JP4810847B2 - Method for producing polyethylene-based hollow fiber porous membrane - Google Patents

Method for producing polyethylene-based hollow fiber porous membrane Download PDF

Info

Publication number
JP4810847B2
JP4810847B2 JP2005073241A JP2005073241A JP4810847B2 JP 4810847 B2 JP4810847 B2 JP 4810847B2 JP 2005073241 A JP2005073241 A JP 2005073241A JP 2005073241 A JP2005073241 A JP 2005073241A JP 4810847 B2 JP4810847 B2 JP 4810847B2
Authority
JP
Japan
Prior art keywords
polyethylene
resin
hollow fiber
polyolefin
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005073241A
Other languages
Japanese (ja)
Other versions
JP2006255518A (en
Inventor
久人 小林
勝二 小田
大介 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005073241A priority Critical patent/JP4810847B2/en
Publication of JP2006255518A publication Critical patent/JP2006255518A/en
Application granted granted Critical
Publication of JP4810847B2 publication Critical patent/JP4810847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はコンデンサー及びリチウムイオン電池等に利用されるセパレーター用途あるいは水処理における除菌及び除濁等のろ過のフィルター用途等に好適なポリオレフィン系多孔質膜の製造方法に関する。   The present invention relates to a method for producing a polyolefin-based porous membrane suitable for use in separators used in capacitors, lithium ion batteries, etc., or in filter applications such as sterilization and turbidity removal in water treatment.

多孔質膜は電解コンデンサーやリチウムイオン電池等に利用されているセパレーター用途及び半導体製造に関わる超純水の製造等での電気及びエレクトロニクス関連分野、酵素分離や除菌等を目的とした医薬食品分野、特に最近では河川や湖沼の除菌及び除濁を行い上水化あるいは工業用水化及び下水の除濁等を行う水処理分野への展開が積極的に展開されている。   Porous membranes are used in separators used in electrolytic capacitors, lithium ion batteries, etc., and electrical and electronics related fields in the production of ultrapure water related to semiconductor manufacturing, pharmaceutical food fields for the purpose of enzyme separation and sterilization, etc. In particular, in recent years, development in the water treatment field in which water and industrial water purification and sewage decontamination are carried out by sterilizing and clarifying rivers and lakes has been actively deployed.

多孔質膜を製造する主な方法としてはポリマーフィルム等を延伸して微多孔を形成する方法、熱可塑性樹脂と熱可塑性樹脂を溶解可能な有機液体及びもしくは有機固体とを溶解後、熱可塑性樹脂の非溶剤にて相分離させ多孔質膜を得る方法、及び熱可塑性樹脂と熱可塑性樹脂を溶解可能な有機液体及びもしくは有機固体とを高温で溶解後、冷却により樹脂濃厚相と有機物濃厚相とに相分離させ多孔質膜を得る方法等を挙げることができる。   The main method for producing a porous membrane is a method of forming a micropore by stretching a polymer film or the like, a thermoplastic resin after dissolving a thermoplastic resin and an organic liquid and / or an organic solid capable of dissolving the thermoplastic resin, and then thermoplastic resin A method for obtaining a porous membrane by phase-separation with a non-solvent, and a resin-rich phase and an organic matter-rich phase by cooling an organic liquid and / or an organic solid capable of dissolving a thermoplastic resin and a thermoplastic resin at a high temperature and then cooling. And a method for obtaining a porous membrane by phase separation.

このうち、熱可塑性樹脂と熱可塑性樹脂を溶解可能な有機液体及びもしくは有機固体とを高温溶解後、冷却により樹脂濃厚相と有機物濃厚相とに相分離させ多孔質膜を得る方法は、高温で熱可塑性樹脂と有機物を溶解させる為、結晶性の熱可塑性樹脂からの多孔質膜の製造が可能であるばかりでなく、さらに非溶媒も不要となりプロセス上の制御が容易となる利点がある。   Among these methods, a method for obtaining a porous membrane by dissolving a thermoplastic resin and an organic liquid and / or an organic solid capable of dissolving the thermoplastic resin at a high temperature and then phase-separating into a resin-rich phase and an organic substance-rich phase by cooling is performed at a high temperature. Since the thermoplastic resin and the organic substance are dissolved, not only can a porous film be produced from a crystalline thermoplastic resin, but there is also an advantage that a non-solvent is not required and process control is facilitated.

このような方法で用いられる熱可塑性樹脂を溶解可能な有機液体及びもしくは有機固体としては流動パラフィンやフタル酸エステル類等が挙げられる。(例えば、特許文献1、2及び3参照)しかしながら、特に後者のフタル酸エステル類はいわゆる環境ホルモンの疑いがあるばかりでなく、抽出溶剤としてもハロゲン系有機溶剤を用いていることから、環境問題や作業環境の点で好ましくないという問題がある。
特許第2131539号公報 特開2002-338730号公報 特開2002-128943号公報
Examples of the organic liquid and / or organic solid that can dissolve the thermoplastic resin used in such a method include liquid paraffin and phthalates. (For example, see Patent Documents 1, 2, and 3) However, the latter phthalates are not only suspected of so-called environmental hormones, but also use a halogen-based organic solvent as an extraction solvent. There is a problem that it is not preferable in terms of the working environment.
Japanese Patent No. 2131539 JP 2002-338730 A JP 2002-128943

一方、このようなにして製造される多孔質膜は上述の分野で利用されているわけであるが、例えば電池セパレーターの用途では電池容量の増大への要求に対応し膜厚は薄くする必要があるが、単に膜圧を薄くすると膜の機械的物性が低下する問題がある。また、水処理の分野では膜表面に付着した異物をエアバブリング等により膜自体を物理的に揺らせ除去するなどの操作がなされているが、長期にわたり膜が破断することなく安定して水処理を行う為には膜自体の更なる機械的強度の向上が要求されている。   On the other hand, the porous membrane produced in this way is used in the above-mentioned fields. For example, in the application of a battery separator, it is necessary to reduce the film thickness in response to the demand for an increase in battery capacity. However, there is a problem that the mechanical properties of the membrane are lowered simply by reducing the membrane pressure. In the field of water treatment, operations such as physically shaking the membrane itself by air bubbling to remove foreign matter attached to the membrane surface are performed, but stable water treatment can be achieved without breaking the membrane for a long time. In order to do so, it is required to further improve the mechanical strength of the membrane itself.

このような多孔質膜の機械的強度の向上、特にセパレーター分野ではフューズ効果特性の改善の点から多孔質膜の原料となる熱可塑性樹脂の分子量を大きくする、すなわち超高分子量樹脂の利用が検討されている。(例えば、特許文献2および3参照)   In order to improve the mechanical strength of such porous membranes, especially in the separator field, the molecular weight of the thermoplastic resin used as the raw material for the porous membrane is increased from the viewpoint of improving the fuse effect characteristics. Has been. (For example, see Patent Documents 2 and 3)

しかしながら、単に原料樹脂を高分子量化すると溶融押し出し、あるいは溶液にして押し出し成形する際、溶融樹脂や樹脂溶液の粘度が著しく増大し、押し出し時にいわゆるメルトフラクチャー用の不安定現象が発現し、得られる膜の表面も著しく荒れた形態になるという問題が生じる。   However, when the raw material resin is simply increased in molecular weight, the melt resin or resin solution viscosity increases significantly when melt extruded or formed into a solution, and an unstable phenomenon for so-called melt fracture occurs during extrusion. There arises a problem that the surface of the film is also extremely rough.

本発明は上記の点を解決しようとするものであり、機械的物性に優れかつ環境問題に配慮したポリオレフィン系多孔質膜の製造方法を提供すること課題とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a polyolefin-based porous film that has excellent mechanical properties and is environmentally friendly.

すなわち、本発明は、ポリオレフィン系樹脂を高温で均一な溶液相が形成可能であり冷却により二相分離する能力を有する有機物に溶解させた均一溶液を押出成形し、エアギャップを経て冷却浴にてポリオレフィン系樹脂溶液を冷却固化させポリオレフィン系多孔質前駆体を得、その後抽出溶剤を用いて該有機物を除去することによりポリオレフィン系多孔質膜を得る方法であって、該有機物が高級アルコールであり、ポリオレフィン系樹脂の極限粘度が5〜20dl/g、かつポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度が5〜35wt%であることを特徴とするポリオレフィン系多孔質膜の製造方法である。また、本発明のポリオレフィン系樹脂は好ましくはαオレフィン系重合体である。   That is, the present invention extrudes a homogeneous solution obtained by dissolving a polyolefin-based resin in an organic substance capable of forming a uniform solution phase at high temperature and capable of two-phase separation by cooling, and in a cooling bath through an air gap. A method for obtaining a polyolefin-based porous film by cooling and solidifying a polyolefin-based resin solution to obtain a polyolefin-based porous precursor and then removing the organic material using an extraction solvent, wherein the organic material is a higher alcohol, A method for producing a polyolefin-based porous membrane, wherein the polyolefin-based resin has an intrinsic viscosity of 5 to 20 dl / g and a concentration of the polyolefin-based resin in the polyolefin-based resin solution is 5 to 35 wt%. The polyolefin resin of the present invention is preferably an α-olefin polymer.

また、本発明は、該ポリオレフィン系樹脂溶液にポリオレフィン系樹脂100重量部に対し、潤滑剤成分を0.10重量部以上6.00重量部以下添加することを特徴とするポリオレフィン系多孔質膜の製造方法である。   Further, the present invention provides a polyolefin based porous membrane characterized in that a lubricant component is added to the polyolefin based resin solution in an amount of 0.10 parts by weight to 6.00 parts by weight with respect to 100 parts by weight of the polyolefin based resin. It is a manufacturing method.

さらに、本発明は好ましくは高級アルコールが炭素数10〜20の高級アルコールであることを特徴とするポリオレフィン系多孔質膜の製造方法である。   Furthermore, the present invention is preferably a method for producing a polyolefin-based porous membrane, wherein the higher alcohol is a higher alcohol having 10 to 20 carbon atoms.

より具体的な本発明は上述の方法に基くポリオレフィン系多孔質膜の製造方法であって、多孔質膜がフィルム、シートあるいは中空糸状であることを特徴とするポリオレフィン系多孔質膜の製造方法である。   More specifically, the present invention is a method for producing a polyolefin-based porous membrane based on the above-described method, wherein the porous membrane is in the form of a film, sheet or hollow fiber. is there.

本発明は押出し安定性に優れかつ機械的物性に優れかつ環境に配慮したポリオレフィン系多孔質膜の製造方法として有用である。   The present invention is useful as a method for producing a polyolefin-based porous membrane having excellent extrusion stability, excellent mechanical properties, and environmental considerations.

本発明に用いるポリオレフィンとは低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、ポリメチルブテン等のαポリオレフィン及びこれらの共重合体及びブレンド物である。中でもポリエチレン系樹脂は安価であり、廃棄時に問題となるハロゲン元素を含まず、更には化学反応性の高い3級炭素を含まない為、例えば、浄水用膜に用いた場合、薬品洗浄による劣化が少なく長期間安定に使用できることが期待できる。更に、使用するポリエチレン系樹脂の分子量を大きくすることにより、電池セパレーター用途であれば膜厚を薄くしても機械的な強度を保つことができ電池容量増大への要望にもこたえることが出来好ましい。   The polyolefin used in the present invention includes α-polyolefins such as low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, polybutene, polymethylpentene, polymethylbutene, and copolymers and blends thereof. Among them, polyethylene-based resins are inexpensive, do not contain halogen elements that cause problems during disposal, and do not contain tertiary carbon with high chemical reactivity. For example, when used in a membrane for water purification, deterioration due to chemical cleaning It can be expected that it can be used stably for a long period of time. Furthermore, by increasing the molecular weight of the polyethylene-based resin to be used, it is possible to maintain the mechanical strength even if the film thickness is thin, and to meet the demand for an increase in battery capacity, if it is used for battery separators. .

本発明に用いる、ポリオレフィン系樹脂と高温で均一な溶液相が形成可能であり冷却により二相分離する能力を有する有機物とは、ポリオレフィン系樹脂とおおむねポリオレフィン系樹脂の融点以上の高温で均一相を形成可能であり、冷却によりポリオレフィン系樹脂濃厚相と該有機物濃厚相へ液−液相分離する能力を有する有機物である。均一溶液が形成される下限の温度及び液−液相分離する温度はポリオレフィン系樹脂と該有機物との組合せにより決まる。これらの高級アルコール類、流動パラフィン及びフタル酸エステル類等が挙げられる。しかしながら、特に後者のフタル酸エステル類はいわゆる環境ホルモンの疑いがあるばかりでなく、抽出溶剤としてもハロゲン系有機溶剤を用いていることから、環境問題や作業環境の点で好ましくないという問題がある。このような観点から上記のポリオレフィン系樹脂と高温で均一な溶液相が形成可能であり冷却により二相分離する能力を有する有機物として高級アルコール類が好ましい。   The organic resin that can form a uniform solution phase at a high temperature and has the ability to separate into two phases by cooling is used in the present invention to have a uniform phase at a temperature higher than the melting point of the polyolefin resin and the polyolefin resin. It is an organic substance that can be formed and has the ability to separate a liquid-liquid phase into a polyolefin-based resin rich phase and the organic substance rich phase by cooling. The lower limit temperature at which a homogeneous solution is formed and the temperature at which liquid-liquid phase separation occurs are determined by the combination of the polyolefin resin and the organic substance. These higher alcohols, liquid paraffin, phthalates and the like can be mentioned. However, the latter phthalates are not only suspected as so-called environmental hormones, but also have a problem that they are not preferable in terms of environmental problems and working environments because halogen-based organic solvents are used as extraction solvents. . From this point of view, higher alcohols are preferable as organic substances that can form a uniform solution phase at high temperatures with the above polyolefin resin and have the ability to separate into two phases by cooling.

高級アルコールとしては炭素数が10以上20以下の高級アルコールが好ましい。炭素数が10未満の高級アルコールではその沸点が低く、金型から押出し後エアギャップを経て、冷却浴に突入するまでの間に押出し物表面から高級アルコール成分が揮発しやすくなり、押出し物表面のポリオレフィン系樹脂濃度が増大することにより、得られる多孔質膜の表面は極めて密な構造になることがある。したがって高級アルコールの炭素数は11以上がより好ましく、12以上がさらに好ましい。一方、炭素数が20より大きい高級アルコールではポリオレフィン樹脂溶液を冷却した際、ポリオレフィン濃厚相と高級アルコール濃厚相へと液−液相分離する温度とポリオレフィン濃厚相が凝固する温度との間の温度領域が極めて小さくなり、多孔質構造制御が困難とる可能性がある。したがって、高級アルコールの炭素数は19以下がより好ましく、18以下がさらに好ましい。   The higher alcohol is preferably a higher alcohol having 10 to 20 carbon atoms. Higher alcohols with less than 10 carbons have a low boiling point, and the higher alcohol component tends to volatilize from the surface of the extrudate before it enters the cooling bath through the air gap after extrusion from the mold. As the concentration of the polyolefin resin increases, the surface of the obtained porous membrane may have a very dense structure. Therefore, the carbon number of the higher alcohol is more preferably 11 or more, and further preferably 12 or more. On the other hand, when the polyolefin resin solution is cooled in a higher alcohol having more than 20 carbon atoms, a temperature range between a temperature at which liquid-liquid phase separation into a polyolefin rich phase and a higher alcohol rich phase and a temperature at which the polyolefin rich phase coagulates. May become extremely small, and it may be difficult to control the porous structure. Therefore, the carbon number of the higher alcohol is more preferably 19 or less, and further preferably 18 or less.

これらの高級アルコールの例としては工業的に安価に入手可能であるという観点から炭素数が偶数の化合物が適当であり、1−デカノール、1−ドデカノール、1−テトラデカノール、1−ヘキサデカノール、1−オクタデカノール、1−エイコサノールなどの直鎖高級アルコールを挙げることができる。これらは単独で用いても良く、これらの混合物であってもよい。さらに高級アルコールは直鎖構造に限定されるのではなく、分子構造中に二重結合や側鎖に官能基を有する化合物であってもよい。   As examples of these higher alcohols, compounds having an even number of carbon atoms are suitable from the viewpoint of being commercially available at a low cost, and 1-decanol, 1-dodecanol, 1-tetradecanol, 1-hexadecanol are suitable. And linear higher alcohols such as 1-octadecanol and 1-eicosanol. These may be used alone or a mixture thereof. Furthermore, the higher alcohol is not limited to a linear structure, and may be a compound having a double bond or a functional group in a side chain in the molecular structure.

本発明に用いるポリオレフィン系樹脂の分子量は極限粘度で5〜20dl/gが好ましい。極限粘度が5dl/gを下回ると所期の機械的物性が得られない可能性がある。したがって、ポリオレフィン系樹脂の極限粘度は6dl/g以上がより好ましく、7dl/g以上が更に好ましい。一方、極限粘度が20dl/gより大きくなると、溶液の濃度にも依存するが溶液粘度が増大し、本発明をもってしても安定して押し出すことが困難となることがある。したがって、該極限粘度は19dl/g以下がよりこのましく、さらに好ましくは18dl/g以下、よりさらに好ましくは17dl/g以下である。   The molecular weight of the polyolefin resin used in the present invention is preferably 5 to 20 dl / g in terms of intrinsic viscosity. If the intrinsic viscosity is less than 5 dl / g, the expected mechanical properties may not be obtained. Therefore, the intrinsic viscosity of the polyolefin resin is more preferably 6 dl / g or more, and further preferably 7 dl / g or more. On the other hand, when the intrinsic viscosity is higher than 20 dl / g, although depending on the concentration of the solution, the solution viscosity increases, and even with the present invention, it may be difficult to extrude stably. Therefore, the intrinsic viscosity is more preferably 19 dl / g or less, more preferably 18 dl / g or less, still more preferably 17 dl / g or less.

本発明に用いるポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は5〜35wt%が好ましい。樹脂濃度が5wt%を下回ると、分離膜として用いた場合では膜の孔径が大きくなり透過量は大きくなるものの充分な分離能力を得ることが出来ないことがある。また機械的な強度も低下することから好ましくない。したがって、ポリオレフィン系樹脂の濃度は6重量%以上がより好ましく、7重量%以上がさらに好ましい。一方、溶液濃度が大きくなると、特に極限粘度が大きいポリオレフィン系樹脂を用いた場合、機械的物性が改善できる反面、溶液の粘度が著しく高くなることから、安定して押出し成形を実施することが出来ないことがある。したがって、ポリオレフィン系樹脂の濃度は33重量%以下がより好ましく、30重量%以下がさらに好ましい。   The concentration of the polyolefin resin in the polyolefin resin solution used in the present invention is preferably 5 to 35 wt%. When the resin concentration is less than 5 wt%, when used as a separation membrane, the pore size of the membrane increases and the permeation amount increases, but sufficient separation ability may not be obtained. Further, the mechanical strength is also lowered, which is not preferable. Therefore, the concentration of the polyolefin resin is more preferably 6% by weight or more, and further preferably 7% by weight or more. On the other hand, when the solution concentration is increased, particularly when a polyolefin resin having a large intrinsic viscosity is used, the mechanical properties can be improved, but the viscosity of the solution is remarkably increased, so that the extrusion can be stably performed. There may not be. Accordingly, the concentration of the polyolefin resin is more preferably 33% by weight or less, and further preferably 30% by weight or less.

本発明ではポリオレフィン系樹脂100重量部に対し、潤滑剤成分を0.10重量部以上6.00重量部以下添加することが重要である。添加量が0.10重量部を下回ると安定押し出しの効果は認められなくなることがある。したがって、潤滑剤成分の添加量は0.20重量部以上がより好ましく、0.50重量部以上がさらに好ましい。また、6.00重量部より多くなると、安定押し出しに対する効果は認められるが、機械的物性の低下につながることがある。したがって、潤滑剤成分の添加量は5.80重量部以下がより好ましく、5.50重量部以下がさらに好ましい。   In the present invention, it is important to add 0.10 parts by weight or more and 6.00 parts by weight or less of the lubricant component to 100 parts by weight of the polyolefin resin. If the amount added is less than 0.10 parts by weight, the effect of stable extrusion may not be recognized. Therefore, the addition amount of the lubricant component is more preferably 0.20 parts by weight or more, and further preferably 0.50 parts by weight or more. Moreover, when it exceeds 6.00 weight part, although the effect with respect to stable extrusion is recognized, it may lead to the fall of a mechanical physical property. Therefore, the addition amount of the lubricant component is more preferably 5.80 parts by weight or less, and further preferably 5.50 parts by weight or less.

ここで言う潤滑剤成分とは押出し成形時の加工を容易にさせる添加剤であり、ポリオレフィン系樹脂溶液とダイスや押出し機中及び特に紡糸ノズル内金属壁面との摩擦を低減させ、メルトフラクチャー様の吐出不安定現象を抑制できる効果を有する添加剤をさす。その作用機構は明確ではないが、せん断変形等による流動場で潤滑剤成分がダイスやノズルの金属壁面側に濃縮した層を形成し、ポリオレフィン系樹脂溶液と金属壁面との摩擦抵抗を低減すると推定する。   The term “lubricant component” as used herein refers to an additive that facilitates processing during extrusion molding, and reduces friction between the polyolefin resin solution and the metal wall surface in the die or extruder and particularly in the spinning nozzle, An additive that has the effect of suppressing the unstable discharge phenomenon. The mechanism of action is not clear, but it is estimated that the friction component between the polyolefin resin solution and the metal wall surface is reduced by forming a layer in which the lubricant component is concentrated on the metal wall surface of the die or nozzle in the flow field due to shear deformation, etc. To do.

このような潤滑剤成分の具体的な例としてはラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸等の飽和脂肪酸類およびそのエステル類、オレイン酸やエルカ酸等の不飽和脂肪酸及びそのエステル類、ベヘニン酸アミド、ステアリン酸アミド、パルチミン酸アミド、ラウリン酸アミド等の飽和脂肪酸アミド類、エルカ酸アミド、オレイン酸アミドなどの不飽和脂肪酸アミド類、等の有機系潤滑剤、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛などに代表される脂肪酸金属塩及びシリカ、炭酸カルシウムなどの無機微粒子が挙げられる。   Specific examples of such lubricant components include saturated fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid and esters thereof, unsaturated fatty acids such as oleic acid and erucic acid, and esters thereof, behenine Organic lubricants such as acid amides, stearic acid amides, palmitic acid amides, saturated fatty acid amides such as lauric acid amide, unsaturated fatty acid amides such as erucic acid amide, oleic acid amide, etc., calcium stearate, aluminum stearate, Examples thereof include fatty acid metal salts typified by zinc stearate and the like, and inorganic fine particles such as silica and calcium carbonate.

これらの潤滑剤成分のうち本発明でより好ましくは、ポリオレフィン系溶液調製温度および押出し成形温度−50℃以上程度の融点を有する添加剤が好ましい。溶液調製温度や押出し成形温度より著しく融点が低い潤滑剤成分を用いた場合、耐熱性・熱安定性の観点から充分な効果が期待できない。さらに、上述のポリオレフィン系樹脂溶液中で耐熱性・熱安定性の観点の他、ポリオレフィン系樹脂溶液を押出し成形しポリオレフィン系多孔質膜前駆体を得、ポリオレフィン系樹脂と高温で均一な溶液相が形成可能であり冷却により二相分離する能力を有する有機物を抽出し、最終的にポリオレフィン系多孔質膜を得るのであるが、このポリオレフィン系多孔質膜中での残留及びブリードアウトし難い潤滑剤成分が好ましい。これらの観点から本発明に用いる潤滑剤成分としては脂肪酸金属が好ましい。   Of these lubricant components, an additive having a melting point of polyolefin solution preparation temperature and extrusion molding temperature of about −50 ° C. or more is more preferable in the present invention. When a lubricant component whose melting point is significantly lower than the solution preparation temperature or the extrusion molding temperature is used, a sufficient effect cannot be expected from the viewpoint of heat resistance and thermal stability. Furthermore, in addition to the viewpoints of heat resistance and thermal stability in the above-mentioned polyolefin resin solution, the polyolefin resin solution is extruded to obtain a polyolefin porous membrane precursor, which has a uniform solution phase at high temperatures with the polyolefin resin. An organic substance that can be formed and has the ability to separate into two phases by cooling is extracted to finally obtain a polyolefin-based porous membrane, but the lubricant component that is difficult to remain and bleed out in this polyolefin-based porous membrane Is preferred. From these viewpoints, a fatty acid metal is preferable as the lubricant component used in the present invention.

ポリオレフィン系樹脂とポリオレフィン系樹脂を溶解可能な有機物との混合及び溶解は以下のような形態で実施できる。すなわち、ポリオレフィン系樹脂、上記有機物及び潤滑剤成分をそれぞれ所定量計量し加熱可能なミキサーにて加熱攪拌する。この際加熱温度は樹脂融点の+10〜+100℃が望ましい。これ以上の温度になるとポリオレフィンや有機物の分解の恐れがある。したがって、加熱温度は樹脂融点+80℃以下がより好ましく、樹脂融点+70℃以下がさらに好ましい。またこの温度を下回ると、有機物の樹脂溶解能にもよるが、溶解時間が長時間にわたる、あるいは樹脂あるいは混合物の粘度が高くなり均一な溶解が得られないという可能性がある。したがって、加熱温度は樹脂融点+20℃以上がより好ましく、樹脂融点+30℃以上がさらに好ましい。例えばポリオレフィン系樹脂としてポリエチレン、有機物として高級アルコールを用いた場合の溶解温度は145℃〜235℃程度である。   Mixing and dissolving the polyolefin resin and the organic substance capable of dissolving the polyolefin resin can be carried out in the following manner. That is, a predetermined amount of each of the polyolefin-based resin, the organic substance, and the lubricant component are weighed and heated and stirred by a heatable mixer. At this time, the heating temperature is preferably +10 to + 100 ° C. of the resin melting point. If the temperature is higher than this, there is a risk of decomposition of the polyolefin or organic matter. Accordingly, the heating temperature is more preferably the resin melting point + 80 ° C. or less, and further preferably the resin melting point + 70 ° C. or less. If the temperature is lower than this, depending on the ability of the organic resin to dissolve, there is a possibility that the dissolution takes a long time, or the viscosity of the resin or mixture becomes high and uniform dissolution cannot be obtained. Therefore, the heating temperature is more preferably a resin melting point + 20 ° C. or more, and further preferably a resin melting point + 30 ° C. or more. For example, when polyethylene is used as the polyolefin-based resin and higher alcohol is used as the organic substance, the dissolution temperature is about 145 ° C to 235 ° C.

ポリオレフィン系樹脂溶液の別の調製法としては前述した単軸あるいは二軸のスクリューを有する押出し機を利用する方法が挙げられる。ポリオレフィン系樹脂を溶解する有機物が室温で固体の場合は、あらかじめポリオレフィン系樹脂と該有機物を所定量にチップブレンドしておき押出し機に投入すればよく、好適である。   As another method for preparing the polyolefin resin solution, there is a method using an extruder having a single-screw or a twin-screw as described above. When the organic substance that dissolves the polyolefin resin is solid at room temperature, it is preferable that the polyolefin resin and the organic substance are preliminarily chip-blended into a predetermined amount and put into an extruder.

尚、ポリオレフィン系樹脂溶液には、必要に応じて酸化防止剤等の添加剤を加えることは何ら問題がない。酸化防止剤としては、添加物として公知のヒンダードフェノール系、硫黄系、燐系等の酸化防止剤などが挙げられるが、中でもヒンダードフェノール系酸化防止剤が安全性点でも好ましく、これらの例としてペンタエリスリチル・テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等が挙げられる。   It should be noted that there is no problem in adding an additive such as an antioxidant to the polyolefin resin solution as required. Examples of the antioxidant include known hindered phenol-based, sulfur-based, and phosphorus-based antioxidants as additives, and among them, hindered phenol-based antioxidants are preferable from the viewpoint of safety. And pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.

このようにして調製されたポリオレフィン系樹脂溶液は、定量押出しし所望の形状に成形する。フィルムまたはシートに成形するときはTダイ又はサーキュラーダイを用いる。また、中空糸膜を成形する場合は二重管ノズルを用いることができるが、内液を用いないC型や三点ブリッジタイプのノズルを用いることもできる。成形する際の温度はポリオレフィン系樹脂の融点+10〜+100℃以下であり、ポリオレフィン系樹脂溶液の相分離温度より高い範囲が望ましい。成形温度が上記温度範囲より高い場合、ポリオレフィン系樹脂の劣化やエアギャップ中での有機物の揮発により成形体中の樹脂濃度が高くなり膜構造が緻密化するなどの問題が生じることがある。したがって、成形温度はポリオレフィン系樹脂の融点+20℃以上がより好ましく、+30℃以上がさらに好ましい。一方、成形温度が上記温度範囲より低い場合、溶液粘度の増加にともない成形が困難になるのみならず、多孔質構造の制御が難しくなるという問題が生じる。したがって、成形温度はポリオレフィン系樹脂の融点+80℃以下がより好ましく、+70℃以下がさらに好ましい。   The polyolefin resin solution thus prepared is quantitatively extruded and molded into a desired shape. When forming into a film or sheet, a T die or a circular die is used. In addition, when forming a hollow fiber membrane, a double tube nozzle can be used, but a C-type or three-point bridge type nozzle that does not use an internal solution can also be used. The temperature at the time of molding is the melting point of the polyolefin resin +10 to + 100 ° C. or less, and a range higher than the phase separation temperature of the polyolefin resin solution is desirable. When the molding temperature is higher than the above temperature range, problems such as degradation of the polyolefin-based resin and volatilization of organic substances in the air gap may increase the resin concentration in the molded body and make the film structure dense. Therefore, the molding temperature is more preferably the melting point of the polyolefin-based resin + 20 ° C. or higher, and more preferably + 30 ° C. or higher. On the other hand, when the molding temperature is lower than the above temperature range, there arises a problem that not only the molding becomes difficult as the solution viscosity increases, but also the control of the porous structure becomes difficult. Therefore, the molding temperature is more preferably the melting point of the polyolefin resin + 80 ° C. or less, and more preferably + 70 ° C. or less.

このように押出された成形体はエアギャップを経て、ドラフト比が1.0〜10.0の範囲で冷却浴に導かれる。ドラフト比が1より小さいと、冷却浴中での浮力で巻き取りテンションが変動し易くなり、中空糸膜であれば糸の太細斑の原因となることがある。したがって、ドラフト比は1.2以上がより好ましく、1.5以上がさらに好ましい。一方、ドラフト比が10より大きくなると、吐出量一定条件では成形体の細化が大きくなる為、大孔径のノズルありるいは幅の広いリップを有するダイスを用いる必要が出てくる。したがって、ドラフト比は9.0以下がより好ましく、8.0以下がさらに好ましい。また、成形体の大きさを一定にしようとして吐出量を大きくすると、メルトフラクチャー様の押し出し不安定現象が発生する可能性がある。   The molded body thus extruded passes through the air gap and is led to the cooling bath with a draft ratio in the range of 1.0 to 10.0. If the draft ratio is less than 1, the winding tension tends to fluctuate due to buoyancy in the cooling bath, and a hollow fiber membrane may cause thick and thin threads. Therefore, the draft ratio is more preferably 1.2 or more, and further preferably 1.5 or more. On the other hand, if the draft ratio is greater than 10, the compacted article becomes thinner under the constant discharge rate condition, so that it is necessary to use a large diameter nozzle or a die having a wide lip. Therefore, the draft ratio is more preferably 9.0 or less, and even more preferably 8.0 or less. Further, if the discharge amount is increased in order to keep the size of the molded body constant, a melt fracture-like extrusion unstable phenomenon may occur.

エアギャップの長さは5〜100mmが好ましい。エアギャップが極端に短くなるとダイス面あるいはノズル面等の成形口金表面の温度制御が困難となり成形体の物性斑につながることがある。したがって、エアギャップの長さは7mm以上がより好ましく、10mm以上がさらに好ましい。一方、エアギャップ長が100mmを超えるとエアギャップ中で有機物の揮発が進み、成形体表面が樹脂濃縮され、成形体表面の構造が緻密化されることがある。したがって、エアギャップの長さは90mm以下がより好ましく、80mm以下がさらに好ましい。   The length of the air gap is preferably 5 to 100 mm. If the air gap becomes extremely short, it is difficult to control the temperature of the surface of the die such as the die surface or the nozzle surface, which may lead to uneven physical properties of the molded body. Therefore, the length of the air gap is more preferably 7 mm or more, and further preferably 10 mm or more. On the other hand, when the air gap length exceeds 100 mm, the volatilization of organic substances proceeds in the air gap, the molded body surface is concentrated with resin, and the structure of the molded body surface may be densified. Therefore, the length of the air gap is more preferably 90 mm or less, and further preferably 80 mm or less.

上記により多孔質前駆体を得ることが出来る。このように成形された多孔質前駆体から有機物成分を除去することにより多孔質膜を得ることができる。抽出溶剤は制限されるものではないが、ポリオレフィン系樹脂を溶解可能な有機液体または有機固体として高級アルコールを使用する場合、メタノール、エタノール、ヘキサンに代表される汎用の有機溶剤が使用可能であり、ハロゲン系有機溶剤等の環境問題に関わる溶剤を使用せずに済むという副次効果がある。   A porous precursor can be obtained by the above. A porous film can be obtained by removing the organic component from the porous precursor thus formed. The extraction solvent is not limited, but when using higher alcohols as organic liquids or organic solids that can dissolve polyolefin-based resins, general-purpose organic solvents represented by methanol, ethanol, hexane can be used, There is a secondary effect that it is not necessary to use a solvent related to environmental problems such as a halogen-based organic solvent.

このようにして得られる多孔質膜は機械的物性および膜特性の観点から延伸や熱処理を実施してもよい。これらの延伸や熱処理は有機物抽出前の多孔質前駆体の状態で実施してもよい。   The porous film thus obtained may be subjected to stretching or heat treatment from the viewpoint of mechanical properties and film characteristics. You may implement these extending | stretching and heat processing in the state of the porous precursor before organic substance extraction.

以下、本発明の内容および効果を実施例によって説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the contents and effects of the present invention will be described with reference to examples, but the present invention is not limited to the following examples.

(極限粘度の測定)
135℃のデカリンにてウベローデ型毛細粘度管により、種々の希薄溶液の比粘度を測定し、その比粘度を濃度で除した値の濃度に対するプロットの最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。尚、ポリオレフィン系樹脂に対して1wt%の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬製)を添加し、135℃で4時間攪拌溶解して測定溶液を調製した。
(Measurement of intrinsic viscosity)
The specific viscosity of various dilute solutions was measured with an Ubbelohde capillary viscosity tube at 135 ° C decalin, and the value obtained by dividing the specific viscosity by the concentration to the origin of the straight line obtained by the least square approximation of the plot. The intrinsic viscosity was determined from the extrapolation point. A 1 wt% antioxidant (trade name “Yoshinox BHT” manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was added to the polyolefin resin, and the mixture was stirred and dissolved at 135 ° C. for 4 hours to prepare a measurement solution.

(多孔質中空糸膜の表面観察)
走査電子顕微鏡(日立 S-2500型)により、プラチナ蒸着した試料の外膜表面観察を実施した。観察した視野をポラロイドカメラで撮影した。得られた写真から定規により任意に10個の孔径を測り、おおよその孔径を求めた。
(Surface observation of porous hollow fiber membrane)
The outer film surface of the platinum-deposited sample was observed with a scanning electron microscope (Hitachi S-2500 type). The observed field of view was photographed with a polaroid camera. Ten hole diameters were arbitrarily measured from the obtained photograph with a ruler to obtain an approximate hole diameter.

(実施例1)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン145M(極限粘度9.3dl/g))を1.20kgに1-ドデカノール(ナカライテスク製)6.80kg、及び酸化防止剤として樹脂の0.2wt%に相当するイルガノックス1010(長瀬産業)を170℃で加熱混合しポリエチレン樹脂溶液を作製した。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は15wt%であった。得られた溶液を押出し温度170℃の条件で外径3.0mm、内径2.0mm、スリット幅0.5mmのC型ノズルから1孔あたり3.0g/分の吐出量で押出した。ノズルから押出された中空状成形体は30mmのエアギャップを介して30℃の水槽を経てドラフト比2.5で巻き取った。ノズルからの吐出状態はやや表面に荒れが観察されたが良好な吐出状態でメルトフラクチャー様の吐出不安定現象は観察されなかった。
(Example 1)
It corresponds to 1.20 kg of polyethylene resin (Hi-Zex Million 145M (extreme viscosity 9.3 dl / g) manufactured by Mitsui Chemicals), 6.80 kg of 1-dodecanol (manufactured by Nacalai Tesque), and 0.2 wt% of the resin as an antioxidant. Irganox 1010 (Nagase Sangyo) was heated and mixed at 170 ° C. to prepare a polyethylene resin solution. The concentration of the polyolefin resin in the polyolefin resin solution was 15 wt%. The obtained solution was extruded at a discharge rate of 3.0 g / min per hole from a C-type nozzle having an outer diameter of 3.0 mm, an inner diameter of 2.0 mm, and a slit width of 0.5 mm under an extrusion temperature of 170 ° C. The hollow molded body extruded from the nozzle was wound up at a draft ratio of 2.5 through a 30 ° C. water tank through a 30 mm air gap. The discharge state from the nozzle was somewhat rough, but the melt fracture-like discharge instability phenomenon was not observed in a good discharge state.

まきとった多孔質中空糸膜前駆体を30℃に加温したエタノール浴に1時間浸漬することにより1−ドデカノールを抽出した。このようにして得られた中空糸膜のSEMによる表面構造観察をしたところ、0.5μm程度の孔を有する多孔質中空糸膜であった。   1-dodecanol was extracted by immersing the porous hollow fiber membrane precursor soaked in an ethanol bath heated to 30 ° C. for 1 hour. When the surface structure of the hollow fiber membrane thus obtained was observed by SEM, it was a porous hollow fiber membrane having pores of about 0.5 μm.

(実施例2)
樹脂の1wt%に相当するステアリン酸カルシウム(ナカライテスク製)を加えた以外は実施例1と同様の方法で多孔質中空糸膜を得た。ノズルからの吐出状態は表面荒れも観察されず良好な吐出状態であった。
(Example 2)
A porous hollow fiber membrane was obtained in the same manner as in Example 1 except that calcium stearate (manufactured by Nacalai Tesque) corresponding to 1 wt% of the resin was added. The discharge state from the nozzle was a good discharge state with no surface roughness observed.

(実施例3)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン145M)を1.60kg、1-ドデカノール6.40kg、ステアリン酸カルシウムを樹脂の2wt%に相当する量とした以外は実施例2と同様の方法で多孔質中空糸膜を得た。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は20wt%であった。ノズルからの吐出状態は表面荒れも観察されず良好な吐出状態であった。また、多孔質中空糸膜のSEMによる表面観察の結果、膜外表面には0.1〜0.5μm程度の孔を有する多孔質構造が観察された。
(Example 3)
A porous hollow fiber membrane was produced in the same manner as in Example 2 except that polyethylene resin (Hi-Z Million 145M manufactured by Mitsui Chemicals) was used in an amount corresponding to 1.60 kg, 1-dodecanol 6.40 kg, and calcium stearate corresponding to 2 wt% of the resin. Got. The concentration of the polyolefin resin in the polyolefin resin solution was 20 wt%. The discharge state from the nozzle was a good discharge state with no surface roughness observed. Moreover, as a result of surface observation by SEM of the porous hollow fiber membrane, a porous structure having pores of about 0.1 to 0.5 μm was observed on the outer surface of the membrane.

(実施例4)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン145M)を1.92kg、1-ドデカノールを6.08kg、ステアリン酸カルシウムを樹脂の3wt%に相当する量とした以外は実施例2と同様の方法で多孔質中空糸膜を得た。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は24wt%であった。ノズルからの吐出状態は表面荒れも観察されず良好な吐出状態であった。また、多孔質中空糸膜のSEMによる外表面観察の結果、膜外表面には0.1μm程度の多孔質構造が観察された。
Example 4
Porous hollow fiber in the same manner as in Example 2 except that polyethylene resin (Hiex Million 145M manufactured by Mitsui Chemicals) was changed to 1.92 kg, 1-dodecanol was changed to 6.08 kg, and calcium stearate was equivalent to 3 wt% of the resin. A membrane was obtained. The concentration of the polyolefin resin in the polyolefin resin solution was 24 wt%. The discharge state from the nozzle was a good discharge state with no surface roughness observed. As a result of observation of the outer surface of the porous hollow fiber membrane by SEM, a porous structure of about 0.1 μm was observed on the outer surface of the membrane.

(実施例5)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン030S(極限粘度5.1dl/g))を2.24kg、1−ドデカノールを5.76kgとした以外は実施例1と同様の方法で多孔質中空糸膜を得た。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は28wt%であった。ノズルからの吐出状態は良好であった。また、多孔質中空糸膜のSEMによる表面観察の結果、中空糸膜外表面には0.05〜0.1μmの孔が観察された。
(Example 5)
A porous hollow fiber membrane was obtained in the same manner as in Example 1 except that 2.24 kg of polyethylene resin (Hi-Zex Million 030S (extreme viscosity 5.1 dl / g) manufactured by Mitsui Chemicals) and 5.76 kg of 1-dodecanol were used. It was. The concentration of the polyolefin resin in the polyolefin resin solution was 28 wt%. The discharge state from the nozzle was good. Moreover, as a result of surface observation by SEM of the porous hollow fiber membrane, pores of 0.05 to 0.1 μm were observed on the outer surface of the hollow fiber membrane.

(実施例6)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン240M(極限粘度16.0dl/g))を0.96kg、1−ドデカノールを7.04kg、樹脂の4wt%に相当するステアリン酸カルシウムを加えた以外は実施例2と同様の方法で多孔質中空糸膜を得た。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は12wt%であった。ノズルからの吐出状態はやや表面に荒れが観察されるもの良好であった。また、多孔質中空糸膜のSEM観察では、中空糸膜外表面に0.5μm程度の孔を有する多孔質構造が観察された。
(Example 6)
Example 2 except that 0.96 kg of polyethylene resin (Hi-Zex Million 240M (extreme viscosity 16.0 dl / g) manufactured by Mitsui Chemicals), 7.04 kg of 1-dodecanol, and calcium stearate corresponding to 4 wt% of the resin were added. A porous hollow fiber membrane was obtained in the same manner. The concentration of the polyolefin resin in the polyolefin resin solution was 12 wt%. The discharge state from the nozzle was good, with some roughness observed on the surface. Further, in SEM observation of the porous hollow fiber membrane, a porous structure having pores of about 0.5 μm on the outer surface of the hollow fiber membrane was observed.

(実施例7)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン320M(極限粘度18.4dl/g))を0.56kg、1−ドデカノールを7.44kg、樹脂の5wt%に相当するステアリン酸カルシウムを加えた以外は実施例2と同様の方法で多孔質中空糸膜を得た。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は7wt%であった。ノズルからの吐出状態はやや表面に荒れが観察されるもの良好であった。また、多孔質中空糸膜のSEM観察では、中空糸膜外表面に0.8μm程度の孔を有する多孔質構造が観察された。
(Example 7)
Example 2 except that 0.56 kg of polyethylene resin (Hi-Zex Million 320M (extreme viscosity 18.4 dl / g) manufactured by Mitsui Chemicals), 7.44 kg of 1-dodecanol, and calcium stearate corresponding to 5 wt% of the resin were added. A porous hollow fiber membrane was obtained in the same manner. The concentration of the polyolefin resin in the polyolefin resin solution was 7 wt%. The discharge state from the nozzle was good, with some roughness observed on the surface. Further, in the SEM observation of the porous hollow fiber membrane, a porous structure having pores of about 0.8 μm on the outer surface of the hollow fiber membrane was observed.

(比較例1)
ポリエチレン樹脂(東ソー製ニポロンハード5700(極限粘度1.5dl/g))を3.20kg、1-ドデカノールを4.80kg、押出し温度を160℃とした以外は実施例1と同様の方法で多孔質中空糸膜を得た。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は40wt%であった。ノズルからの吐出状態は良好であった。但し、得られた中空糸膜表面をSEMで観察した結果、膜外表面は緻密な構造で多孔質構造は観察されなかった。
(Comparative Example 1)
Porous hollow in the same manner as in Example 1 except that 3.20 kg of polyethylene resin (Tosoh Nipolon Hard 5700 (Intrinsic Viscosity 1.5 dl / g)), 4.80 kg of 1-dodecanol, and 160 ° C. extrusion temperature were used. A yarn membrane was obtained. The concentration of the polyolefin resin in the polyolefin resin solution was 40 wt%. The discharge state from the nozzle was good. However, as a result of observing the obtained hollow fiber membrane surface with SEM, the outer surface of the membrane was a dense structure and a porous structure was not observed.

(比較例2)
ポリエチレン樹脂(東ソー製ニポロンハード5700)を0.32kg、1-ドデカノールを7.68kg、押出し温度を150℃とした以外は実施例1と同様の方法で中空糸膜紡糸を実施した。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は4wt%であった。しかしながら、樹脂溶液粘度が低く安定して巻き取ることが出来なかった。
(Comparative Example 2)
Hollow fiber membrane spinning was carried out in the same manner as in Example 1, except that 0.32 kg of polyethylene resin (Nipolon Hard 5700 manufactured by Tosoh Corporation), 7.68 kg of 1-dodecanol, and an extrusion temperature of 150 ° C. were used. The concentration of the polyolefin resin in the polyolefin resin solution was 4 wt%. However, the resin solution has a low viscosity and could not be wound stably.

(比較例3)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン340M(極限粘度21.0dl/g))0.4kgに1-ドデカノール7.6kg、樹脂の5wt%に相当するステアリン酸カルシウムを加えた以外は実施例2の方法で中空糸膜紡糸を実施した。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は5wt%であった。しかしながらノズルからの吐出時メルトフラクチャー様の不安定現象が観察され、吐出物を巻き取ることはできなかった。
(Comparative Example 3)
According to the method of Example 2 except that 0.4 kg of polyethylene resin (Hi-Zex Million 340M (Mitsubishi Chemical Co., Ltd., intrinsic viscosity 21.0 dl / g)) 1-dodecanol 7.6 kg and calcium stearate corresponding to 5 wt% of the resin were added. Hollow fiber membrane spinning was performed. The concentration of the polyolefin resin in the polyolefin resin solution was 5 wt%. However, a melt fracture-like instability phenomenon was observed during ejection from the nozzle, and the ejected material could not be wound up.

(比較例4)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン320M(極限粘度18.4dl/g))を0.32kg、1−ドデカノールを7.68kgとした以外は実施例1と同様の方法で中空糸膜紡糸を実施した。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は4wt%であった。しかしながらノズルからの吐出時吐出時メルトフラクチャー様の不安定現象が観察され、吐出物を巻き取ることはできなかった。
(Comparative Example 4)
Hollow fiber membrane spinning was carried out in the same manner as in Example 1, except that 0.32 kg of polyethylene resin (Hi-Zex Million 320M (extreme viscosity 18.4 dl / g) manufactured by Mitsui Chemicals) and 7.68 kg of 1-dodecanol were used. . The concentration of the polyolefin resin in the polyolefin resin solution was 4 wt%. However, an unstable phenomenon like melt fracture at the time of discharge from the nozzle was observed, and the discharged material could not be wound up.

(比較例5)
ポリエチレン樹脂(三井化学製ハイゼックスミリオン030S(極限粘度5.1dl/g))を3.04kg、1−ドデカノールを4.96kgとした以外は実施例7と同様の方法で多孔質中空糸膜を得た。ポリオレフィン系樹脂溶液中のポリオレフィン系樹脂の濃度は38wt%であった。ノズルからの吐出状態はやや表面に荒れが観察されたが良好な吐出状態であった。但し、得られた中空糸膜表面をSEMで観察した結果、膜外表面は緻密な構造で多孔質構造は観察されなかった。
(Comparative Example 5)
A porous hollow fiber membrane was obtained in the same manner as in Example 7 except that 3.04 kg of polyethylene resin (Hi-Zex Million 030S (extreme viscosity 5.1 dl / g) manufactured by Mitsui Chemicals) and 4.96 kg of 1-dodecanol were used. It was. The concentration of the polyolefin resin in the polyolefin resin solution was 38 wt%. The discharge state from the nozzle was a good discharge state although roughness on the surface was slightly observed. However, as a result of observing the obtained hollow fiber membrane surface with SEM, the outer surface of the membrane was a dense structure and a porous structure was not observed.

本発明は、極限粘度が5〜20dl/gのポリオレフィン系樹脂を高級アルコールにポリオレフィン系樹脂の濃度が5〜30wt%になるように溶解させて、該ポリオレフィン系樹脂溶液を押出成形し、エアギャップを経て冷却浴にてポリオレフィン系樹脂溶液を冷却固化させポリオレフィン系多孔質前駆体を得、その後抽出溶剤を用いて該有機物を抽出する製造方法を採用することにより、機械的物性に優れかつ環境への影響に配慮されたポリオレフィン系多孔質膜を得ることが可能である。また、このようにして得られたポリオレフィン系多孔質膜は、コンデンサー及びリチウムイオン電池等に利用されるセパレーター用途あるいは水処理における除菌及び除濁等のろ過のフィルター用途等に好適に使用することができるため、産業の発展に寄与することが大である。   In the present invention, a polyolefin resin having an intrinsic viscosity of 5 to 20 dl / g is dissolved in a higher alcohol so that the concentration of the polyolefin resin is 5 to 30 wt%, and the polyolefin resin solution is extruded to form an air gap. The polyolefin resin solution is cooled and solidified in a cooling bath to obtain a polyolefin porous precursor, and then the manufacturing method of extracting the organic substance using an extraction solvent is adopted, so that the mechanical properties are excellent and the environment is improved. It is possible to obtain a polyolefin-based porous membrane in consideration of the influence of the above. In addition, the polyolefin-based porous membrane thus obtained should be suitably used for separators used for capacitors, lithium ion batteries, etc., or for filtering filters such as sterilization and turbidity in water treatment. Can contribute to the development of industry.

Claims (4)

ポリエチレン系樹脂を、高温で均一な溶液相が形成可能で、かつ冷却により二相分離する能力を有する有機物に溶解させたものであり、ポリエチレン系樹脂100重量部に対して脂肪酸金属塩を0.10重量部以上6.00重量部以下含む均一溶液を、二重管ノズルまたはC型ノズルを用いて押出成形し、エアギャップを経て冷却浴にてポリエチレン系樹脂溶液を冷却固化させポリエチレン系中空糸多孔質膜前駆体を得、その後抽出溶剤を用いて該有機物を除去することによりポリエチレン系中空糸多孔質膜を得る方法であって、該有機物が高級アルコールであり、ポリエチレン系樹脂の極限粘度が5〜20dl/g、かつポリエチレン系樹脂溶液中のポリエチレン系樹脂の濃度が5〜35wt%であることを特徴とするポリエチレン系中空糸多孔質膜の製造方法。 A polyethylene resin is dissolved in an organic substance capable of forming a uniform solution phase at a high temperature and capable of two-phase separation by cooling. the homogeneous solution containing 10 parts by weight or more 6.00 parts by weight, and extruded using a double-tube nozzle or C nozzle, polyethylene hollow polyethylene resin solution was cooled and solidified by the cooling bath through an air gap A method of obtaining a polyethylene hollow fiber porous membrane by obtaining a yarn porous membrane precursor and then removing the organic material using an extraction solvent, wherein the organic material is a higher alcohol, and the intrinsic viscosity of the polyethylene resin polyethylene hollow but, wherein 5~20dl / g, and the concentration of the polyethylene resin of the polyethylene resin solution is 5~35Wt% Method for producing a porous membrane. エアギャップの長さを5〜100mmにする請求項1に記載のポリエチレン系中空糸多孔質膜の製造方法。 The method for producing a polyethylene-based hollow fiber porous membrane according to claim 1, wherein the length of the air gap is 5 to 100 mm. ポリエチレン系樹脂溶液へ、さらに酸化防止剤を加える請求項1または2に記載のポリエチレン系中空糸多孔質膜の製造方法。 The manufacturing method of the polyethylene-type hollow fiber porous membrane of Claim 1 or 2 which adds antioxidant further to a polyethylene-type resin solution. 高級アルコールが炭素数10〜20の高級アルコールであることを特徴とする請求項1〜3いずれか記載のポリエチレン系中空糸多孔質膜の製造方法。 The method for producing a polyethylene-based hollow fiber porous membrane according to any one of claims 1 to 3, wherein the higher alcohol is a higher alcohol having 10 to 20 carbon atoms.
JP2005073241A 2005-03-15 2005-03-15 Method for producing polyethylene-based hollow fiber porous membrane Active JP4810847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073241A JP4810847B2 (en) 2005-03-15 2005-03-15 Method for producing polyethylene-based hollow fiber porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073241A JP4810847B2 (en) 2005-03-15 2005-03-15 Method for producing polyethylene-based hollow fiber porous membrane

Publications (2)

Publication Number Publication Date
JP2006255518A JP2006255518A (en) 2006-09-28
JP4810847B2 true JP4810847B2 (en) 2011-11-09

Family

ID=37095312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073241A Active JP4810847B2 (en) 2005-03-15 2005-03-15 Method for producing polyethylene-based hollow fiber porous membrane

Country Status (1)

Country Link
JP (1) JP4810847B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304784B (en) * 2006-04-07 2014-07-23 帝斯曼知识产权资产管理有限公司 High-strength polyethylene fiber and method for producing the same
KR101199826B1 (en) 2006-12-14 2012-11-09 에스케이이노베이션 주식회사 Preparing method of microporous polyolefin film through effective extrusion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790153B2 (en) * 1986-04-28 1995-10-04 三菱化学株式会社 Polyolefin permeable membrane and method for producing the same
JPH0778146B2 (en) * 1987-06-25 1995-08-23 東レ株式会社 Method for producing polyolefin microporous membrane
JPS6451104A (en) * 1987-08-24 1989-02-27 Mitsubishi Chem Ind Liquid-through type filter element
JP2001300275A (en) * 2000-04-20 2001-10-30 Asahi Kasei Corp Polyolefin hollow-fiber type porous membrane

Also Published As

Publication number Publication date
JP2006255518A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP5603781B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP4033246B2 (en) Method for producing highly permeable polyolefin microporous membrane
US6299773B1 (en) Porous polyvinylidene fluoride resin film and process for producing the same
JP5339677B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP5576866B2 (en) Method for producing vinylidene fluoride resin porous membrane
JPWO1999021914A6 (en) Method for producing high permeability polyolefin microporous membrane
WO2017155004A1 (en) Porous hollow fiber membrane, production method therefor, and filtration method
JP5531667B2 (en) Manufacturing method of polyvinylidene fluoride porous membrane
WO2001028667A1 (en) Heat-resistant microporous film
KR102416988B1 (en) Separator, cellulosic resin composition, and method for manufacturing a separation membrane
JP2012040461A (en) Method for manufacturing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filter using porous hollow fiber membrane, and water-treating method using porous hollow fiber membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP4810847B2 (en) Method for producing polyethylene-based hollow fiber porous membrane
JP5064409B2 (en) Semi-crystalline polymer microporous membrane and method for producing the same
KR102326440B1 (en) Separator and method for manufacturing the separation membrane
JP4882250B2 (en) Method for producing polyolefin porous membrane
JP2008062227A (en) Raw material solution for preparing membrane, porous membrane, and method for preparing porous membrane
CN114828990B (en) Separation membrane and method for producing separation membrane
JP4810845B2 (en) Polyethylene hollow fiber porous membrane
WO2011027878A1 (en) Porous vinylidene fluoride resin membrane and process for producing same
JP2018144006A (en) Porous hollow fiber membrane and manufacturing method of the same
JP7185448B2 (en) Porous hollow fiber membrane, manufacturing method thereof, and filtration method
JP2005193200A (en) Hollow fiber membrane having excellent mechanical strength and its production method
JPH0778146B2 (en) Method for producing polyolefin microporous membrane
JP7107429B2 (en) Separation membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R151 Written notification of patent or utility model registration

Ref document number: 4810847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350