JP4812924B2 - Sealed separator for sealed lead-acid battery - Google Patents

Sealed separator for sealed lead-acid battery Download PDF

Info

Publication number
JP4812924B2
JP4812924B2 JP2000187014A JP2000187014A JP4812924B2 JP 4812924 B2 JP4812924 B2 JP 4812924B2 JP 2000187014 A JP2000187014 A JP 2000187014A JP 2000187014 A JP2000187014 A JP 2000187014A JP 4812924 B2 JP4812924 B2 JP 4812924B2
Authority
JP
Japan
Prior art keywords
separator
mass
sealed lead
strength
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000187014A
Other languages
Japanese (ja)
Other versions
JP2002008621A (en
Inventor
拓生 三谷
芳信 柿崎
春二 井本
正浩 川地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2000187014A priority Critical patent/JP4812924B2/en
Publication of JP2002008621A publication Critical patent/JP2002008621A/en
Application granted granted Critical
Publication of JP4812924B2 publication Critical patent/JP4812924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型鉛蓄電池用セパレータに関する。
【0002】
【従来の技術】
従来、この種の密閉型鉛蓄電池用セパレータとして、例えば、特開平11−250889号に開示されるように、芯鞘複合繊維を用いた密度が0.35〜0.45g/cmとしたセパレータや、特開平11−16560号に開示されるように、モノフィラメント及びパルプ状有機繊維を使用したセパレータで、圧縮破断強度および突刺強度を向上させたもの等が知られている。
【0003】
【発明が解決をしようとする課題】
しかしながら、前記特開平11−250889号に開示のものは、密度を0.35〜0.45g/cmとしたセパレータであるため、過剰な電解液が存在する液式鉛蓄電池には使用できるが、高密度のため電解液に制約を受ける密閉型鉛蓄電池には不向きである。
また、最近、電池特性を向上させるためにセパレータと極板の薄肉化が進んでおり、しかも、極板との密着性をよくするため、電池組み立て時のセパレータへの加圧力を高くしているのが現状である。従って、従来のセパレータでは、強度が弱いため、電池の組立速度の制約を受けたり、セパレータの折り曲げ部分の破れや極板のエッジによる破断等の弊害が多く発生するという問題が生じている。特に、前述の厚さの薄いセパレータでは影響が大きいものであった。また、組み立てたとしても電解液を充填すると強度はより一層弱くなり、組み立て効率の低下、初期短絡等の問題が発生する。特に、折り曲げ部では電解液充填後に乾紙強度を維持できず、電池寿命が短くなる問題が発生する。
また、特開平11−16560号に開示のものは、モノフィラメントとパルプ状有機繊維を使用したセパレータであるため、圧縮破断強度および突刺強度を向上させたものであるが、セパレータ折り曲げ部の強度が弱いという不都合を有するものである。
そこで、本発明は、低密度により電解液保持量を十分確保でき、かつ、乾紙と湿紙間、或いは、折り曲げ部と他の部分間の破裂強度に差を設けないようにして、セパレータの強度低下が少なく、セパレータ折り曲げ部の極板による破れを防ぎ、電解液充填後も強度低下を起こさず、極板の膨張および変形による破れに耐えられ、所望により、袋加工も可能な密閉型鉛蓄電池用セパレータを提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明の密閉型鉛蓄電池用セパレータは、前記目的を達成するべく、請求項1記載の通り、芯鞘構造の熱融着繊維が2〜50質量%、無機粉体が0〜35質量%、ガラス繊維が15〜98質量%で構成されており、密度が0.15〜0.25g/cm であり、折り曲げ部の湿紙の破裂強度が乾紙の破裂強度に対して、強度低下率が40%以下であることを特徴とする。
このように、熱融着繊維によりセパレータ内の繊維同士を接着、固定化させて折り曲げ部の破裂強度低下率が乾紙に対して、40%以下とする構成により、電池組み立て時のセパレータ折り曲げ部の極板による破れや電解液充填後の強度低下を起こさないようにしたものである
のように、密閉型鉛蓄電池に必要とされる電解液を保持するため、熱融着繊維、ガラス繊維、必要に応じてさらに無機粉体で構成し、電池寿命に影響する耐酸性および耐酸化性を考慮して熱融着繊維量を2〜50質量%とするものである。また、熱融着繊維の繊維径は約0.5〜3.3dtex(デシテックス)、即ち、約5〜50μmであり、ガラス繊維の繊維径は約0.6〜4μmであることから、熱融着繊維の配合により孔径が大きくなるため、セパレータの空間を埋める無機粉体量を0〜35質量%とし、密度を0.15〜0.25g/cmとしたものである。
また、請求項2記載の密閉型鉛蓄電池用セパレータは、請求項1記載の密閉型鉛蓄電池用セパレータにおいて、前記熱融着繊維が30質量%以上で構成されることを特徴とする。
また、請求項3記載の密閉型鉛蓄電池用セパレータは、請求項1または2記載の密閉型鉛蓄電池用セパレータにおいて、熱融着繊維とガラス繊維、或いは、更に、無機粉体とで構成された材料を抄造後、加圧乾燥またはキュアー後にプレスすることで得られることを特徴とする。
【0005】
【発明の実施の形態】
本発明の密閉型鉛蓄電池用セパレータは、セパレータ折り曲げ部の電池組み立て時の極板による破れや電解液充填後の強度低下を起こさないように、熱融着繊維によりセパレータ内の繊維同士を接着、固定化させることで、折り曲げ部の湿紙の破裂強度が乾紙の破裂強度に対して、強度低下率を40%以下とするように構成したものである。
【0006】
また、本発明の密閉型鉛蓄電池用セパレータは、密閉型鉛蓄電池に必要とされる電解液を保持し、セパレータ折り曲げ部の強度低下を防ぐため、熱融着繊維とガラス繊維、必要に応じて、更に無機粉体とで構成され、その中でもセパレータ内の熱融着繊維量を、電池寿命に影響する耐酸性および耐酸化性を考慮し2〜50質量%とし、無機粉体量をセパレータの空間を埋め密度を高くなることを考慮し0〜35質量%とし、密度を0.15〜0.25g/cmとしたものである。
【0007】
また、単純に熱融着繊維を配合し乾燥させただけでは熱融着繊維の特徴とする表面溶融による繊維同士接着の強度向上効果が得られないので、本発明の密閉型鉛蓄電池用セパレータでは、熱融着繊維による強度向上効果をより出すため、ガラス繊維、熱融着繊維、必要に応じ、更に無機粉体とで構成された材料を抄造後、加圧乾燥またはキュアー後にプレスすることで、折り曲げ部の湿紙の破裂強度が乾紙の破裂強度に対して、強度低下率を40%以下とする構成にすることができるものである。
【0008】
また、本発明の密閉型鉛蓄電池用セパレータでは、熱融着繊維量を2〜50質量%使用することで、従来から液式鉛蓄電池に使用されているポリエチレンセパレータ(ポリエチレン樹脂と無機粉体から構成された溶融押出方式でつくられたセパレータ)と同様に袋加工が可能となる。
【0009】
また、本発明の密閉型鉛蓄電池用セパレータでは、電池寿命をより長くするため、熱融着繊維として平均繊維径0.5〜2.5dtex(デシテックス)、繊維長3〜5mmのものの使用が好ましい。材質は有機繊維の中でも耐酸性および耐酸化性に優れたポリプロピレン−ポリエチレン、ポリエステル−ポリエチレン、ポリエステル−ポリエステルの芯鞘構造で構成されたものの使用が好ましい。尚、表面部の融点が200℃以上のものも存在するが、セパレータ製造の容易さおよび価格の点から表面部の融点が110、130、150、180℃程度のものの使用でも構わない。
【0010】
無機粉体としては、材質はシリカで、平均粒子径が5〜11μm程度のものの使用が好ましい。
【0011】
また、ガラス繊維としては、組成はCガラスで、平均繊維径が約0.5〜4μmのものの使用が好ましい。
【0012】
【実施例】
次ぎに、本発明の密閉型鉛蓄電池用セパレータの実施例を比較例と共に説明する。
(実施例1)
平均繊維径0.6μmのCガラス組成のガラス繊維15質量%、平均繊維径2.2dtex(デシテックス)、平均繊維長5mmのポリエステル−ポリエステルの芯鞘構造の熱融着繊維50質量%、材質がシリカで平均粒子径6〜10μmの無機粉体35質量%を中性抄造にて抄紙して、厚さ1.00mm、密度0.25g/cmの密閉型鉛蓄電池用セパレータを得た。
【0013】
(実施例2)
平均繊維径0.6μmのCガラス組成のガラス繊維55質量%、平均繊維径2.2dtex(デシテックス)、平均繊維長5mmのポリエステル−ポリエステルの芯鞘構造の熱融着繊維30質量%、材質がシリカで平均粒子径6〜10μmの無機粉体15質量%を中性抄造にて抄紙して、厚さ1.02mm、密度0.22g/cmの密閉型鉛蓄電池用セパレータを得た。
【0014】
(実施例3)
平均繊維径0.6μmのCガラス組成のガラス繊維97質量%、平均繊維径2.2dtex(デシテックス)、平均繊維長5mmのポリエステル−ポリエステルの芯鞘構造の熱融着繊維3質量%を中性抄造にて抄紙して、厚さ1.01mm、密度0.15g/cmの密閉型鉛蓄電池用セパレータを得た。
【0015】
(実施例4)
平均繊維径0.6μmのCガラス組成のガラス繊維98質量%、平均繊維径2.2dtex(デシテックス)、平均繊維長5mmのポリエステル−ポリエステルの芯鞘構造の熱融着繊維2質量%を中性抄造にて抄紙して、厚さ1.00mm、密度0.15g/cmの密閉型鉛蓄電池用セパレータを得た。
【0016】
(実施例5)
平均繊維径0.6μmのCガラス組成のガラス繊維98質量%、平均繊維径2.2dtex(デシテックス)、平均繊維長5mmのポリエステル−ポリエステルの芯鞘構造の熱融着繊維2質量%を中性抄造にて抄紙し、加熱プレスすることで、厚さ1.00mm、密度0.15g/cmの密閉型鉛蓄電池用セパレータを得た。
【0017】
(比較例1)
平均繊維径0.6μmのCガラス組成のガラス繊維99質量%、平均繊維径2.2dtex(デシテックス)、平均繊維長5mmのポリエステル−ポリエステルの芯鞘構造の熱融着繊維1質量%を中性抄造にて抄紙して、厚さ1.00mm、密度0.14g/cmの密閉型鉛蓄電池用セパレータを得た。
【0018】
(比較例2)
平均繊維径0.6μmのCガラス組成のガラス繊維100質量%を中性抄造にて抄紙して、厚さ1.02mm、密度0.14g/cmの密閉型鉛蓄電池用セパレータを得た。
【0019】
(比較例3)
平均繊維径0.6μmのCガラス組成のガラス繊維70質量%、平均繊維径1.7dtex(デシテックス)、平均繊維長5mmの材質がポリエステルのモノフィラメント繊維15質量%、濾水度3.5sec/g、平均繊維長1mmの材質がポリエチレンのパルプ状繊維15質量%を中性抄造にて抄紙して、厚さ1.03mm、密度0.18g/cmの密閉型鉛蓄電池用セパレータを得た。
【0020】
次に、前記実施例1〜5および比較例1〜3の各セパレータの特性試験を行い、その結果を表1に示した。
【0021】
【表1】

Figure 0004812924
【0022】
尚、表1中の強度低下率については、次ぎのような値を示すものとした。
強度低下率(%)=(乾紙折り曲げ部破裂強度―湿紙折り曲げ部破裂強度)/(乾紙折り曲げ部破裂強度)×100
【0023】
尚、前記破裂強度はJIS P 8134に準じて測定を行った。また、乾紙は乾燥させた試料を、湿紙は試料を純水に1分間浸漬させ表面の純水を軽くふき取ったもの、さらにこれらの試料を折り曲げたものを折り曲げ部の試料とした。
【0024】
前記表1から明らかなように、実施例1乃至5のように熱融着繊維を2質量%以上配合することでセパレータ折り曲げ部の強度低下を防止することができる。さらに、実施例4、5のように、プレス無しでは8N・cmでもプレス有りにより10N・cmと強度を向上させることができることが確認できた。また、セパレータの袋加工が可能であった。
【0025】
【発明の効果】
以上、説明した通り、本発明によれば、次のような効果が得られる。
1)セパレータ折り曲げ部の破裂強度の湿紙時の低下を抑制することで、極板の膨張および変形による破れに耐えられ、電解液充填後も強度低下を起こさない。
2)熱融着繊維を使用することで袋加工可能であり、様々な使用電池に対応できる。
3)プレスにより低密度セパレータであっても、セパレータ折り曲げ部の湿紙時の破裂強度を確保できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed lead-acid battery separator.
[0002]
[Prior art]
Conventionally, as this type of sealed lead-acid battery separator, for example, as disclosed in JP-A-11-250889, a separator using a core-sheath composite fiber having a density of 0.35 to 0.45 g / cm 3 is used. In addition, as disclosed in JP-A-11-16560, a separator using monofilaments and pulp-like organic fibers, which has improved compression rupture strength and puncture strength, is known.
[0003]
[Problems to be solved by the invention]
However, since the separator disclosed in Japanese Patent Laid-Open No. 11-250889 is a separator having a density of 0.35 to 0.45 g / cm 3 , it can be used for a liquid type lead storage battery in which an excess electrolyte exists. Because of its high density, it is not suitable for sealed lead-acid batteries that are restricted by the electrolyte.
Recently, in order to improve battery characteristics, the separator and the electrode plate have been made thinner, and in order to improve the adhesion between the electrode plate, the pressure applied to the separator during battery assembly is increased. is the current situation. Therefore, the conventional separator has a problem that the strength of the conventional separator is so weak that there are many problems such as restrictions on the battery assembly speed, breakage of the bent portion of the separator, and breakage due to the edge of the electrode plate. In particular, the above-described thin separator has a great influence. Moreover, even if it is assembled, when the electrolyte is filled, the strength is further weakened, and problems such as a decrease in assembly efficiency and an initial short circuit occur. In particular, in the bent portion, the dry paper strength cannot be maintained after the electrolytic solution is filled, and the battery life is shortened.
Moreover, since what is disclosed in Japanese Patent Application Laid-Open No. 11-16560 is a separator using monofilaments and pulp-like organic fibers, it has improved compression rupture strength and puncture strength, but the strength of the separator folding portion is weak. It has the inconvenience.
Therefore, the present invention can secure a sufficient amount of electrolyte solution due to the low density, and does not provide a difference in the burst strength between the dry paper and the wet paper, or between the bent portion and other portions, Sealed lead that has little strength reduction, prevents breakage due to the electrode plate at the separator folding part, does not cause strength reduction even after filling with electrolyte, can withstand breakage due to expansion and deformation of the electrode plate, and can be bagged if desired It aims at providing the separator for storage batteries.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the sealed lead-acid battery separator of the present invention has a core-sheath heat-sealing fiber of 2 to 50% by mass, an inorganic powder of 0 to 35% by mass, as described in claim 1 . The glass fiber is composed of 15 to 98% by mass, the density is 0.15 to 0.25 g / cm 3 , and the burst strength of the wet paper at the bent portion is lower than the burst strength of the dry paper. Is 40% or less.
In this way, the separator bent portion at the time of assembling the battery is configured by bonding and fixing the fibers in the separator with the heat-sealing fiber so that the burst strength reduction rate of the bent portion is 40% or less with respect to dry paper. The electrode plate is not torn and the strength is not lowered after the electrolyte is filled .
As this, for holding the electrolyte solution required for sealed lead-acid battery, heat fusion fibers, glass fibers, requires further an inorganic powder, if, acid resistance of a battery life and acid The amount of heat-fusible fiber is set to 2 to 50% by mass in consideration of chemical properties. The fiber diameter of the heat-sealing fiber is about 0.5 to 3.3 dtex (decitex), that is, about 5 to 50 μm, and the fiber diameter of the glass fiber is about 0.6 to 4 μm. Since the pore diameter is increased by blending the fibers, the amount of the inorganic powder filling the space of the separator is 0 to 35% by mass, and the density is 0.15 to 0.25 g / cm 3 .
Moreover, the separator for sealed lead-acid batteries according to claim 2 is the separator for sealed lead-acid batteries according to claim 1, wherein the heat-sealing fiber is composed of 30% by mass or more.
Further, a sealed lead-acid battery separator according to claim 3 is the sealed lead-acid battery separator according to claim 1 or 2, wherein the separator is composed of heat-bonded fibers and glass fibers, or further inorganic powder. It is characterized in that it can be obtained by pressing the material after paper making, pressure drying or curing.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The separator for the sealed lead-acid battery of the present invention adheres the fibers in the separator with heat-sealing fibers so as not to be broken by the electrode plate at the time of battery assembly of the separator bent portion or to reduce the strength after filling with the electrolyte. By fixing, the burst strength of the wet paper in the bent portion is configured so that the strength reduction rate is 40% or less with respect to the burst strength of the dry paper.
[0006]
Moreover, the separator for the sealed lead-acid battery of the present invention retains the electrolyte solution required for the sealed lead-acid battery and prevents a decrease in strength of the separator bending portion. In addition, the amount of heat-fused fibers in the separator is 2 to 50% by mass in consideration of acid resistance and oxidation resistance affecting the battery life, and the amount of inorganic powder is In consideration of increasing the density of filling the space, the density is set to 0 to 35% by mass, and the density is set to 0.15 to 0.25 g / cm 3 .
[0007]
In addition, since the effect of improving the strength of fiber-to-fiber bonding due to surface melting, which is a characteristic of heat-bonding fibers, cannot be obtained by simply blending and drying the heat-bonding fibers, the sealed lead-acid battery separator of the present invention In order to increase the strength-improving effect of the heat-bonded fiber, the material composed of glass fiber, heat-bonded fiber, and, if necessary, further with inorganic powder is made by paper pressing, after pressure drying or curing. The rupture strength of the wet paper in the bent portion can be set to a strength reduction rate of 40% or less with respect to the rupture strength of the dry paper.
[0008]
Moreover, in the sealed lead-acid battery separator of the present invention, by using 2 to 50% by mass of the heat-sealing fiber, a polyethylene separator (from polyethylene resin and inorganic powder conventionally used in liquid lead-acid batteries) is used. The bag can be processed in the same manner as the separator made by the melt extrusion method.
[0009]
Moreover, in the sealed lead-acid battery separator of the present invention, in order to extend the battery life, it is preferable to use a thermal fusion fiber having an average fiber diameter of 0.5 to 2.5 dtex (decitex) and a fiber length of 3 to 5 mm. . It is preferable to use a material composed of a core-sheath structure of polypropylene-polyethylene, polyester-polyethylene, polyester-polyester excellent in acid resistance and oxidation resistance among organic fibers. In addition, although the melting point of the surface portion is 200 ° C. or higher, there may be used one having a melting point of the surface portion of about 110, 130, 150, or 180 ° C. from the viewpoint of ease of manufacturing the separator and price.
[0010]
The inorganic powder is preferably made of silica and having an average particle size of about 5 to 11 μm.
[0011]
Moreover, as a glass fiber, a composition is C glass and use of an average fiber diameter of about 0.5-4 micrometers is preferable.
[0012]
【Example】
Next, examples of the sealed lead-acid battery separator of the present invention will be described together with comparative examples.
(Example 1)
15% by mass of glass fiber of C glass composition having an average fiber diameter of 0.6 μm, 50% by mass of heat-sealing fiber of polyester-polyester core-sheath structure having an average fiber diameter of 2.2 dtex (decitex) and an average fiber length of 5 mm. Paper was made of 35% by mass of inorganic powder having an average particle diameter of 6 to 10 μm with silica by neutral papermaking to obtain a separator for a sealed lead-acid battery having a thickness of 1.00 mm and a density of 0.25 g / cm 3 .
[0013]
(Example 2)
55% by mass of glass fiber of C glass composition having an average fiber diameter of 0.6 μm, 30% by mass of heat-sealing fiber of polyester-polyester core-sheath structure having an average fiber diameter of 2.2 dtex (decitex) and an average fiber length of 5 mm. Paper made of 15% by mass of inorganic powder having an average particle diameter of 6 to 10 μm with silica was made by neutral papermaking to obtain a sealed lead-acid battery separator having a thickness of 1.02 mm and a density of 0.22 g / cm 3 .
[0014]
(Example 3)
Neutralize 97% by mass of glass fiber of C glass composition with an average fiber diameter of 0.6 μm, 3% by mass of heat-sealing fiber of polyester-polyester core-sheath structure with average fiber diameter of 2.2 dtex (decitex) and average fiber length of 5 mm Papermaking was performed to obtain a sealed lead-acid battery separator having a thickness of 1.01 mm and a density of 0.15 g / cm 3 .
[0015]
Example 4
Neutrality of 98% by mass of glass fiber of C glass composition with an average fiber diameter of 0.6 μm, 2% by mass of heat-sealing fiber of polyester-polyester core-sheath structure with an average fiber diameter of 2.2 dtex (decitex) and an average fiber length of 5 mm Paper making was carried out to make a sealed lead-acid battery separator having a thickness of 1.00 mm and a density of 0.15 g / cm 3 .
[0016]
(Example 5)
Neutrality of 98% by mass of glass fiber of C glass composition with an average fiber diameter of 0.6 μm, 2% by mass of heat-sealing fiber of polyester-polyester core-sheath structure with an average fiber diameter of 2.2 dtex (decitex) and an average fiber length of 5 mm Paper making was carried out by paper making, followed by heat pressing to obtain a sealed lead-acid battery separator having a thickness of 1.00 mm and a density of 0.15 g / cm 3 .
[0017]
(Comparative Example 1)
Neutrality of 99% by mass of glass fiber having an average fiber diameter of 0.6 μm and a glass fiber composition of 99% by mass, an average fiber diameter of 2.2 dtex (decitex), and an average fiber length of 5 mm. Papermaking was performed to obtain a sealed lead-acid battery separator having a thickness of 1.00 mm and a density of 0.14 g / cm 3 .
[0018]
(Comparative Example 2)
100% by mass of a glass fiber having an average fiber diameter of 0.6 μm and a C glass composition was made by neutral paper making to obtain a sealed lead-acid battery separator having a thickness of 1.02 mm and a density of 0.14 g / cm 3 .
[0019]
(Comparative Example 3)
70% by mass of glass fiber of C glass composition with an average fiber diameter of 0.6 μm, 15% by mass of monofilament fiber having a mean fiber diameter of 1.7 dtex (decitex) and an average fiber length of 5 mm of polyester, and a freeness of 3.5 sec / g Further, 15% by mass of a pulp fiber having an average fiber length of 1 mm was made by neutral paper making to obtain a sealed lead-acid battery separator having a thickness of 1.03 mm and a density of 0.18 g / cm 3 .
[0020]
Next, the characteristic test of each separator of the said Examples 1-5 and Comparative Examples 1-3 was done, and the result was shown in Table 1.
[0021]
[Table 1]
Figure 0004812924
[0022]
In addition, about the strength decreasing rate in Table 1, the following values were shown.
Strength reduction rate (%) = (dry paper folded part burst strength−wet paper folded part burst strength) / (dry paper folded part burst strength) × 100
[0023]
The burst strength was measured according to JIS P 8134. Further, dry paper was used as the dried sample, wet paper was used as a sample of the bent portion, and the sample obtained by immersing the sample in pure water for 1 minute and lightly wiping off the pure water on the surface was further bent.
[0024]
As is apparent from Table 1, the strength reduction of the separator bent portion can be prevented by blending 2% by mass or more of the heat-sealing fiber as in Examples 1 to 5. Further, as in Examples 4 and 5, it was confirmed that the strength could be improved to 10 N · cm with the press even with 8 N · cm without the press. Moreover, the bag processing of the separator was possible.
[0025]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
1) By suppressing the decrease in the burst strength of the separator folding portion during wet paper, the electrode plate can withstand breakage due to expansion and deformation of the electrode plate, and does not cause a decrease in strength even after filling with the electrolyte.
2) Bags can be processed by using heat-sealing fibers, and can be used for various batteries.
3) Even if it is a low density separator by pressing, the burst strength at the time of wet paper at the separator folding portion can be secured.

Claims (3)

芯鞘構造の熱融着繊維が2〜50質量%、無機粉体が0〜35質量%、ガラス繊維が15〜98質量%で構成されており、密度が0.15〜0.25g/cm であり、折り曲げ部の湿紙の破裂強度が乾紙の破裂強度に対して、強度低下率が40%以下であることを特徴とする密閉型鉛蓄電池用セパレータ。 The core-sheath heat-sealing fiber is composed of 2 to 50 mass%, the inorganic powder is composed of 0 to 35 mass%, the glass fiber is composed of 15 to 98 mass%, and the density is 0.15 to 0.25 g / cm. 3 a and for burst strength of the rupture strength dry paper of the wet paper folding unit, sealed lead separator for battery, wherein the strength decrease rate is 40% or less. 前記熱融着繊維が30質量%以上で構成されることを特徴とする請求項1記載の密閉型鉛蓄電池用セパレータ。  The separator for a sealed lead-acid battery according to claim 1, wherein the heat-sealing fiber is composed of 30% by mass or more. 前記熱融着繊維と前記ガラス繊維、或いは、更に、前記無機粉体とで構成された材料を抄造後、加圧乾燥またはキュアー後にプレスすることで得られる請求項1または2記載の密閉型鉛蓄電池用セパレータ。 The heat fusion fibers and the glass fibers, or further, the inorganic powder and papermaking later composed material, sealed lead of claim 1, wherein obtained by pressing after pressurized dry or curing Storage battery separator.
JP2000187014A 2000-06-21 2000-06-21 Sealed separator for sealed lead-acid battery Expired - Lifetime JP4812924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187014A JP4812924B2 (en) 2000-06-21 2000-06-21 Sealed separator for sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187014A JP4812924B2 (en) 2000-06-21 2000-06-21 Sealed separator for sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2002008621A JP2002008621A (en) 2002-01-11
JP4812924B2 true JP4812924B2 (en) 2011-11-09

Family

ID=18687076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187014A Expired - Lifetime JP4812924B2 (en) 2000-06-21 2000-06-21 Sealed separator for sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP4812924B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013008454A1 (en) * 2011-07-11 2015-02-23 パナソニック株式会社 Lead acid battery
JP7005130B2 (en) * 2016-09-01 2022-01-21 北越コーポレーション株式会社 A method for manufacturing a glass fiber sheet for a sealed lead-acid battery separator, a sealed lead-acid battery separator, and a glass fiber sheet for a sealed lead-acid battery separator.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938126A (en) * 1972-08-19 1974-04-09
JPS62281263A (en) * 1986-05-30 1987-12-07 Nippon Sheet Glass Co Ltd Separator for storage battery
JPH06176749A (en) * 1992-12-01 1994-06-24 Nippon Muki Co Ltd Bag-shape separator for lead-acid battery
JPH08195194A (en) * 1995-01-18 1996-07-30 Nippon Muki Co Ltd Separator for sealed lead-acid battery

Also Published As

Publication number Publication date
JP2002008621A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
CA1262171A (en) Sealed lead-acid cell and method
JP5215008B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP5160285B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
EP2721664B1 (en) Multifunctional web for use in a lead-acid battery
US11233293B2 (en) Laminar textile material for a battery electrode
JP4052372B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery using the same
JP2000003834A (en) Electric double-layer capacitor
US6099987A (en) Cylindrical electrochemical cell with cup seal for separator
JP5191091B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
CN108140491A (en) Electro chemical elements use separator and electrochemical element
JP4812924B2 (en) Sealed separator for sealed lead-acid battery
JP2002313305A (en) Separator for use in lead acid battery and lead acid battery using it
JP3716077B2 (en) Sealed lead-acid battery separator
JP3705164B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP3388891B2 (en) Manufacturing method of inorganic material coated separator for storage battery
JP4968983B2 (en) Sealed separator for sealed lead-acid battery
JP2001176506A (en) Non-sintered electrode having three-dimensional base for electrochemical secondary battery having alkaline electrolyte
JP2000048792A (en) Nonaqueous electrolyte battery and its manufacture
JP4931436B2 (en) Battery separator and alkaline battery
JP3032216B2 (en) Composite electrode plate for lead-acid battery
JP2002270471A (en) Separator for electric double-layered capacitor
US20230170462A1 (en) Method for attaching a conductive tab to an electrode and assembly therein
JP3504207B2 (en) Alkaline battery
JPH10326632A (en) Cylindrical air battery
JPH0371554A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Ref document number: 4812924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term