ferric hydroxide-containing water-containing sludge has a lower sulfate group concentration than the ferric hydroxide-containing water-containing sludge used in Patent Document 2.
As a result, as compared with the production method described in Patent Document 2, the conditions for dissolving the ferric hydroxide-containing hydrous sludge with nitric acid become severe.

そのため、本発明の液体消臭剤の製造方法においては、使用する硝酸濃度は特許文献2の場合よりも高い方が好ましく、具体的には50%以上がよい。
また、加熱温度も同様に高い方が良く75℃以上が好ましい。さらに、溶解時間は硝酸濃度及び加熱温度が特許文献2と同様の場合には倍以上とするのがよく、具体的には4時間以上が好ましい。
Therefore, in the method for producing a liquid deodorant of the present invention, the concentration of nitric acid to be used is preferably higher than that in Patent Document 2, and specifically 50% or more is preferable.
Also, the heating temperature is preferably high and is preferably 75 ° C. or higher. Further, when the nitric acid concentration and the heating temperature are the same as in Patent Document 2, the dissolution time is preferably doubled or more, and specifically, 4 hours or more is preferable.

以下においては、本発明について実施例に基づいて詳述するが、本発明は、この実施例によって何等限定されるものではなく、特許請求の範囲によって特定されるものであることはいうまでもない。
その実施例については、実施例1として本発明の液体消臭剤の製造方法に関し複数の例を示し、また実施例2として製造された液体消臭剤を使用した消臭性能試験例を示す。
In the following, the present invention will be described in detail based on examples, but the present invention is not limited to these examples, and it is needless to say that the present invention is specified by the claims. .
About the Example, a several example regarding the manufacturing method of the liquid deodorant of this invention is shown as Example 1, and the deodorizing performance test example using the liquid deodorant manufactured as Example 2 is shown.

[製造例1]
鉄原料の水酸化第2鉄含有含水スラッジとしては、半導体材料の製造過程において排出されたものを使用した。
その成分をまず分析したところ、その結果は表1に示すとおりであり、それに含有されるFe23及びSO4の含有量は、いずれも乾燥ベースでそれぞれ75.4wt%及び2.10wt%であり、これ以外に水39wt%が含有されていた。
[Production Example 1]
As the ferric hydroxide-containing water-containing sludge of the iron raw material, the one discharged in the manufacturing process of the semiconductor material was used.
When the components were first analyzed, the results were as shown in Table 1. The contents of Fe 2 O 3 and SO 4 contained therein were 75.4 wt% and 2.10 wt%, respectively, on a dry basis. In addition, 39 wt% of water was contained.

Figure 0004813609
Figure 0004813609

この水酸化第2鉄含有含水スラッジ30gを、溶解時のNO3/Feモル比が3.0になるように濃度60wt%硝酸54gに十分に懸濁させた後、懸濁液の温度を80℃まで加熱し、同温度到達後、さらに4時間攪拌を続け、4時間経過後、溶解液を40℃以下まで冷却させた後、5C濾紙を用いて溶解残渣を固液分離した。 30 g of this ferric hydroxide-containing hydrous sludge was sufficiently suspended in 54 g of 60 wt% nitric acid so that the NO 3 / Fe molar ratio at the time of dissolution was 3.0, and then the temperature of the suspension was changed to 80 The mixture was heated to 0 ° C., and after reaching the same temperature, stirring was continued for 4 hours. After 4 hours, the dissolved solution was cooled to 40 ° C. or lower, and the dissolved residue was separated into solid and liquid using 5C filter paper.

その濾液については、その中に含まれるT−Fe濃度、NO3濃度およびSO4濃度を測定した。濾別した溶解残渣は、110℃にて乾燥させた後、その重量を測定し、原料スラッジの溶解率を算出した。それらの結果は、表2に示すとおりであり、濾液中のT−Fe濃度10.6wt%(Fe23換算濃度15.0wt%)、NO3濃度38.5%、NO3/Feモル比3.3、SO4濃度0.5%であった。また、原料スラッジの溶解率は76%であった。 The filtrate, T-Fe concentration contained therein was measured NO 3 concentration and SO 4 concentrations. The dissolution residue separated by filtration was dried at 110 ° C., and then its weight was measured to calculate the dissolution rate of the raw material sludge. These results are as shown in Table 2, T-Fe concentration 10.6Wt% in the filtrate (Fe 2 O 3 reduced concentration 15.0 wt%), NO 3 concentration 38.5%, NO 3 / Fe molar The ratio was 3.3 and the SO 4 concentration was 0.5%. The dissolution rate of the raw material sludge was 76%.

Figure 0004813609
Figure 0004813609

[製造例2]
製造例1と同じ水酸化第2鉄含有含水スラッジを用いて、溶解時のNO3/Feモル比が4.5になるように濃度60wt%硝酸量を82gに変更した以外は、製造例1と同一条件で溶解した。
その結果は、製造例1と同様に表2に示してあり、濾液中のT−Fe濃度9.6wt%(Fe23換算濃度13.7wt%)、NO3濃度43.8%、NO3/Feモル比4.1、SO4濃度0.5%であった。また、原料スラッジの溶解率は90%であった。
[Production Example 2]
Production Example 1 except that the same ferric hydroxide-containing hydrous sludge as in Production Example 1 was used and the concentration of 60 wt% nitric acid was changed to 82 g so that the NO 3 / Fe molar ratio during dissolution was 4.5. And dissolved under the same conditions.
The results are shown in Table 2 in the same manner as in Production Example 1. The T-Fe concentration in the filtrate was 9.6 wt% (Fe 2 O 3 equivalent concentration 13.7 wt%), the NO 3 concentration 43.8%, NO The 3 / Fe molar ratio was 4.1 and the SO 4 concentration was 0.5%. The dissolution rate of the raw material sludge was 90%.

[製造例3]
製造例1と同じ水酸化第2鉄含有含水スラッジを用いて、溶解時のNO3/Feモル比が6.0になるように濃度60wt%硝酸量を109gに変更した以外は、製造例1と同一条件で溶解した。
その結果は、製造例1、2と同様に表2に示してあり、濾液中のT−Fe濃度11.6wt%(Fe23換算濃度16.5wt%)、NO3濃度48.4%、NO3/Feモル比5.6、SO4濃度0.2%であった。また、原料スラッジの溶解率は94%であった。
[Production Example 3]
Production Example 1 except that the same ferric hydroxide-containing hydrous sludge as in Production Example 1 was used and the concentration of 60 wt% nitric acid was changed to 109 g so that the NO 3 / Fe molar ratio during dissolution was 6.0. And dissolved under the same conditions.
As a result, are shown in the same manner as in Examples 1 and 2 in Table 2, T-Fe concentration 11.6Wt% in the filtrate (Fe 2 O 3 reduced concentration 16.5 wt%), NO 3 concentration 48.4% The NO 3 / Fe molar ratio was 5.6, and the SO 4 concentration was 0.2%. The dissolution rate of the raw material sludge was 94%.

[製造例4]
鉄原料の水酸化第2鉄含有含水スラッジについては、現在までのところ製造例1ないし3において使用した半導体材料の製造過程において排出された硫酸含有量が比較的低いものと、特許文献2で使用した硫化鉄鉱山排水を中和沈殿する際に生成する硫酸根が高濃度で含有されているものの2種類しか入手できない。
そのため、これら両者の中間の硫酸根含有量を持つ液体消臭剤については、水酸化第2鉄含有含水スラッジから硝酸を用いて溶解することにより直接製造することはできない。
[Production Example 4]
The ferric hydroxide-containing hydrous sludge used as an iron raw material has a relatively low sulfuric acid content discharged in the production process of semiconductor materials used in Production Examples 1 to 3 so far, and is used in Patent Document 2. Only two types of sulfate radicals produced when neutralizing and precipitating iron sulfide mine wastewater are contained at high concentrations.
Therefore, a liquid deodorant having a sulfate group content intermediate between these two cannot be produced directly by dissolving with nitric acid from ferric hydroxide-containing water-containing sludge.

そこで、両者の中間の硫酸根を含有する液体消臭剤については、製造例1の水酸化第2鉄含有含水スラッジに硫酸を添加して硫酸根を増量し、それを硝酸で溶解して液体消臭剤を作製し、これを消臭性能試験に用いることとした。
すなわち、製造例1の水酸化第2鉄含有含水スラッジに硫酸を添加、混合し、乾燥して硫酸根濃度を増加させたものを液体消臭剤を製造する際の鉄原料とした。
Therefore, for a liquid deodorant containing a sulfate group intermediate between the two, sulfuric acid is added to the ferric hydroxide-containing water-containing sludge of Production Example 1 to increase the sulfate group, and this is dissolved in nitric acid to obtain a liquid. A deodorant was prepared and used for a deodorization performance test.
That is, sulfuric acid was added to the ferric hydroxide-containing hydrous sludge of Production Example 1, mixed and dried to increase the sulfate radical concentration, which was used as the iron raw material for producing the liquid deodorant.

その製造方法は具体的には以下のとおりである。すなわち、製造例1と同じ水酸化第2鉄含有含水スラッジ100gに98%硫酸2.54gを添加して十分に攪拌混合し、1晩静置乾燥させた。その成分を分析した結果は表3に示すとおりであり、それに含有されるFe23及びSO4の量は、いずれも乾燥ベースでそれぞれ75.6wt%及び3.96wt%であり、これ以外に水33.3wt%が含有されていた。 The production method is specifically as follows. That is, 2.54 g of 98% sulfuric acid was added to 100 g of ferric hydroxide-containing hydrous sludge as in Production Example 1, and the mixture was sufficiently stirred and mixed and allowed to stand overnight to dry. The results of analysis of the components are shown in Table 3, and the amounts of Fe 2 O 3 and SO 4 contained therein are 75.6 wt% and 3.96 wt% on a dry basis, respectively. Contained 33.3 wt% of water.

Figure 0004813609
Figure 0004813609

この水酸化第2鉄含有含水スラッジ30gを、溶解時のNO3/Feモル比が3.0になるように濃度60wt%硝酸54gに十分に懸濁させた後、懸濁液の温度を80℃まで加熱し、同温度到達後、さらに4時間攪拌を続け、4時間経過後、溶解液を40℃以下まで冷却させた後、5C濾紙を用いて溶解残渣を固液分離した。
その結果は、製造例1ないし3と合わせて表2に示しており、濾液中のT−Fe濃度10.7wt%(Fe23換算濃度15.3wt%)、NO3濃度39.8%、NO3/Feモル比3.4、SO4濃度0.8%であった。
30 g of this ferric hydroxide-containing hydrous sludge was sufficiently suspended in 54 g of 60 wt% nitric acid so that the NO 3 / Fe molar ratio at the time of dissolution was 3.0, and then the temperature of the suspension was changed to 80 The mixture was heated to 0 ° C., and after reaching the same temperature, stirring was continued for 4 hours. After 4 hours, the dissolved solution was cooled to 40 ° C. or lower, and the dissolved residue was separated into solid and liquid using 5C filter paper.
The results are shown in Table 2 together with Production Examples 1 to 3, and the T-Fe concentration in the filtrate is 10.7 wt% (Fe 2 O 3 equivalent concentration is 15.3 wt%), and the NO 3 concentration is 39.8%. The NO 3 / Fe molar ratio was 3.4 and the SO 4 concentration was 0.8%.

[製造例5]
この製造例は製造例4と同様に液体消臭剤を製造した。すなわち製造例4と同じ水酸化第2鉄含有含水スラッジ100gに98%硫酸7.54gを添加して十分に攪拌混合し、1晩静置乾燥させた。その成分を分析したところ表3に示すとおりであり、それに含有されるFe23及びSO4の量は、いずれも乾燥ベースでそれぞれ74.4wt%及び6.61wt%であり、これ以外に水32.5wt%が含有されていた。
[Production Example 5]
In this production example, a liquid deodorant was produced in the same manner as in Production Example 4. That is, 7.54 g of 98% sulfuric acid was added to 100 g of the ferric hydroxide-containing hydrous sludge as in Production Example 4, and the mixture was sufficiently stirred and mixed and allowed to stand overnight to dry. The components were analyzed as shown in Table 3, and the amounts of Fe 2 O 3 and SO 4 contained therein were 74.4 wt% and 6.61 wt% on a dry basis, respectively. 32.5 wt% of water was contained.

この水酸化第2鉄含有含水スラッジ30gを、溶解時のNO3/Feモル比が3.0になるように濃度60wt%硝酸54gに十分に懸濁させた後、懸濁液の温度を80℃まで加熱し、同温度到達後、さらに4時間攪拌を続け、4時間経過後、溶解液を40℃以下まで冷却させた後、5C濾紙を用いて溶解残渣を固液分離した。
その結果は、濾液中のT−Fe濃度11.0wt%(Fe23換算濃度15.7wt%)、NO3濃度40.2%、NO3/Feモル比3.3、SO4濃度1.6%であった。
30 g of this ferric hydroxide-containing hydrous sludge was sufficiently suspended in 54 g of 60 wt% nitric acid so that the NO 3 / Fe molar ratio at the time of dissolution was 3.0, and then the temperature of the suspension was changed to 80 The mixture was heated to 0 ° C., and after reaching the same temperature, stirring was continued for 4 hours. After 4 hours, the dissolved solution was cooled to 40 ° C. or lower, and the dissolved residue was separated into solid and liquid using 5C filter paper.
As a result, the T-Fe concentration in the filtrate was 11.0 wt% (Fe 2 O 3 equivalent concentration 15.7 wt%), the NO 3 concentration 40.2%, the NO 3 / Fe molar ratio 3.3, the SO 4 concentration 1 It was 6%.

[製造例に関する考察]
製造例1ないし3を対比すると、加熱溶解時の硝酸の使用量が多いほど水酸化第2鉄含有含水スラッジの溶解量が増加することがわかる。
すなわち、水酸化第2鉄含有含水スラッジの同一量(30g)に対し、硝酸の使用量は製造例1では54g、製造例2では82g、製造例3では109gであり、その使用量の増加と共に前記スラッジの溶解量も、76%、90%及び94%と増加しており、該スラッジ中の鉄分が液体消臭剤として有功に活用されることがわかる。
[Considerations on Manufacturing Examples]
Comparing Production Examples 1 to 3, it can be seen that the amount of ferric hydroxide-containing water-containing sludge increases as the amount of nitric acid used during heating and dissolution increases.
That is, the amount of nitric acid used is 54 g in Production Example 1, 82 g in Production Example 2, and 109 g in Production Example 3 with respect to the same amount (30 g) of ferric hydroxide-containing hydrous sludge. The dissolution amount of the sludge also increased to 76%, 90% and 94%, and it can be seen that the iron content in the sludge is effectively utilized as a liquid deodorant.

この実施例では、前記したとおり実施例1で製造した液体消臭剤を使用して消臭性能試験を行う例を示す。この消臭性能試験では、製造例3、4及び5の液体消臭剤、並びに特許文献2に記載の消臭剤及び市販の硝酸第2鉄溶液を用いた消臭剤(以下、参考例という)を用いた。すなわち、硫酸根含有量が0%、0.2%、0.8%、1.6%及び2.4%の消臭剤を用いた。なお、比較のために消臭剤無添加(ブランク)の場合についても消臭性能試験を行った。   In this example, an example in which a deodorizing performance test is performed using the liquid deodorant produced in Example 1 as described above is shown. In this deodorization performance test, the liquid deodorizers of Production Examples 3, 4, and 5, and the deodorizer described in Patent Document 2 and a commercially available ferric nitrate solution (hereinafter referred to as a reference example). ) Was used. That is, deodorizers having a sulfate radical content of 0%, 0.2%, 0.8%, 1.6%, and 2.4% were used. In addition, the deodorant performance test was done also about the case of no deodorant addition (blank) for the comparison.

なお、市販の硝酸第2鉄溶液を用いた消臭剤は、硫酸根含有量が0%の場合の消臭剤を使用した場合の消臭性能結果を得るためであり、そのために、株式会社十条合成化学研究所から市販されている硝酸第2鉄溶液を使用し、その成分を分析して硫酸根の含有量はゼロであることを確認した。
また、T−Fe濃度9.5wt(Fe23換算濃度13.5wt%)、%、NO3濃度31.8%、NO3/Feモル比3.0であることも分析して確認した。
In addition, the deodorant using a commercially available ferric nitrate solution is for obtaining a deodorization performance result when using a deodorant when the sulfate group content is 0%. Using a ferric nitrate solution commercially available from Jujo Synthetic Chemical Laboratory, the components were analyzed to confirm that the sulfate group content was zero.
It was also analyzed and confirmed that the T-Fe concentration was 9.5 wt (Fe 2 O 3 equivalent concentration 13.5 wt%),%, the NO 3 concentration 31.8%, and the NO 3 / Fe molar ratio 3.0. .

この消臭性能試験は、地方自治体から提供された汚泥を10日間屋外に放置し、その後消臭性能試験を行ったが、このようにしたのは、放置することにより汚泥の腐敗が促進されて硫化水素が発生し易くなり、その結果として硫酸根濃度の差異に基づく液体消臭剤の消臭性能の差異がより明確になると考えられるからである。
その消臭性能試験方法に関し、以下において具体的に示す。
In this deodorization performance test, the sludge provided by the local government was left outdoors for 10 days, after which the deodorization performance test was conducted. This is because hydrogen sulfide is likely to be generated, and as a result, the difference in the deodorizing performance of the liquid deodorant based on the difference in sulfate group concentration is considered to be clearer.
The deodorizing performance test method will be specifically described below.

各硫酸根濃度の液体消臭剤の数及び測定回数に対応する500mLのポリ瓶を用意し、それぞれのポリ瓶に汚泥200mLを採取し、各ポリ瓶に各硫酸根濃度の液体消臭剤を添加量が5000ppmとなるようにそれぞれ個別に添加した。
液体消臭剤を添加した後ポリ瓶を密閉し、静置した。そして添加直後、6時間静置後及び24時間静置後に各ポリ瓶を1分間振とうし、それぞれガス検知管にてポリ瓶中の硫化水素濃度を測定した。
Prepare 500 mL plastic bottles corresponding to the number of liquid deodorants at each sulfate concentration and the number of measurements, collect 200 mL of sludge in each plastic bottle, and add liquid deodorants at each sulfate concentration to each plastic bottle. Each was added individually so that the addition amount was 5000 ppm.
After adding the liquid deodorant, the plastic bottle was sealed and allowed to stand. Then, immediately after the addition, after standing for 6 hours and after standing for 24 hours, each bottle was shaken for 1 minute, and the hydrogen sulfide concentration in each bottle was measured with a gas detector tube.

その性能試験結果は表4に示すとおりであり、液体消臭剤無添加(ブランク)の場合には、0〜24時間経過後の間に大きな変化はなく、いずれの場合も1100ppmを超えている。
それに対して、本発明の液体消臭剤を用いた場合には、ブランクの場合に比し、硫化水素発生量が極端に低減していることがわかる。すなわち、本発明の液体消臭剤を用いた場合には添加直後に半減し、24時間経過後には1/10前後に低下することがわかる。
The performance test results are as shown in Table 4. In the case of no addition of a liquid deodorant (blank), there is no significant change after the lapse of 0 to 24 hours, and in any case it exceeds 1100 ppm. .
On the other hand, when the liquid deodorant of this invention is used, it turns out that the amount of hydrogen sulfide generation is reducing extremely compared with the case of a blank. That is, it can be seen that when the liquid deodorant of the present invention is used, it is halved immediately after the addition and decreases to about 1/10 after 24 hours.

Figure 0004813609
Figure 0004813609

さらに、具体的に言及するに、24時間経過後における硫化水素発生量をみると、硫酸根濃度0.2%の液体消臭剤の場合には95pm、0.8%の場合には110ppm、1.6%の場合には150ppmとなっており、このことから液体消臭剤中の硫酸根濃度が低いほど消臭性能に優れることがわかる。
なお、硫酸根ゼロの場合は、硫酸根の含有されていない市販の硝酸鉄を使用しており、水酸化第2鉄含有含水スラッジを鉄原料として製造したものではないので、本発明には該当せず参考例ではあるが、この場合には、消臭性能が最もよく、硫化水素発生量は添加直後であっても500ppmで、24時間経過後には50ppmまで低下することがわかる。
Furthermore, specifically, when the amount of hydrogen sulfide generated after 24 hours has elapsed, it is 95 pm in the case of a liquid deodorant having a sulfate radical concentration of 0.2%, 110 ppm in the case of 0.8%, In the case of 1.6%, it is 150 ppm. From this, it can be seen that the lower the sulfate group concentration in the liquid deodorant, the better the deodorizing performance.
In the case of zero sulfate radical, commercially available iron nitrate containing no sulfate radical is used, and ferric hydroxide-containing hydrous sludge is not produced as an iron raw material. Although it is a reference example, in this case, the deodorization performance is the best, and it can be seen that the hydrogen sulfide generation amount is 500 ppm even immediately after the addition, and it is reduced to 50 ppm after 24 hours.

そして、硫酸根含有量2.4%の消臭剤は、特許文献2に記載の硫酸根を13.9wt%(乾燥ベース)含有する水酸化第2鉄含有含水中和スラッジを鉄原料として製造されたものであり、本発明に該当するものではない。
それは本発明の液体消臭剤と対比するために表4中に記載してはいるものの、あくまでも比較例であり、本発明の液体消臭剤は、いずれの硫酸根濃度の場合においても前記特許文献2に記載の消臭剤よりも消臭性能が優れており、そのことがこの性能試験結果からも明白である。
A deodorizer with a sulfate radical content of 2.4% is produced using ferric hydroxide-containing water-containing neutralized sludge containing 13.9 wt% (dry basis) of the sulfate radical described in Patent Document 2 as an iron raw material. However, the present invention does not fall under the scope of the present invention.
Although it is described in Table 4 for comparison with the liquid deodorant of the present invention, it is only a comparative example, and the liquid deodorant of the present invention is the above-mentioned patent at any sulfate group concentration. The deodorizing performance is superior to the deodorizing agent described in Document 2, and this is evident from the performance test results.

本発明の液体消臭剤は、水酸化第2鉄含有含水中和スラッジを鉄原料として使用するも
のであるから、廃棄物の低減に貢献し、それを有効活用するものである。
また、汚泥貯槽等の高濃度の硫化水素を発生する、下水、排水処理施設あるいはそれらの付帯施設において、硫化水素の発生抑制あるいは低減に大いに有効なもので、活用することができる。
Since the liquid deodorizer of the present invention uses ferric hydroxide-containing water-containing neutralized sludge as an iron raw material, it contributes to the reduction of waste and effectively utilizes it.
In addition, in sewage and wastewater treatment facilities that generate high-concentration hydrogen sulfide, such as sludge storage tanks, or their ancillary facilities, they are extremely effective for suppressing or reducing the generation of hydrogen sulfide and can be utilized.

Claims (4)

鉄化合物含有酸性廃液を中和した際に発生する水酸化第2鉄含有含水スラッジを原料として製造される液体消臭剤であって、第2鉄がFe23換算で7〜35wt%含有され、NO3/Feモル比が3.0から6.0の範囲内にあり、かつSO4濃度が1.6wt%以下の水溶液であることを特徴とする硫化水素の発生による悪臭を抑制する液体消臭剤。 Ferric-containing aqueous sludge hydroxide generated when neutralized iron compound-containing acidic waste liquid a liquid deodorant which is produced as a raw material, a second iron 7~35Wt% content in terms of Fe 2 O 3 And a malodor caused by the generation of hydrogen sulfide, wherein the NO 3 / Fe molar ratio is in the range of 3.0 to 6.0 and the SO 4 concentration is 1.6 wt% or less. Liquid deodorant. 第2鉄がFe23換算で9〜20wt%、NO3/Feモル比が3.5からの範囲にあり、かつSO4濃度が0.8wt%以下である請求項1に記載の硫化水素の発生による悪臭を抑制する液体消臭剤。 9~20Wt% second iron calculated as Fe 2 O 3, is in the range from NO 3 / Fe molar ratio is 3.5, and sulfide of claim 1 SO 4 concentration is less 0.8 wt% Liquid deodorant that suppresses bad odor caused by hydrogen generation . 鉄化合物含有酸性廃液を中和した際に発生する水酸化第2鉄含有含水スラッジに、濃度20wt%以上の硝酸をNO3/Feのモル比が3.0から6.0において混合し、温度60〜100℃で1〜12時間加熱溶解させることを特徴する請求項1に記載の硫化水素の発生による悪臭を抑制する液体消臭剤の製造方法。 Nitric acid having a concentration of 20 wt% or more is mixed with ferric hydroxide-containing water-containing sludge generated when neutralizing the iron compound-containing acidic waste liquid at a NO 3 / Fe molar ratio of 3.0 to 6.0, and the temperature The method for producing a liquid deodorant for suppressing malodor caused by the generation of hydrogen sulfide according to claim 1, wherein the solution is dissolved by heating at 60 to 100 ° C for 1 to 12 hours. 鉄化合物含有酸性廃液を中和した際に発生する水酸化第2鉄含有含水スラッジに、濃度50wt%以上の硝酸をNO3/Feのモル比が3.5から5.5において混合し、温度75〜100℃で4〜12時間加熱溶解させることを特徴する請求項3に記載の硫化水素の発生による悪臭を抑制する液体消臭剤の製造方法。 Nitric acid with a concentration of 50 wt% or more is mixed with ferric hydroxide-containing water-containing sludge generated when neutralizing the iron compound-containing acidic waste liquid at a NO 3 / Fe molar ratio of 3.5 to 5.5, and the temperature The method for producing a liquid deodorant for suppressing malodor caused by generation of hydrogen sulfide according to claim 3, wherein the dissolution is performed by heating at 75 to 100 ° C for 4 to 12 hours.
JP2010081298A 2010-03-31 2010-03-31 Deodorant using ferric hydroxide-containing water-containing neutralized sludge as production raw material and method for producing the same Active JP4813609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081298A JP4813609B2 (en) 2010-03-31 2010-03-31 Deodorant using ferric hydroxide-containing water-containing neutralized sludge as production raw material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081298A JP4813609B2 (en) 2010-03-31 2010-03-31 Deodorant using ferric hydroxide-containing water-containing neutralized sludge as production raw material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011212537A JP2011212537A (en) 2011-10-27
JP4813609B2 true JP4813609B2 (en) 2011-11-09

Family

ID=44942859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081298A Active JP4813609B2 (en) 2010-03-31 2010-03-31 Deodorant using ferric hydroxide-containing water-containing neutralized sludge as production raw material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4813609B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158262B2 (en) * 2015-09-01 2017-07-05 日鉄鉱業株式会社 Iron-based wastewater treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254214A (en) * 1988-04-05 1989-10-11 Nittetsu Mining Co Ltd Production of flocculating agent having deodorization function
JPH04346832A (en) * 1991-05-27 1992-12-02 Nippon Steel Corp Production of air-purifying material
JP4098584B2 (en) * 2002-08-27 2008-06-11 日鉄鉱業株式会社 Liquid deodorant, method for producing the same, and method for deodorizing wastewater pipelines

Also Published As

Publication number Publication date
JP2011212537A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
Westerhoff et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from US wastewater treatment plants nationwide
Wu et al. Role of sulfide-modified nanoscale zero-valent iron on carbon nanotubes in nonradical activation of peroxydisulfate
Zeng et al. Degradation of sulfamethoxazole using peroxymonosulfate activated by self-sacrificed synthesized CoAl-LDH@ CoFe-PBA nanosheet: Reactive oxygen species generation routes at acidic and alkaline pH
Lu et al. Removal of trace mercury (II) from aqueous solution by in situ formed Mn–Fe (hydr) oxides
Dewil et al. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content
CN102912366A (en) Ferrous sulfide passivation cleaning agent and preparation method and application thereof
Edwards et al. Removal of hydrogen sulphide from water
CN105036290A (en) Method for degrading smelly substance in water through oxidizing agent activated by ferrous iron
Zhu et al. Addition of MnO2 in synthesis of nano-rod erdite promoted tetracycline adsorption
Chagas et al. Use of an environmental pollutant from hexavalent chromium removal as a green catalyst in the Fenton process
Shami et al. Adsorptive removal of surfactant using dolochar: A kinetic and statistical modeling approach
Yin et al. Simultaneous removal of hydrogen sulfide, phosphate and emerging organic contaminants, and improvement of sludge dewaterability by oxidant dosing in sulfide-iron-laden sludge
CN105903339A (en) Potassium ferrate aqueous solution, and preparation method and application thereof
Yang et al. Effects of reductive inorganics and NOM on the formation of chlorite in the chlorine dioxide disinfection of drinking water
Gong et al. A two-step process coupling photocatalysis with adsorption to treat tetracycline-Copper (II) hybrid wastewaters
Vinayagam et al. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review
Liu et al. Ultrafast advanced treatment of chromium complex-containing wastewater using Co/Fe layered double hydroxide
JP4813609B2 (en) Deodorant using ferric hydroxide-containing water-containing neutralized sludge as production raw material and method for producing the same
Boudiombo et al. State of the art and prospects of zeolites and metal organic frameworks (MOFs) for nitrogen and phosphorus removal in dairy wastewater
JP2008264627A (en) Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like
KR101258092B1 (en) Deodorant agent
JP4098584B2 (en) Liquid deodorant, method for producing the same, and method for deodorizing wastewater pipelines
Abdel Halim Fate of natural organic matter and formation of disinfection by-products in a conventional water treatment plant
EP2170772A1 (en) Titanium coagulant for natural and waste water purification and disinfection, safe method for producing thereof, and method for utilizing thereof
KR101534263B1 (en) The production and application method of alkalic agent from carbon dioxide generated from sewage and wastewater treatment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4813609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250