JP4811036B2 - PWM control circuit for power converter - Google Patents

PWM control circuit for power converter Download PDF

Info

Publication number
JP4811036B2
JP4811036B2 JP2006025646A JP2006025646A JP4811036B2 JP 4811036 B2 JP4811036 B2 JP 4811036B2 JP 2006025646 A JP2006025646 A JP 2006025646A JP 2006025646 A JP2006025646 A JP 2006025646A JP 4811036 B2 JP4811036 B2 JP 4811036B2
Authority
JP
Japan
Prior art keywords
circuit
timing
output
level
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006025646A
Other languages
Japanese (ja)
Other versions
JP2007209130A (en
Inventor
幸廣 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006025646A priority Critical patent/JP4811036B2/en
Publication of JP2007209130A publication Critical patent/JP2007209130A/en
Application granted granted Critical
Publication of JP4811036B2 publication Critical patent/JP4811036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

この発明は、電力変換装置におけるスイッチング素子のパルス幅変調(PWM)制御回路、特にEMI(電磁妨害:electromagnetic interferrence)ノイズを低減するための制御回路に関する。   The present invention relates to a pulse width modulation (PWM) control circuit for a switching element in a power converter, and more particularly to a control circuit for reducing EMI (electromagnetic interference) noise.

図5に、昇圧チョッパ型の力率改善回路とその制御回路の例を示す。この回路は、出力端10,11の両端電圧を一定に制御しつつ、交流電源1に流れる電流を正弦波状に制御することで、交流電源1に流れる電流高調波を低減するものである。
図5の回路の制御動作について、以下に概略説明する。
出力端10,11の両端電圧を抵抗14,15で分圧した信号と、出力電圧指令値となる基準電圧Vrとの誤差をオペアンプ(電圧誤差増幅器)18で増幅する。その電圧誤差増幅のゲイン,位相は抵抗16,19およびコンデンサ20などで設定する。
FIG. 5 shows an example of a boost chopper type power factor correction circuit and its control circuit. In this circuit, the current harmonics flowing through the AC power supply 1 are reduced by controlling the current flowing through the AC power supply 1 in a sine wave form while controlling the voltage across the output terminals 10 and 11 to be constant.
The control operation of the circuit of FIG.
An operational amplifier (voltage error amplifier) 18 amplifies an error between a signal obtained by dividing the voltage across the output terminals 10 and 11 with resistors 14 and 15 and a reference voltage Vr serving as an output voltage command value. The gain and phase of the voltage error amplification are set by resistors 16, 19 and a capacitor 20.

オペアンプ18の出力信号と、ダイオードブリッジ3の出力端電圧を抵抗12,13で分圧した信号とを乗算器21で乗算し、この乗算器21の出力を電流指令値とする。この電流指令値と電流検出抵抗9に流れる電流の誤差を、電流誤差増幅器23で増幅する。その電流誤差増幅のゲイン,位相は抵抗22,24およびコンデンサ25,26などで設定する。電流誤差増幅器23の出力はパルス幅の指令値となり、これとキャリア信号発生回路30で生成される鋸歯状波信号とをコンパレータ52で大小比較し、ゲートドライバ53を介してスイッチング素子6のゲートを駆動する。   The output signal of the operational amplifier 18 and the signal obtained by dividing the output terminal voltage of the diode bridge 3 by the resistors 12 and 13 are multiplied by the multiplier 21, and the output of the multiplier 21 is used as a current command value. An error between the current command value and the current flowing through the current detection resistor 9 is amplified by the current error amplifier 23. The gain and phase of the current error amplification are set by resistors 22, 24 and capacitors 25, 26, etc. The output of the current error amplifier 23 becomes a command value of the pulse width, and this is compared with the sawtooth wave signal generated by the carrier signal generation circuit 30 by the comparator 52, and the gate of the switching element 6 is connected via the gate driver 53. To drive.

図6にキャリア信号発生回路の具体例を示す。
図6では、定電流回路32と34により、コンデンサ31を充放電し、鋸歯状波のキャリア信号を生成する。定電流回路32の出力電流は、定電流回路34の出力電流より十分に小さく設定される。コンデンサ31の充電時にはスイッチ素子33はオフしており、コンデンサ31の電圧は緩やかに上昇する。コンデンサ31の電圧がその上限を設定する基準電圧Vuを超えると、コンパレータ37の出力はハイ(H)レベルとなってフリップフロップ回路39をセットし、その出力(Q)はHレベルとなりスイッチ素子33をオンする。その結果、コンデンサ31は定電流回路34の出力電流と定電流回路32の出力電流との差電流で、急速に放電される。
FIG. 6 shows a specific example of the carrier signal generation circuit.
In FIG. 6, the capacitor 31 is charged and discharged by the constant current circuits 32 and 34 to generate a sawtooth wave carrier signal. The output current of the constant current circuit 32 is set sufficiently smaller than the output current of the constant current circuit 34. When the capacitor 31 is charged, the switch element 33 is off, and the voltage of the capacitor 31 rises gently. When the voltage of the capacitor 31 exceeds the reference voltage Vu that sets the upper limit, the output of the comparator 37 becomes high (H) level and the flip-flop circuit 39 is set, and the output (Q) becomes H level and the switch element 33. Turn on. As a result, the capacitor 31 is rapidly discharged by the difference current between the output current of the constant current circuit 34 and the output current of the constant current circuit 32.

コンデンサ31の電圧がその下限を設定する基準電圧Vbを下回ると、コンパレータ38の出力はHレベルとなってフリップフロップ回路39をリセットし、その出力(Q)はロー(L)レベルとなりスイッチ素子33をオフする。
以後、コンデンサ31の電圧は、基準電圧VuとVbで設定される電圧の間で充放電を繰り返す。キャリア信号の周波数は、定電流回路32,34の出力電流値とコンデンサ31の静電容量値で定まる。
When the voltage of the capacitor 31 falls below the reference voltage Vb that sets the lower limit, the output of the comparator 38 becomes H level and the flip-flop circuit 39 is reset, and its output (Q) becomes low (L) level and the switch element 33. Turn off.
Thereafter, the voltage of the capacitor 31 is repeatedly charged and discharged between the voltages set by the reference voltages Vu and Vb. The frequency of the carrier signal is determined by the output current value of the constant current circuits 32 and 34 and the capacitance value of the capacitor 31.

図5の場合、パルス幅指令値がキャリア信号を上回るとスイッチング素子6がオンすることになる。キャリア信号の周波数はスイッチング素子6のスイッチング周波数と等しくなるが、オンのタイミングが固定周波数となりオフのタイミングがパルス幅制御される。
仮に、オンのタイミングで発生するEMIノイズレベルがオフのタイミングで発生するものよりも大きいとすると、スイッチング周波数付近のEMIノイズレベルが大きく発生することになり、図5に記号2で示すノイズフィルタが大形化することになる。
In the case of FIG. 5, when the pulse width command value exceeds the carrier signal, the switching element 6 is turned on. The frequency of the carrier signal is equal to the switching frequency of the switching element 6, but the on timing is fixed and the off timing is pulse width controlled.
If the EMI noise level generated at the on timing is greater than that generated at the off timing, the EMI noise level near the switching frequency is generated to be large, and the noise filter indicated by symbol 2 in FIG. It will be enlarged.

上記のような問題を解決するため、キャリア周波数をランダムまたは連続的に変化させることで、スイッチング周波数付近のEMIノイズレベルを分散させ、ノイズ成分のピーク値を低減する技術が、例えば特許文献1,2に開示されている。
特開平07−264849号公報 特開2002−064979号公報
In order to solve the above problems, a technique for dispersing the EMI noise level near the switching frequency and changing the peak value of the noise component by changing the carrier frequency randomly or continuously is disclosed in Patent Document 1, for example. 2 is disclosed.
Japanese Patent Application Laid-Open No. 07-264849 JP 2002-064979 A

しかしながら、上記特許文献1,2のような制御方式の場合、スイッチング周波数が低くなるタイミングで、トランスやインダクタなどの磁気部品が飽和する可能性があり、これを回避するため最低周波数で飽和しないように設計しようとすると、磁気部品が大形化しコスト高になるという問題が生じる。
したがって、この発明の課題は、従来の固定周波数での設計のまま、簡単かつ安価にEMIノイズレベルを低減することにある。
However, in the case of the control methods such as Patent Documents 1 and 2, magnetic components such as a transformer and an inductor may be saturated at the timing when the switching frequency is lowered. However, there is a problem that the magnetic parts become large and expensive.
Therefore, an object of the present invention is to easily and inexpensively reduce the EMI noise level while maintaining the design at the conventional fixed frequency.

このような課題を解決するため、請求項1の発明では、スイッチング素子のオンオフ動作によって電源電圧を直流電圧に変換する電力変換装置の、前記スイッチング素子のオンオフのタイミングをキャリア信号とパルス幅指令値とを大小比較して決定する電力変換装置のPWM制御回路において、
スイッチング素子オンのタイミングを固定周期とし、そのオフのタイミングをパルス幅制御する第1の制御手段と、スイッチング素子オフのタイミングを固定周期とし、そのオンのタイミングをパルス幅制御する第2の制御手段と、前記第1,第2の制御手段のいずれを有効にするかの信号を入力する信号入力端子とを設けたことを特徴とする。
この請求項1の発明においては、前記第1,第2の制御手段および信号入力端子を集積化することができる(請求項2の発明)。
In order to solve such a problem, according to the first aspect of the present invention, in the power conversion device that converts the power supply voltage into a DC voltage by the on / off operation of the switching element, the on / off timing of the switching element is set to a carrier signal and a pulse width command value In the PWM control circuit of the power conversion device that is determined by comparing the size and
First control means for controlling the switching element ON timing as a fixed period and controlling the OFF timing thereof for pulse width, and second control means for controlling the switching element OFF timing as a fixed period and controlling the ON timing for pulse width And a signal input terminal for inputting a signal indicating which of the first and second control means is to be valid .
In the invention of claim 1, the first and second control means and the signal input terminal can be integrated (invention of claim 2).

この発明によれば、キャリア周波数は変えずにEMIノイズレベルを低減できるので、キャリア周波数をランダムまたは連続的に変化させる従来方式に比べ、トランスやインダクタなどの磁気部品を小形にでき、その結果ノイズフィルタも小型化できるという利点が得られる。   According to the present invention, since the EMI noise level can be reduced without changing the carrier frequency, magnetic parts such as transformers and inductors can be made smaller than the conventional method in which the carrier frequency is changed randomly or continuously, and as a result, noise is reduced. The advantage that the filter can also be reduced in size is obtained.

図1はこの発明の実施の形態を示す回路図である。これは、先の図6に示すものに対し、定電流回路44,47、スイッチ素子45,46、ノット回路49およびアンド回路50,51などを付加して構成される。ここで、定電流回路40の出力電流は、定電流回路43の出力電流より十分小さく設定するものとする。また、定電流回路44の出力電流は定電流回路43の出力電流とほぼ等しく、定電流回路47の出力電流は定電流回路40の出力電流とほぼ等しく設定するものとする。そして、信号入力INをHレベルにすると、スイッチ素子41はオンとなる。また、ノット回路49の出力はLレベルとなりスイッチ素子46はオフする。さらに、アンド回路50の出力はLレベルとなりスイッチ素子45はオフする。これにより、図6の場合と全く同じ動作を行なうことになる。   FIG. 1 is a circuit diagram showing an embodiment of the present invention. This is configured by adding constant current circuits 44 and 47, switch elements 45 and 46, a knot circuit 49, AND circuits 50 and 51, and the like to the circuit shown in FIG. Here, the output current of the constant current circuit 40 is set to be sufficiently smaller than the output current of the constant current circuit 43. Further, the output current of the constant current circuit 44 is set to be approximately equal to the output current of the constant current circuit 43, and the output current of the constant current circuit 47 is set to be approximately equal to the output current of the constant current circuit 40. When the signal input IN is set to H level, the switch element 41 is turned on. Further, the output of the knot circuit 49 becomes L level and the switch element 46 is turned off. Further, the output of the AND circuit 50 becomes L level, and the switch element 45 is turned off. As a result, the same operation as in FIG. 6 is performed.

図1において、信号入力INをLレベルにするとスイッチ素子41はオフし、アンド回路51の出力はLレベルとなりスイッチ素子42はオフする。また、ノット回路49の出力はHレベルとなり、スイッチ素子46はオンする。
ここで、スイッチ素子45がオンするとコンデンサ31は急速に充電され、その上限を設定する基準電圧Vuを超えると、コンパレータ37の出力はハイ(H)レベルとなってフリップフロップ回路39をセットし、その出力QBはLレベルとなりスイッチ素子45をオフする。
In FIG. 1, when the signal input IN is set to L level, the switch element 41 is turned off, and the output of the AND circuit 51 becomes L level, and the switch element 42 is turned off. Further, the output of the knot circuit 49 becomes H level, and the switch element 46 is turned on.
Here, when the switch element 45 is turned on, the capacitor 31 is rapidly charged. When the reference voltage Vu that sets the upper limit is exceeded, the output of the comparator 37 becomes a high (H) level, and the flip-flop circuit 39 is set. The output QB becomes L level, and the switch element 45 is turned off.

その結果、コンデンサ31は定電流回路47の出力電流で、緩やかに放電される。コンデンサ31の電圧がその下限を設定する基準電圧Vbを下回ると、コンパレータ38の出力はコンデンサ31の電圧がその下限を設定する基準電圧Vdを下回ると、コンパレータ38の出力はHレベルとなってフリップフロップ回路39をリセットし、その出力(QB)はHレベルとなりスイッチ素子45をオンする。
以後、コンデンサ31の電圧は、基準電圧VuとVdで設定される電圧の間で充放電を繰り返す。キャリア信号の周波数は、定電流回路44,47の出力電流値とコンデンサ31の静電容量値で定まる。
As a result, the capacitor 31 is slowly discharged by the output current of the constant current circuit 47. When the voltage of the capacitor 31 falls below the reference voltage Vb that sets the lower limit, the output of the comparator 38 becomes H level when the voltage of the capacitor 31 falls below the reference voltage Vd that sets the lower limit. The output circuit (QB) becomes H level and the switch element 45 is turned on.
Thereafter, the voltage of the capacitor 31 is repeatedly charged and discharged between the voltages set by the reference voltages Vu and Vd. The frequency of the carrier signal is determined by the output current values of the constant current circuits 44 and 47 and the capacitance value of the capacitor 31.

以上より、信号入力INをHレベルにすれば、キャリア信号は立上りが緩やかで立下りが急峻となる。逆に、信号入力INをLレベルにすれば、キャリア信号は立上りが急峻で立下りが緩やかとなる。
その結果、図1の回路では信号入力INをHレベルにすることで、図2(a)に示すようにオンのタイミングが固定周期となり、オフのタイミングがパルス幅制御される。逆に、信号入力INをLレベルにすることで、図2(b)に示すようにオフのタイミングが固定周期となり、オンのタイミングがパルス幅制御されることになる。
From the above, if the signal input IN is set to H level, the carrier signal has a gradual rise and a steep fall. Conversely, if the signal input IN is set to the L level, the carrier signal has a sharp rise and a slow fall.
As a result, by setting the signal input IN to the H level in the circuit of FIG. 1, the on timing becomes a fixed period as shown in FIG. 2A, and the off timing is pulse width controlled. Conversely, when the signal input IN is set to the L level, the off timing becomes a fixed period as shown in FIG. 2B, and the on timing is subjected to pulse width control.

従って、図3(a)に示すように、オフのタイミングのノイズレベルが大きい場合には、信号入力INをHレベルとしオフの周期が変化するようにすることで、図4の実線のようなノイズのピークレベルが、点線のように低減することになる。
また、図3(b)に示すように、オンのタイミングのノイズレベルが大きい場合には、信号入力INをLレベルとしオンの周期が変化するようにすることで、上記と同様にノイズのピークレベルが低減する。
なお、図3のGはゲート信号波形を、Nはノイズ波形をそれぞれ示す。
Therefore, as shown in FIG. 3A, when the noise level at the off timing is large, the signal input IN is set to the H level so that the off period changes, as shown by the solid line in FIG. The peak level of noise is reduced as shown by the dotted line.
Further, as shown in FIG. 3B, when the noise level at the on timing is large, the signal input IN is set to the L level and the on period is changed, so that the noise peak is similar to the above. The level is reduced.
In FIG. 3, G indicates a gate signal waveform, and N indicates a noise waveform.

なお、図5に示すような昇圧チョッパ型の力率改善回路では、入力交流電圧の瞬時値が連続的に変化するためパルス幅も連続的に変化し、従来のキャリア周波数変化方式と同様の効果が得られるが、DC/DCコンバータなどで一定入力電圧かつ一定負荷の条件下では、オンもオフも同じタイミングとなるため、ノイズ低減効果も得られないが、力率改善回路の出力を入力電源電圧とするようなDC/DCコンバータでは、入力電源電圧が交流電源周波数の2倍の周波数で変動するのに伴いパルス幅指令値も同一周波数で変動するため、ノイズ低減効果が得られるようになる。   In the step-up chopper type power factor correction circuit as shown in FIG. 5, since the instantaneous value of the input AC voltage continuously changes, the pulse width also changes continuously, and the same effect as the conventional carrier frequency changing method is obtained. However, under the condition of a constant input voltage and constant load with a DC / DC converter, etc., the ON and OFF timings are the same, so no noise reduction effect can be obtained, but the output of the power factor correction circuit is used as the input power supply. In a DC / DC converter that uses a voltage, as the input power supply voltage fluctuates at twice the frequency of the AC power supply frequency, the pulse width command value also fluctuates at the same frequency, so that a noise reduction effect can be obtained. .

また、オンとオフのタイミングでどちらがノイズレベルが大きいかを予め調べる必要があるが、その方法としてはノイズを測定するスペクトラムアナライザーの入力信号と、スイッチング素子のゲート駆動信号またはスイッチング波形などをオシロスコープで同時に測定することで判別できる。この点について、電源回路を最終的に製品に組み込んだ状態でノイズを測定し、その負荷に対してオン固定かオフ固定かを選択することにより、その製品が発生するノイズを効果的に抑制することができる。あるいは、オンタイミング固定とオフタイミング固定の2ケースでノイズを測定し、いずれかノイズの小さい方を選択するようにしても良い。なお、図1の回路は集積回路化することで、より低コスト化が可能となる。   In addition, it is necessary to examine in advance which noise level is greater at the on and off timings. As a method for this, the input signal of the spectrum analyzer that measures the noise and the gate drive signal or switching waveform of the switching element are used with an oscilloscope. It can be determined by measuring at the same time. In this regard, noise is measured with the power supply circuit finally installed in the product, and the noise generated by the product is effectively suppressed by selecting whether the load is fixed to on or off. be able to. Alternatively, noise may be measured in two cases of fixed on-timing and fixed off-timing, and one of the smaller noises may be selected. Note that the cost of the circuit in FIG. 1 can be further reduced by making it an integrated circuit.

この発明の実施の形態を示す回路図Circuit diagram showing an embodiment of the present invention PWM方式を説明する波形図Waveform diagram explaining the PWM method 図1,図5の動作説明図Operation explanatory diagram of FIGS. 1 and 5 この発明の効果を説明する説明図Explanatory drawing explaining the effect of this invention 従来例を示す回路図Circuit diagram showing a conventional example 図5で用いられるキャリア信号発生回路を示す回路図Circuit diagram showing the carrier signal generation circuit used in FIG.

符号の説明Explanation of symbols

1…交流電源、2…ノイズフィルタ、3…ダイオードブリッジ、4…フィルタコンデンサ、5…インダクタ、6…スイッチング素子、7…ダイオード、8…平滑コンデンサ、9…電流検出抵抗、10,11…出力端子、12,13,14,15,16,19,22,24,28,29…抵抗、18…電圧誤差増幅器(オペアンプ)、20,25,26…コンデンサ、21…乗算器、23…電流誤差増幅器(オペアンプ)、30,30a,30b…キャリア信号発生回路、37,38,52…コンパレータ、39…フリップフロップ回路、40,43,44,47…定電流回路、41,42,45,46…スイッチ素子、49…ノット(NOT)回路、50,51…アンド(AND)回路、53…ゲートドライバ、Vc…制御基準電圧、Vr,Vu,Vb…基準電圧。   DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Noise filter, 3 ... Diode bridge, 4 ... Filter capacitor, 5 ... Inductor, 6 ... Switching element, 7 ... Diode, 8 ... Smoothing capacitor, 9 ... Current detection resistor, 10, 11 ... Output terminal 12, 12, 13, 14, 15, 16, 19, 22, 24, 28, 29 ... resistors, 18 ... voltage error amplifiers (op amps), 20, 25, 26 ... capacitors, 21 ... multipliers, 23 ... current error amplifiers (Op-amp), 30, 30a, 30b ... carrier signal generation circuit, 37, 38, 52 ... comparator, 39 ... flip-flop circuit, 40, 43, 44, 47 ... constant current circuit, 41, 42, 45, 46 ... switch Element 49... NOT circuit 50, 51 AND circuit 53 Gate driver Vc Control reference voltage Vr u, Vb ... reference voltage.

Claims (2)

スイッチング素子のオンオフ動作によって電源電圧を直流電圧に変換する電力変換装置の、前記スイッチング素子のオンオフのタイミングをキャリア信号とパルス幅指令値とを大小比較して決定する電力変換装置のPWM制御回路において、
スイッチング素子オンのタイミングを固定周期とし、そのオフのタイミングをパルス幅制御する第1の制御手段と、スイッチング素子オフのタイミングを固定周期とし、そのオンのタイミングをパルス幅制御する第2の制御手段と、前記第1,第2の制御手段のいずれを有効にするかの信号を入力する信号入力端子とを設けたことを特徴とする電力変換装置のPWM制御回路。
In a PWM control circuit of a power conversion device that determines the on / off timing of the switching element by comparing the magnitude of a carrier signal and a pulse width command value in a power conversion device that converts a power supply voltage into a DC voltage by an on / off operation of the switching element. ,
First control means for controlling the switching element ON timing as a fixed period and controlling the OFF timing thereof for pulse width, and second control means for controlling the switching element OFF timing as a fixed period and controlling the ON timing for pulse width And a signal input terminal for inputting a signal indicating which of the first and second control means is to be valid, and a PWM control circuit for a power converter.
前記第1,第2の制御手段および信号入力端子を集積化することを特徴とする請求項1に記載の電力変換装置のPWM制御回路。 The PWM control circuit for a power converter according to claim 1, wherein the first and second control means and the signal input terminal are integrated.
JP2006025646A 2006-02-02 2006-02-02 PWM control circuit for power converter Active JP4811036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025646A JP4811036B2 (en) 2006-02-02 2006-02-02 PWM control circuit for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025646A JP4811036B2 (en) 2006-02-02 2006-02-02 PWM control circuit for power converter

Publications (2)

Publication Number Publication Date
JP2007209130A JP2007209130A (en) 2007-08-16
JP4811036B2 true JP4811036B2 (en) 2011-11-09

Family

ID=38488084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025646A Active JP4811036B2 (en) 2006-02-02 2006-02-02 PWM control circuit for power converter

Country Status (1)

Country Link
JP (1) JP4811036B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773111B2 (en) 2010-02-25 2014-07-08 Fuji Electric Co., Ltd. Current estimation circuit
US9837902B2 (en) 2013-08-01 2017-12-05 Renesas Electronics Corporation Switching power source device, semiconductor device, and AC/DC converter
US10848144B2 (en) 2018-11-30 2020-11-24 Sharp Kabushiki Kaisha Switching control circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238467A (en) * 2000-02-28 2001-08-31 Katsunori Taniguchi Power conversion system
JP4188110B2 (en) * 2003-03-12 2008-11-26 カルソニックカンセイ株式会社 PWM drive
JP2005129004A (en) * 2003-10-03 2005-05-19 Sharp Corp Driving system and a.c. converter

Also Published As

Publication number Publication date
JP2007209130A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
CN108809100B (en) System and method for regulating output current of power conversion system
JP5014772B2 (en) Current mode control switching regulator
TWI542134B (en) System controller and method for adjusting the power conversion system
US9608519B2 (en) Switching converter with adaptive off time control and the method thereof
JP4899547B2 (en) Switching power supply
TWI457741B (en) Dc-dc controller
US20060043942A1 (en) Power converter apparatus and methods using output current feedforward control
US7352599B2 (en) Switching power source apparatus
JP2005110434A (en) Power factor improvement circuit
JP2009278719A (en) Current mode control switching regulator and its operation control method
USRE44406E1 (en) Method of detecting switching power supply output current
KR19990085821A (en) Power factor correction circuit
KR20160061907A (en) Power factor improvement circuit
JP5157574B2 (en) Switching power supply
JP2019068675A (en) AC-DC converter
US8289738B2 (en) Switching power supply
WO2013094261A1 (en) Power conversion apparatus
JP5009655B2 (en) Switching regulator
JP6911677B2 (en) AC-DC converter
JP4811036B2 (en) PWM control circuit for power converter
EP1406372A1 (en) Digital control apparatus for a switching DC-DC converter
JP6395318B2 (en) Switching power supply
JP2011155725A (en) Switching power supply circuit
CN110798070B (en) Switching power supply device
JP2018082574A (en) Switching power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4811036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250