JP4810253B2 - Control device for four-wheel drive vehicle - Google Patents

Control device for four-wheel drive vehicle Download PDF

Info

Publication number
JP4810253B2
JP4810253B2 JP2006044111A JP2006044111A JP4810253B2 JP 4810253 B2 JP4810253 B2 JP 4810253B2 JP 2006044111 A JP2006044111 A JP 2006044111A JP 2006044111 A JP2006044111 A JP 2006044111A JP 4810253 B2 JP4810253 B2 JP 4810253B2
Authority
JP
Japan
Prior art keywords
air pressure
wheel
drive
abnormality
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006044111A
Other languages
Japanese (ja)
Other versions
JP2007223370A (en
Inventor
萌 李
健三 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006044111A priority Critical patent/JP4810253B2/en
Publication of JP2007223370A publication Critical patent/JP2007223370A/en
Application granted granted Critical
Publication of JP4810253B2 publication Critical patent/JP4810253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、前後輪及び左右輪間の駆動力の配分を変更可能な駆動力配分装置を備えた四輪駆動車両において、車輪のパンクを検出した際の駆動力の配分を変更する四輪駆動車両の制御装置に関する。   The present invention relates to a four-wheel drive that changes the distribution of driving force when a puncture of a wheel is detected in a four-wheel drive vehicle including a driving force distribution device that can change the distribution of driving force between front and rear wheels and left and right wheels. The present invention relates to a vehicle control device.

車両のタイヤの空気圧がある程度以上低下した状態で走行することは好ましくないので、従来より、種々のタイヤ空気圧判定装置が提案されている。例えば、タイヤ空気圧をセンサで検知しタイヤ空気圧の低下を判定するようにしたもの、或いは、タイヤ空気圧が低下すると、空気圧が低下した車輪の回転数が増加することから、四輪の車輪速をそれぞれ検出する車輪速センサを設け、車輪速センサで検出した車輪速に基づいてタイヤ空気圧の低下を判定するようにしたもの等が提案されている。   Since it is not preferable to travel in a state where the tire air pressure of the vehicle is lowered to some extent, various tire air pressure determination devices have been proposed. For example, the tire pressure is detected by a sensor and the decrease in the tire pressure is determined, or when the tire pressure decreases, the number of rotations of the wheel with the decreased air pressure increases. There has been proposed a wheel speed sensor that detects a decrease in tire air pressure based on the wheel speed detected by the wheel speed sensor.

例えば、特開昭63−305011号公報に開示されたタイヤ空気圧判定装置では、四つの車輪の車輪速センサからの出力を用いて、対角線上にある一対の車輪の車輪速の合計と、他の対角線上にある一対の車輪の車輪速の合計との差が所定値以上のときに、合計車輪速が大きい方の一対の車輪のいずれかのタイヤの空気圧が低下したと判定する。   For example, in the tire air pressure determination device disclosed in Japanese Patent Application Laid-Open No. 63-305011, the output from the wheel speed sensors of four wheels is used to calculate the sum of the wheel speeds of a pair of wheels on a diagonal line, When the difference from the sum of the wheel speeds of the pair of wheels on the diagonal is equal to or greater than a predetermined value, it is determined that the tire air pressure of one of the pair of wheels having the larger total wheel speed has decreased.

そして、その一対の車輪の車輪速のうちの大きい方の車輪速が、四輪の車輪速の平均値よりも所定値以上大きいときに、その車輪の空気圧が低下したと判定し、その判定結果を警報装置に出力する。   Then, when the larger wheel speed of the pair of wheels is larger than the average value of the wheel speeds of the four wheels by a predetermined value or more, it is determined that the air pressure of the wheels has decreased, and the determination result Is output to the alarm device.

また、特開平6−286436号公報には、ロック状態とロック解除状態とに切替可能な差動制限装置と、車輪のタイヤ空気圧の異常を検知して警報を出力するタイヤ空気圧判定装置とを備えた車両において、タイヤ空気圧判定装置からタイヤ空気圧異常の判定を受けて、差動制限装置をロック状態に切替える切替制御手段を設けたことを特徴とする車両の制御装置が開示されている。
特開昭63−305011号公報 特開平6−286436号公報
Japanese Patent Laid-Open No. 6-286436 includes a differential limiting device that can be switched between a locked state and an unlocked state, and a tire air pressure determining device that detects an abnormality in the tire air pressure of the wheel and outputs an alarm. Further, there is disclosed a vehicle control device characterized in that the vehicle is provided with switching control means for receiving a tire pressure abnormality determination from the tire air pressure determination device and switching the differential limiting device to a locked state.
JP 63-305011 A JP-A-6-286436

従来の四輪駆動車両では、一般的に駆動力配分装置が搭載されていないため、タイヤパンクを検出しても何ら特別な制御を実施しないか、或いは特許文献2に開示されているように、タイヤパンクの検出に応じて、差動制限装置をロック状態に切替える制御をしているだけであり、適切な駆動力の配分制御を実施することは不可能であった。   In a conventional four-wheel drive vehicle, since a driving force distribution device is not generally mounted, even if tire puncture is detected, no special control is performed, or as disclosed in Patent Document 2, The control only switches the differential limiting device to the locked state in response to the detection of the tire puncture, and it is impossible to carry out appropriate drive force distribution control.

車両のタイヤがパンクすると、パンクした車輪の走行抵抗が増加するため、走行安定性が低下する。特に高速道路を走行中にタイヤがパンクすると、走行安定性が極度に低下するため、パンクしたタイヤの空気圧に応じて駆動力配分量を適正に制御する四輪駆動車両の制御装置を提供することが必要とされる。   When the tire of the vehicle is punctured, the running resistance of the punctured wheel is increased, and thus the running stability is lowered. Provided is a control device for a four-wheel drive vehicle that appropriately controls the amount of driving force distribution according to the air pressure of a punctured tire, especially when the tire is punctured while traveling on an expressway. Is needed.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、パンクしたタイヤの空気圧の変化に応じて駆動力配分量を適切に制御する四輪駆動車両の制御装置を提供することである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a control device for a four-wheel drive vehicle that appropriately controls a drive force distribution amount in accordance with a change in air pressure of a punctured tire. Is to provide.

請求項1記載の発明によると、駆動源と常に連結された一対の主駆動輪と、該駆動源により駆動力配分装置を介して駆動される一対の従駆動輪とを有し、該駆動力配分装置により主駆動輪と従駆動輪間及び左右の従駆動輪間で駆動力を配分可能な四輪駆動車両の制御装置であって、車両の運転状態を検出する運転状態検出手段と、前記一対の主駆動輪の空気圧を検出する第1及び第2空気圧検出手段と、予め定められた車輪の空気圧の閾値と前記第1及び第2空気圧検出手段で検出した空気圧とを比較する空気圧比較手段と、前記空気圧比較手段の出力に基づいて空気圧が前記閾値以下の主駆動輪を検出する空気圧異常検出手段と、前記第1及び第2空気圧検出手段の出力に基づいて前記一対の主駆動輪の空気圧の比を算出する空気圧比算出手段と、前記空気圧異常検出手段により空気圧の異常が検出されたとき、前記運転状態検出手段で検出した車両の運転状態及び前記空気圧比算出手段で算出した空気圧比に応じて、前記駆動力配分装置の駆動力配分量を変更する制御手段と、を具備したことを特徴とする四輪駆動車両の制御装置が提供される。   According to the first aspect of the present invention, the driving power source includes a pair of main driving wheels always connected to the driving source and a pair of slave driving wheels driven by the driving source via the driving force distribution device. A control device for a four-wheel drive vehicle capable of allocating driving force between the main drive wheel and the slave drive wheel and between the left and right slave drive wheels by the distribution device, the driving state detection means for detecting the driving state of the vehicle, First and second air pressure detecting means for detecting air pressure of the pair of main drive wheels, and air pressure comparing means for comparing a predetermined threshold value of the wheel air pressure with the air pressure detected by the first and second air pressure detecting means; Air pressure abnormality detecting means for detecting a main drive wheel having an air pressure equal to or lower than the threshold value based on an output of the air pressure comparison means; and a pair of main drive wheels based on outputs of the first and second air pressure detection means. Air pressure ratio calculation to calculate air pressure ratio And when the air pressure abnormality is detected by the air pressure abnormality detecting means, the driving force distribution device according to the vehicle operating state detected by the operating state detecting means and the air pressure ratio calculated by the air pressure ratio calculating means There is provided a control device for a four-wheel drive vehicle, comprising: a control means for changing the driving force distribution amount.

請求項2記載の発明によると、請求項1記載の発明において、前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常が検出された主駆動輪側に旋回中である場合には、空気圧の異常が検出された主駆動輪と反対側の従駆動輪の駆動力配分量を、空気圧の異常が検出された主駆動輪と同一側の従駆動輪に配分する駆動力配分量よりも大きくなるように制御することを特徴とする四輪駆動車両の制御装置が提供される。   According to a second aspect of the present invention, in the first aspect of the invention, the control means is a main drive in which an abnormality in air pressure is detected by the air pressure abnormality detecting means in the vehicle operating state detected by the driving state detecting means. When the vehicle is turning to the wheel side, the distribution of the driving force of the slave drive wheel on the opposite side of the master drive wheel where the air pressure abnormality is detected is set to the same value as the slave drive wheel on the same side as the main drive wheel where the air pressure abnormality is detected. There is provided a control device for a four-wheel drive vehicle, characterized in that control is performed so as to be larger than a drive force distribution amount distributed to drive wheels.

請求項3記載の発明によると、請求項1記載の発明において、前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常が検出された主駆動輪と反対側に旋回中である場合には、前記空気圧異常検出手段により空気圧の異常が検出された主駆動輪と同一側の従駆動輪の駆動力配分量を、前記空気圧異常検出手段により異常が検出された主駆動輪と反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする四輪駆動車両の制御装置が提供される。   According to a third aspect of the present invention, in the first aspect of the invention, the control means is a main drive in which an abnormality in air pressure is detected by the air pressure abnormality detecting means in the vehicle operating state detected by the driving state detecting means. When the vehicle is turning to the opposite side of the wheel, the air pressure abnormality detecting means abnormally detects the driving force distribution amount of the driven wheel on the same side as the main driving wheel where the air pressure abnormality is detected by the air pressure abnormality detecting means. There is provided a control device for a four-wheel drive vehicle, which is controlled so as to be larger than a drive force distribution amount of a slave drive wheel on the opposite side of the main drive wheel in which is detected.

請求項4記載の発明によると、請求項1記載の発明において、前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が直進走行状態である場合には、前記空気圧異常検出手段により空気圧の異常を検出した主駆動輪側と同一側の従駆動輪の駆動力配分量を、反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする四輪駆動車両の制御装置が提供される。   According to a fourth aspect of the present invention, in the first aspect of the invention, when the driving state of the vehicle detected by the driving state detecting unit is a straight traveling state, the control unit uses the air pressure abnormality detecting unit. Four-wheel control, wherein the drive force distribution amount of the slave drive wheel on the same side as the primary drive wheel side in which an abnormality in air pressure is detected is controlled to be larger than the drive force distribution amount of the slave drive wheel on the opposite side A drive vehicle control device is provided.

請求項5記載の発明によると、駆動源と常に連結された一対の主駆動輪と、該駆動源により駆動力配分装置を介して駆動される一対の従駆動輪とを有し、該駆動力配分装置により主駆動輪と従駆動輪間及び左右の従駆動輪間で駆動力を配分可能な四輪駆動車両の制御装置であって、車両の運転状態を検出する運転状態検出手段と、前記一対の従駆動輪の空気圧を検出する第1及び第2空気圧検出手段と、予め定められた車輪の空気圧の閾値と前記第1及び第2空気圧検出手段で検出した空気圧とを比較する空気圧比較手段と、前記空気圧比較手段の出力に基づいて空気圧が前記閾値以下の従駆動輪を検出する空気圧異常検出手段と、前記第1及び第2空気圧検出手段の出力に基づいて前記一対の従駆動輪の空気圧の比を算出する空気圧比算出手段と、前記空気圧異常検出手段により空気圧の異常が検出されたとき、前記運転状態検出手段で検出した車両の運転状態及び前記空気圧比算出手段で算出した空気圧比に応じて、前記駆動力配分装置の駆動力配分量を変更する制御手段と、を具備したことを特徴とする四輪駆動車両の制御装置が提供される。   According to the fifth aspect of the present invention, the driving power source includes a pair of main driving wheels always connected to the driving source, and a pair of slave driving wheels driven by the driving source via the driving force distribution device. A control device for a four-wheel drive vehicle capable of allocating driving force between the main drive wheel and the slave drive wheel and between the left and right slave drive wheels by the distribution device, the driving state detection means for detecting the driving state of the vehicle, First and second air pressure detecting means for detecting the air pressure of the pair of driven wheels, and an air pressure comparing means for comparing a predetermined threshold value of the wheel air pressure with the air pressure detected by the first and second air pressure detecting means; Air pressure abnormality detecting means for detecting a driven wheel whose air pressure is equal to or lower than the threshold value based on the output of the air pressure comparing means; and the pair of driven wheels based on the outputs of the first and second air pressure detecting means. Air pressure ratio calculation to calculate air pressure ratio And when the air pressure abnormality is detected by the air pressure abnormality detecting means, the driving force distribution device according to the vehicle operating state detected by the operating state detecting means and the air pressure ratio calculated by the air pressure ratio calculating means There is provided a control device for a four-wheel drive vehicle, comprising: a control means for changing the driving force distribution amount.

請求項6記載の発明によると、請求項5記載の発明において、前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常を検出した従駆動輪側に旋回中である場合には、前記空気圧異常検出手段により空気圧の異常を検出した従駆動輪と反対側の従駆動輪の駆動力配分量を、空気圧の異常が検出された従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする四輪駆動車両の制御装置が提供される。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the control means is a driven wheel in which the operating state of the vehicle detected by the operating state detecting means detects an abnormality in air pressure by the air pressure abnormality detecting means. When the vehicle is turning to the side, the driving force distribution amount of the slave drive wheel on the opposite side to the slave drive wheel on which the air pressure abnormality is detected by the air pressure abnormality detection means is the same as that of the slave drive wheel on which the air pressure abnormality is detected. There is provided a control device for a four-wheel drive vehicle, characterized in that the control is performed so as to be larger than a driving force distribution amount.

請求項7記載の発明によると、請求項5記載の発明において、前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常を検出した従駆動輪と反対側に旋回中である場合には、前記空気圧異常手段により空気圧の異常を検出した従駆動輪の駆動力配分量を、反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする四輪駆動車両の制御装置が提供される。   According to a seventh aspect of the present invention, in the fifth aspect of the present invention, the control means is a driven wheel in which the operating state of the vehicle detected by the operating state detecting means detects an abnormal air pressure by the air pressure abnormality detecting means. When the vehicle is turning to the opposite side, the drive force distribution amount of the driven wheel that has detected an abnormality in air pressure by the air pressure abnormality means is larger than the drive force distribution amount of the opposite drive wheel on the opposite side. A control device for a four-wheel drive vehicle is provided.

請求項8記載の発明によると、請求項5記載の発明において、前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が直進走行状態である場合には、前記空気圧異常検出手段により空気圧の異常が検出された従駆動輪の駆動力配分量を、反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする四輪駆動車両の制御装置が提供される。   According to an eighth aspect of the present invention, in the fifth aspect of the present invention, when the vehicle driving state detected by the driving state detecting unit is a straight traveling state, the control unit uses the air pressure abnormality detecting unit. Provided is a control device for a four-wheel drive vehicle, wherein the drive force distribution amount of a slave drive wheel in which an abnormality in air pressure is detected is controlled to be larger than the drive force distribution amount of a slave drive wheel on the opposite side Is done.

請求項1〜請求項4記載の発明によると、主駆動輪のいずれかがパンクした場合に、運転状態に応じて左右の従駆動輪に配分する駆動力配分量を適切に制御できるため、タイヤ変形により走行安定性が低下するのを抑制して、走行安定性を確保することができる。   According to the first to fourth aspects of the present invention, when any of the main driving wheels is punctured, the amount of driving force distributed to the left and right driven wheels can be appropriately controlled according to the driving state. The running stability can be secured by suppressing the running stability from being lowered due to the deformation.

請求項5〜請求項8記載の発明によると、従駆動輪のいずれかがパンクした場合に、運転状態に応じて左右の従駆動輪に配分する駆動力配分量を適切に制御できるため、タイヤ変形により走行安定性が低下するのを抑制して、走行安定性を確保することができる。   According to the fifth to eighth aspects of the present invention, when any of the driven wheels is punctured, the driving force distribution amount distributed to the left and right driven wheels can be appropriately controlled according to the driving state. The running stability can be secured by suppressing the running stability from being lowered due to the deformation.

図1を参照すると、本発明の制御装置を適用可能なフロントエンジン・フロントドライブ(FF)車ベースの四輪駆動車両の動力伝達装置の概略図が示されている。   Referring to FIG. 1, there is shown a schematic diagram of a power transmission device for a four-wheel drive vehicle based on a front engine / front drive (FF) vehicle to which the control device of the present invention can be applied.

図1に示すように、動力伝達系は、車両前方に配置されたエンジン2の動力がトランスミッション4の出力軸4aから伝達されるフロントデファレンシャル装置6と、このフロントデファレンシャル装置6からの動力がトランスファ7及びプロペラシャフト8を介して伝達される増速装置(変速装置)10と、増速装置10からの動力が伝達されるリヤデファレンシャル装置12を主に含んでいる。   As shown in FIG. 1, the power transmission system includes a front differential device 6 in which power from an engine 2 disposed in front of the vehicle is transmitted from an output shaft 4 a of a transmission 4, and power from the front differential device 6 is transferred to a transfer 7. And a speed increasing device (transmission device) 10 transmitted through the propeller shaft 8 and a rear differential device 12 to which power from the speed increasing device 10 is transmitted.

フロントデファレンシャル装置6は従来周知の構造となっており、トランスミッション4の出力軸4aからの動力をデフケース6a内の複数のギヤ14と出力軸16,18を介して左右の前輪駆動軸(車軸)20,22に伝達することにより、左右の前輪21,23が駆動される。   The front differential device 6 has a conventionally known structure, and power from the output shaft 4a of the transmission 4 is transmitted to the left and right front wheel drive shafts (axles) 20 via a plurality of gears 14 and output shafts 16 and 18 in the differential case 6a. , 22, the left and right front wheels 21, 23 are driven.

リヤデファレンシャル装置12は、後で説明するように、一対のプラネタリギヤセットと、それぞれ多板ブレーキ機構の締結を制御する一対の電磁アクチュエータを含んでおり、電磁アクチュエータを制御して左右の後輪駆動軸(車軸)24,26に動力を伝達することにより、左右の後輪25,27が駆動される。   As will be described later, the rear differential device 12 includes a pair of planetary gear sets and a pair of electromagnetic actuators for controlling the fastening of the multi-plate brake mechanism, and controls the electromagnetic actuators to control the left and right rear wheel drive shafts. (Axles) By transmitting power to 24 and 26, the left and right rear wheels 25 and 27 are driven.

前輪21,23及び後輪25,27の各々には、タイヤの空気圧を検出する空気圧センサ5a,5b,5c,5dが設けられている。これらの空気圧センサ5a〜5dの出力は電子制御ユニット(ECU)11に入力される。更に、操舵輪(ステアリングホイール)の舵角を検出する舵角センサ9の出力もECU11に入力される。   Each of the front wheels 21 and 23 and the rear wheels 25 and 27 is provided with air pressure sensors 5a, 5b, 5c and 5d for detecting tire air pressure. Outputs of these air pressure sensors 5 a to 5 d are input to an electronic control unit (ECU) 11. Further, the output of the steering angle sensor 9 that detects the steering angle of the steering wheel (steering wheel) is also input to the ECU 11.

図2は増速装置(変速装置)10と、増速装置10の下流側に配置されたリヤデファレンシャル装置12の断面図を示している。増速装置10はケーシング28中に回転可能に取り付けられた入力シャフト30と、出力シャフト(ハイポイドピニオンシャフト)32を含んでいる。   FIG. 2 is a cross-sectional view of the speed increasing device (transmission device) 10 and the rear differential device 12 disposed on the downstream side of the speed increasing device 10. The speed increasing device 10 includes an input shaft 30 rotatably mounted in a casing 28 and an output shaft (hypoid pinion shaft) 32.

増速装置10は更に、オイルポンプサブアセンブリ34と、プラネタリキャリアサブアセンブリ38と、直結クラッチサブアセンブリ40と、変速ブレーキ42を含んでいる。   The speed increasing device 10 further includes an oil pump subassembly 34, a planetary carrier subassembly 38, a direct coupling clutch subassembly 40, and a speed change brake 42.

増速装置10の下流側に設けられたリヤデファレンシャル装置12は、ハイポイドピニオンシャフト32の先端に形成されたハイポイドピニオンギヤ44を有している。ハイポイドピニオンギヤ44はハイポイドリングギヤ48と噛み合っており、ハイポイドリングギヤ48からの動力は左右に一対設けられたプラネタリギヤセット50A,50Bのリングギヤに入力される。   The rear differential device 12 provided on the downstream side of the speed increasing device 10 has a hypoid pinion gear 44 formed at the tip of the hypoid pinion shaft 32. The hypoid pinion gear 44 meshes with the hypoid ring gear 48, and the power from the hypoid ring gear 48 is input to the ring gears of the planetary gear sets 50A and 50B provided on the left and right.

プラネタリギヤセット50A,50Bのサンギヤは左側後ろ車軸24、右側後ろ車軸26回りに回転可能に取付られている。プラネタリギヤセット50A,50Bのプラネタリキャリアは、左側後ろ車軸24、右側後ろ車軸26に固定されている。プラネタリキャリアに担持されたプラネットギヤがサンギヤ及びリングギヤに噛み合っている。   The sun gears of the planetary gear sets 50 </ b> A and 50 </ b> B are attached so as to be rotatable around the left rear axle 24 and the right rear axle 26. The planetary carriers of the planetary gear sets 50A and 50B are fixed to the left rear axle 24 and the right rear axle 26. A planet gear carried on the planetary carrier meshes with the sun gear and the ring gear.

左右のプラネタリギヤセット50A,50Bは、サンギヤのトルクを可変制御するために設けられたブレーキ機構51に連結される。ブレーキ機構51は、湿式多板ブレーキ52と、この多板ブレーキ52を作動する電磁アクチュエータ56を含んでいる。   The left and right planetary gear sets 50A and 50B are coupled to a brake mechanism 51 provided for variably controlling the torque of the sun gear. The brake mechanism 51 includes a wet multi-plate brake 52 and an electromagnetic actuator 56 that operates the multi-plate brake 52.

湿式多板ブレーキ52の複数のブレーキプレートはケーシング54に固定され、ブレーキプレートと交互に配置された複数のブレーキディスクはプラネタリギヤセット50A,50Bのサンギヤに固定されている。   A plurality of brake plates of the wet multi-plate brake 52 are fixed to the casing 54, and a plurality of brake disks arranged alternately with the brake plates are fixed to the sun gears of the planetary gear sets 50A and 50B.

電磁アクチュエータ56は、環状溝を有するリング状コア(ヨーク)58と、リング状コア58の環状溝中に挿入された環状ソレノイド(環状励磁コイル)60と、リング状コア58に所定のギャップをもって対向するリング状アーマチュア62と、アーマチュア62に連結された環状ピストン64とから構成される。   The electromagnetic actuator 56 is opposed to the ring-shaped core (yoke) 58 having an annular groove, the annular solenoid (annular excitation coil) 60 inserted into the annular groove of the ring-shaped core 58, and the ring-shaped core 58 with a predetermined gap. And a ring-shaped piston 64 connected to the armature 62.

ソレノイド60に電流を印加すると、アーマチュア62がソレノイド60により形成された電磁力によりコア58に引き付けられて推力が発生する。この推力により、アーマチュア62と一体に連結されたピストン64が多板ブレーキ62を押し付けることで、ブレーキトルクが発生する。   When a current is applied to the solenoid 60, the armature 62 is attracted to the core 58 by the electromagnetic force formed by the solenoid 60 and a thrust is generated. Due to this thrust, the piston 64 integrally connected to the armature 62 presses the multi-plate brake 62, thereby generating a brake torque.

これにより、プラネタリギヤセット50A,50Bのサンギヤはそれぞれケーシング54に対して固定され、ハイポイドピニオンシャフト32の駆動力はプラネタリギヤセット50A,50Bのリングギヤ、プラネットギヤ、プラネタリキャリアを介して左右の後ろ車軸24,26に伝達される。   As a result, the sun gears of the planetary gear sets 50A and 50B are fixed to the casing 54, respectively, and the driving force of the hypoid pinion shaft 32 is applied to the left and right rear axles 24, via the ring gear, planet gear, and planetary carrier of the planetary gear sets 50A and 50B. 26.

環状ソレノイド60に流す電流を制御することにより、入力シャフト30の駆動力を直結状態で或いは増速装置10で増速して、左右の後ろ車軸24,26に任意に配分することができ、最適な旋回制御を実現することができる。   By controlling the current flowing through the annular solenoid 60, the driving force of the input shaft 30 can be arbitrarily distributed to the left and right rear axles 24, 26 in a directly connected state or increased by the speed increasing device 10. Turning control can be realized.

変速ブレーキ42がオフの状態では、直結クラッチ40はコイルばねの付勢力により係合されている。よって、入力シャフト30の動力はそのまま出力シャフト(ハイポイドピニオンシャフト)32に出力される。   When the shift brake 42 is off, the direct coupling clutch 40 is engaged by the biasing force of the coil spring. Therefore, the power of the input shaft 30 is output to the output shaft (hypoid pinion shaft) 32 as it is.

一方、中低速域において四輪駆動の走行状態で旋回半径の小さいコーナーを旋回するときには、変速ブレーキ42を締結し、直結クラッチ40の係合を解除する。この状態では、プラネタリキャリアアセンブリ38部分はある変速比を持ったギヤ列となり、入力シャフト30と出力シャフト(ハイポイドピニオンシャフト)32間で変速(増速)が成立する。増速比は例えば1.07に設定される。   On the other hand, when turning at a corner having a small turning radius in the four-wheel drive traveling state in the middle / low speed range, the shift brake 42 is engaged and the engagement of the direct clutch 40 is released. In this state, the planetary carrier assembly 38 becomes a gear train having a certain speed change ratio, and a speed change (acceleration) is established between the input shaft 30 and the output shaft (hypoid pinion shaft) 32. The speed increasing ratio is set to 1.07, for example.

出力シャフト32が入力シャフト30に対して増速された状態で、車両が図3に示すように左旋回したとする。このときには、リヤデファレンシャル装置12の右側のソレノイド60に左側のソレノイド60よりも多く電流を流し、右側のブレーキ機構51を左側より強く締結する。   Assume that the vehicle turns left as shown in FIG. 3 in a state where the output shaft 32 is accelerated with respect to the input shaft 30. At this time, more current flows through the right solenoid 60 of the rear differential device 12 than the left solenoid 60, and the right brake mechanism 51 is tightened more strongly than the left.

これにより、出力シャフト32の駆動力は右側後ろ車軸26に多く配分され、図3の矢印F4に示すように、旋回外側の後輪駆動トルクを旋回内側の後輪駆動トルクよりも大きくできるため、例えば、中低速域での旋回性能を向上することができる。また、逆に旋回外側の後輪駆動トルクよりも旋回内側の後輪駆動トルクを大きくすることも可能であり、これにより高速域での安定性を得ることができる。   Thereby, the driving force of the output shaft 32 is largely distributed to the right rear axle 26, and as shown by the arrow F4 in FIG. 3, the rear wheel driving torque on the outer side of the turn can be made larger than the rear wheel driving torque on the inner side of the turning. For example, the turning performance in the middle / low speed range can be improved. Conversely, the rear wheel drive torque inside the turn can be made larger than the rear wheel drive torque outside the turn, thereby obtaining stability in a high speed range.

このように、左右のソレノイド60に流す電流値を制御することにより、入力シャフト30の駆動力を直結状態で或いは増速装置10で増速して、左右の後ろ車軸24,26に任意に配分することができ、最適な旋回制御及び/又はぬかるみ脱出の容易化を実現している。   In this way, by controlling the value of the current flowing through the left and right solenoids 60, the driving force of the input shaft 30 is increased in the directly connected state or with the speed increasing device 10, and is arbitrarily distributed to the left and right rear axles 24, 26. Therefore, it is possible to achieve optimum turning control and / or facilitation of smoldering escape.

直結状態から増速状態への切替えは、例えば次のように制御する。車速に対して閾値を設定し、操舵力又は操舵角が上記閾値を超えた場合に、増速装置10を増速状態に制御する。   Switching from the direct connection state to the acceleration state is controlled as follows, for example. A threshold is set for the vehicle speed, and when the steering force or the steering angle exceeds the threshold, the speed increasing device 10 is controlled to be in a speed increasing state.

また、リヤデファレンシャル装置12は例えば次のように制御する。操舵力又は操舵角に応じてソレノイド60に流す電流値を予めマップとして設定しておく。これにより、旋回方向及び操舵力又は操舵角に基づいて左右のソレノイド60に流す電流値を制御して、旋回外側の後輪駆動トルクを旋回内側の後輪駆動トルクよりも大きくなるように制御する。   The rear differential device 12 is controlled as follows, for example. A current value that flows through the solenoid 60 according to the steering force or the steering angle is set in advance as a map. As a result, the value of the current flowing through the left and right solenoids 60 is controlled based on the turning direction and the steering force or the steering angle, and the rear wheel driving torque on the outside of the turning is controlled to be larger than the rear wheel driving torque on the inside of the turning. .

リヤデファレンシャル装置12は、駆動力配分装置であり、前後輪間の駆動力の配分を制御可能であるとともに、左右の後輪間の駆動力の配分も任意に制御可能である。   The rear differential device 12 is a driving force distribution device that can control the distribution of the driving force between the front and rear wheels and can arbitrarily control the distribution of the driving force between the left and right rear wheels.

上述した構成を有する四輪駆動車両において、前輪又は後輪がパンクした場合の、本発明の制御装置について以下に説明する。図4は本発明の原理を示す原理ブロック図である。   In the four-wheel drive vehicle having the above-described configuration, the control device of the present invention when the front wheels or the rear wheels are punctured will be described below. FIG. 4 is a principle block diagram showing the principle of the present invention.

第1空気圧検出手段68は左側前輪21の空気圧を検出するものであり、図1の空気圧センサ5aに対応する。第2空気圧検出手段70は右側前輪23の空気圧を検出するものであり、空気圧センサ5bに対応する。   The first air pressure detecting means 68 detects the air pressure of the left front wheel 21 and corresponds to the air pressure sensor 5a of FIG. The second air pressure detecting means 70 detects the air pressure of the right front wheel 23 and corresponds to the air pressure sensor 5b.

第3空気圧検出手段72は左側後輪25の空気圧を検出するものであり、空気圧センサ5cに対応する。第4空気圧検出手段74は右側後輪27の空気圧を検出するものであり、空気圧センサ5dに対応する。   The third air pressure detecting means 72 detects the air pressure of the left rear wheel 25 and corresponds to the air pressure sensor 5c. The fourth air pressure detecting means 74 detects the air pressure of the right rear wheel 27 and corresponds to the air pressure sensor 5d.

空気圧比較手段76は、予め定められた車輪の空気圧の閾値と第1〜第4空気圧検出手段68〜74で検出した空気圧とを比較する。空気圧異常検出手段78は、空気圧比較手段76の出力に基づいて空気圧が前記閾値以下の前輪21,23又は後輪25,27を検出する。   The air pressure comparing means 76 compares a predetermined wheel air pressure threshold value with the air pressure detected by the first to fourth air pressure detecting means 68 to 74. The air pressure abnormality detecting means 78 detects the front wheels 21, 23 or the rear wheels 25, 27 whose air pressure is below the threshold based on the output of the air pressure comparing means 76.

第1空気圧比算出手段80は、第1及び第2空気圧検出手段68,70の出力に基づいて一対の前輪21,23の空気圧の比を算出する。第2空気圧比算出手段82は、第3及び第4空気圧検出手段72,74の出力に基づいて一対の後輪25,27の空気圧の比を算出する。   The first air pressure ratio calculating means 80 calculates the air pressure ratio between the pair of front wheels 21 and 23 based on the outputs of the first and second air pressure detecting means 68 and 70. The second air pressure ratio calculating means 82 calculates the air pressure ratio between the pair of rear wheels 25 and 27 based on the outputs of the third and fourth air pressure detecting means 72 and 74.

運転状態検出手段84は、ステアリングホイールの操舵角に基づいて車両が直進状態であるか、左旋回状態であるか又は右旋回状態であるかを検出する。   The driving state detection means 84 detects whether the vehicle is in a straight traveling state, a left turning state, or a right turning state based on the steering angle of the steering wheel.

制御手段86は、空気圧異常検出手段78により空気圧の異常、即ちパンクが検出されたとき、運転状態検出手段84で検出した車両の運転状態及び第1及び第2空気圧比算出手段80,82で算出した空気圧比に応じて、駆動力配分装置、即ちリヤデファレンシャル装置12の駆動力配分量を変更する。   When the air pressure abnormality detecting means 78 detects an air pressure abnormality, that is, a puncture, the control means 86 calculates the vehicle operating state detected by the operating state detecting means 84 and the first and second air pressure ratio calculating means 80 and 82. In accordance with the air pressure ratio, the driving force distribution device, that is, the driving force distribution amount of the rear differential device 12 is changed.

すなわち、空気圧異常検出手段78で検出した空気圧の異常が前輪21,23のいずれかである場合には、運転状態検出手段84で検出した車両の運転状態、即ち車両が直進中か、左旋回中か又は右旋回中かの運転状態及び第1空気圧比算出手段80で算出した前輪21,23の空気圧比に応じて、駆動力配分装置の駆動力配分量を変更する。   That is, when the abnormality in the air pressure detected by the air pressure abnormality detecting means 78 is one of the front wheels 21 and 23, the driving state of the vehicle detected by the driving state detecting means 84, that is, the vehicle is traveling straight or turning left The driving force distribution amount of the driving force distribution device is changed according to the driving state of whether the vehicle is turning right or the air pressure ratio of the front wheels 21 and 23 calculated by the first air pressure ratio calculating means 80.

一方、空気圧異常検出手段78で検出した空気圧の異常が後輪25,27のいずれかである場合には、運転状態検出手段84で検出した車両の運転状態及び第2空気圧比算出手段82で算出した後輪25,27の空気圧比に応じて、駆動力配分装置の駆動力配分量を変更する。   On the other hand, when the abnormality in the air pressure detected by the air pressure abnormality detecting means 78 is one of the rear wheels 25, 27, the vehicle operating state detected by the operating state detecting means 84 and the second air pressure ratio calculating means 82 are used for calculation. In accordance with the air pressure ratio between the rear wheels 25 and 27, the driving force distribution amount of the driving force distribution device is changed.

以下、種々の条件における駆動力配分装置、即ちリヤデファレンシャル装置12の駆動力配分量の制御について説明する。   Hereinafter, control of the driving force distribution amount of the driving force distribution device, that is, the rear differential device 12 under various conditions will be described.

図5は左折中(左旋回中)に左側前輪21がパンクした場合を模式的に示している。この場合は、パンクした内輪21が萎縮するため、車両後部が外輪方向に大きく回り、走行安定性が低下する。   FIG. 5 schematically shows a case where the left front wheel 21 is punctured during a left turn (while turning left). In this case, since the punctured inner ring 21 is shrunken, the rear part of the vehicle is greatly rotated in the direction of the outer ring, and the running stability is lowered.

よって、この場合には、左右前輪21,23の空気圧比の変化に応じて、図6に示すようにリヤデファレンシャル装置12により左右後輪25,27のトルク配分量を右側後輪27の配分量が大きくなるように制御する。   Therefore, in this case, according to the change in the air pressure ratio between the left and right front wheels 21 and 23, the rear differential device 12 changes the torque distribution amount of the left and right rear wheels 25 and 27 to the distribution amount of the right rear wheel 27 as shown in FIG. Is controlled to be large.

すなわち、図7に示すように、パンクした左前輪21の空気圧が曲線88で示すように減少するにつれて、リヤデファレンシャル装置12を制御して曲線92,94で示されるように左右の後輪25,27のトルク配分量を徐々に増加させる。   That is, as shown in FIG. 7, as the air pressure of the punctured left front wheel 21 decreases as shown by a curve 88, the rear differential device 12 is controlled to show the left and right rear wheels 25, 94 as shown by curves 92, 94. The torque distribution amount of 27 is gradually increased.

このとき、曲線94で示される右側後輪27のトルク配分量を曲線92で示される左側後輪25のトルク配分量よりも大きくなるように制御する。図7で直線90は右側前輪23の空気圧を示している。   At this time, the torque distribution amount of the right rear wheel 27 indicated by the curve 94 is controlled to be larger than the torque distribution amount of the left rear wheel 25 indicated by the curve 92. In FIG. 7, a straight line 90 indicates the air pressure of the right front wheel 23.

図7を参照すると明らかなように、パンクした左前輪タイヤ21の空気圧が徐々に減少するにつれて、左右の後輪25,27のトルク配分量を徐々に増加させるように制御しているが、これに応じて左右前輪21,23のトルク配分量が徐々に減少することになる。   As apparent from FIG. 7, as the air pressure of the punctured left front wheel tire 21 gradually decreases, the torque distribution amount of the left and right rear wheels 25 and 27 is controlled to gradually increase. Accordingly, the torque distribution amount of the left and right front wheels 21 and 23 is gradually reduced.

図8は左右前輪21,23の空気圧比の変化に応じた後輪25,27のトルク配分量の係数J1,J2の関係を示している。曲線96が左右前輪21,23の空気圧比の変化を示しており、曲線98が左側後輪25のトルク配分量の係数J1を示し、曲線100が右側後輪27のトルク配分量の係数J2を示している。   FIG. 8 shows the relationship between the torque distribution amount coefficients J1 and J2 of the rear wheels 25 and 27 according to the change in the air pressure ratio between the left and right front wheels 21 and 23. A curve 96 indicates a change in the air pressure ratio between the left and right front wheels 21, 23, a curve 98 indicates a coefficient J1 of the torque distribution amount of the left rear wheel 25, and a curve 100 indicates a coefficient J2 of the torque distribution amount of the right rear wheel 27. Show.

すなわち、左前輪21がパンクした場合には、左右後輪のトルク配分量を以下のように制御する。   That is, when the left front wheel 21 is punctured, the torque distribution amount of the left and right rear wheels is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×J2=従来右後輪トルク配分量×(2−左前輪空気圧/右前輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×J1=従来左後輪トルク配分量×1/2×(3−左前輪空気圧/右前輪空気圧)×K
ここで、
K=タイヤ接地面積×想定μ×車傾き角度
から求める。タイヤの接地面積は、図9に示すような空気圧−接地面積マップから求める。P1は完全パンク時の空気圧、P2はタイヤ正常時の空気圧である。また、S1はタイヤ正常時の接地面積であり、S2は完全パンク時の接地面積である。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × J2 = conventional right rear wheel torque distribution amount × (2-left front wheel air pressure / right front wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × J1 = conventional left rear wheel torque distribution amount × 1/2 × (3-left front wheel air pressure / right front wheel air pressure) × K
here,
K = tire contact area × assumed μ × car inclination angle The contact area of the tire is obtained from a pneumatic-contact area map as shown in FIG. P1 is the air pressure when the tire is completely punctured, and P2 is the air pressure when the tire is normal. S1 is a contact area when the tire is normal, and S2 is a contact area when the tire is completely punctured.

想定μはカーナビゲーションシステム、又はラジオ等の情報源から現在の路面状況を想定し、表1に示すような想定μマップから想定μを求める。   Assuming μ assumes the current road surface condition from an information source such as a car navigation system or radio, and obtains the assumed μ from an assumed μ map as shown in Table 1.

Figure 0004810253
車傾き角度は、図10に示すような空気圧−タイヤ半径マップから四輪タイヤの半径を求め、車傾き角度を計算する。図10でP1は完全パンク時の空気圧、P2はタイヤ正常時の空気圧である。また、R1は完全パンク時のタイヤ半径、R2はタイヤ正常時のタイヤ半径である。
Figure 0004810253
For the vehicle inclination angle, the radius of the four-wheel tire is obtained from an air pressure-tire radius map as shown in FIG. 10, and the vehicle inclination angle is calculated. In FIG. 10, P1 is the air pressure at the time of complete puncture, and P2 is the air pressure at the time of normal tire. Further, R1 is a tire radius when fully punctured, and R2 is a tire radius when the tire is normal.

図11は右折中(右旋回中)に左前輪21がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により以下のように後輪25,27に配分するトルク配分量を制御する。   FIG. 11 shows a schematic diagram of the driving force distribution control when the left front wheel 21 is punctured during a right turn (during a right turn). In this case, the torque distribution amount distributed to the rear wheels 25 and 27 is controlled by the rear differential device 12 as follows.

右後輪トルク配分量=従来右後輪トルク配分量×1/2×(3−左前輪空気圧/右前輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×(2−左前輪空気圧/右前輪空気圧)×K
図12は直進走行中に左前輪21がパンクした場合の駆動力配分制御の模式図である。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × 1/2 × (3-left front wheel air pressure / right front wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × (2-left front wheel air pressure / right front wheel air pressure) × K
FIG. 12 is a schematic diagram of the driving force distribution control when the left front wheel 21 is punctured while traveling straight ahead. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量
左後輪トルク配分量=従来左後輪トルク配分量×(2−左前輪空気圧/右前輪空気圧)×K
図13はリバース右折中に左前輪21がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × (2-left front wheel air pressure / right front wheel air pressure) × K
FIG. 13 is a schematic diagram of driving force distribution control when the left front wheel 21 is punctured during a reverse right turn. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×1/2×(3−左前輪空気圧/右前輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×(2−左前輪空気圧/右前輪空気圧)×K
図14はリバース左折中に左前輪21がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により以下のように左右の後輪25,27に配分するトルクを制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × 1/2 × (3-left front wheel air pressure / right front wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × (2-left front wheel air pressure / right front wheel air pressure) × K
FIG. 14 is a schematic diagram of the driving force distribution control when the left front wheel 21 is punctured during a reverse left turn. In this case, the torque distributed to the left and right rear wheels 25 and 27 is controlled by the rear differential device 12 as follows.

右後輪トルク配分量=従来右後輪トルク配分量×(2−左前輪空気圧/右前輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×1/2×(3−左前輪空気圧/右前輪空気圧)×K
図15はリバース直進中に左前輪21がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右の後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × (2-left front wheel air pressure / right front wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × 1/2 × (3-left front wheel air pressure / right front wheel air pressure) × K
FIG. 15 is a schematic diagram of the driving force distribution control when the left front wheel 21 is punctured during reverse straight traveling. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×(2−左前輪空気圧/右前輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量
図16は左折中に左後輪21がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × (2-left front wheel air pressure / right front wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount FIG. 16 is a schematic diagram of drive force distribution control when the left rear wheel 21 is punctured during a left turn. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×(2−左後輪空気圧/右後輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×1/2×(3−左後輪空気圧/右後輪空気圧)×K
図17は右折中に左後輪25がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × (2-left rear wheel air pressure / right rear wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × 1/2 × (3-left rear wheel air pressure / right rear wheel air pressure) × K
FIG. 17 is a schematic diagram of the driving force distribution control when the left rear wheel 25 is punctured during a right turn. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×1/2×(3−左後輪空気圧/右後輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×(2−左後輪空気圧/右後輪空気圧)×K
図18は直進走行中に左後輪25がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × 1/2 × (3-left rear wheel air pressure / right rear wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × (2-left rear wheel air pressure / right rear wheel air pressure) × K
FIG. 18 is a schematic diagram of the driving force distribution control when the left rear wheel 25 is punctured during straight traveling. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量
左後輪トルク配分量=従来左後輪トルク配分量×(2−左後輪空気圧/右後輪空気圧)×K
図19はリバース右折中に左後輪25がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × (2-left rear wheel air pressure / right rear wheel air pressure) × K
FIG. 19 shows a schematic diagram of the driving force distribution control when the left rear wheel 25 is punctured during a reverse right turn. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×1/2×(3−左後輪空気圧/右後輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×(2−左後輪空気圧/右後輪空気圧)×K
図20はリバース左折中に左後輪25がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × 1/2 × (3-left rear wheel air pressure / right rear wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × (2-left rear wheel air pressure / right rear wheel air pressure) × K
FIG. 20 is a schematic diagram of the driving force distribution control when the left rear wheel 25 is punctured during a reverse left turn. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×(2−左後輪空気圧/右後輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量×1/2×(3−左後輪空気圧/右後輪空気圧)×K
図21はリバース直進中に左後輪25がパンクした場合の駆動力配分制御の模式図を示している。この場合には、リヤデファレンシャル装置12により左右後輪25,27に配分するトルクを以下のように制御する。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × (2-left rear wheel air pressure / right rear wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount × 1/2 × (3-left rear wheel air pressure / right rear wheel air pressure) × K
FIG. 21 is a schematic diagram of the driving force distribution control when the left rear wheel 25 is punctured during reverse straight traveling. In this case, the torque distributed to the left and right rear wheels 25 and 27 by the rear differential device 12 is controlled as follows.

右後輪トルク配分量=従来右後輪トルク配分量×(2−左後輪空気圧/右後輪空気圧)×K
左後輪トルク配分量=従来左後輪トルク配分量
以上説明した実施形態では、タイヤパンク時の本発明の駆動制御をFF車ベースの四輪駆動車両に適用した例について説明したが、本発明はこれに限定されるものではなく、フロントエンジン・リヤドライブ(FR)車ベースの四輪駆動車両にも同様に適用することができる。この場合には、駆動力配分装置は前輪側に配置される。
Right rear wheel torque distribution amount = conventional right rear wheel torque distribution amount × (2-left rear wheel air pressure / right rear wheel air pressure) × K
Left rear wheel torque distribution amount = conventional left rear wheel torque distribution amount In the embodiment described above, an example in which the drive control of the present invention during tire puncture is applied to an FF vehicle-based four-wheel drive vehicle has been described. However, the present invention is not limited to this, and can be similarly applied to a four-wheel drive vehicle based on a front engine / rear drive (FR) vehicle. In this case, the driving force distribution device is disposed on the front wheel side.

本発明を適用可能なFF車ベースの四輪駆動車両の動力伝達装置の概略構成図である。It is a schematic block diagram of the power transmission device of the FF vehicle base four-wheel drive vehicle which can apply this invention. 増速装置及びその下流側に配置されたリヤデファレンシャル装置の断面図である。It is sectional drawing of the speed increasing apparatus and the rear differential apparatus arrange | positioned in the downstream. 四輪駆動車両の左旋回状態を示す説明図である。It is explanatory drawing which shows the left turn state of a four-wheel drive vehicle. 本発明の原理を示す原理ブロック図である。It is a principle block diagram which shows the principle of this invention. 左折中に左前輪がパンクした場合の模式図である。It is a schematic diagram when the left front wheel is punctured during a left turn. 左折中に左前輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of the driving force distribution control when the left front wheel is punctured during a left turn. パンクした左前輪タイヤの空気圧変化に応じた左右後輪へのトルク配分量を示す説明図である。It is explanatory drawing which shows the torque distribution amount to the left-right rear wheel according to the air pressure change of the punctured left front wheel tire. 左右前輪の空気圧比の変化に応じた左右後輪のトルク配分量の係数の変化を説明する図である。It is a figure explaining the change of the coefficient of the torque distribution amount of the right and left rear wheel according to the change of the air pressure ratio of the left and right front wheels. 空気圧−接地面積マップである。It is a pneumatic-contact area map. 空気圧−タイヤ半径マップである。It is a pneumatic-tire radius map. 右折中に左前輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of the driving force distribution control when the left front wheel is punctured during a right turn. 直進走行中に左前輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of the driving force distribution control when the left front wheel is punctured while traveling straight ahead. リバース左折中に左前輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of the driving force distribution control when the left front wheel is punctured during reverse left turn. リバース右折中に左前輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of the driving force distribution control when the left front wheel is punctured during a reverse right turn. リバース直進中に左前輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of driving force distribution control when the left front wheel is punctured during reverse straight traveling. 左折中に左後輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of driving force distribution control when the left rear wheel is punctured during a left turn. 右折中に左後輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of the driving force distribution control when the left rear wheel is punctured during a right turn. 直進走行中に左後輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of driving force distribution control when the left rear wheel is punctured during straight traveling. リバース左折中に左後輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of driving force distribution control when the left rear wheel is punctured during reverse left turn. リバース右折中に左後輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of driving force distribution control when the left rear wheel is punctured during reverse right turn. リバース直進中に左後輪がパンクした場合の駆動力配分制御の模式図である。It is a schematic diagram of the driving force distribution control when the left rear wheel is punctured during reverse straight traveling.

符号の説明Explanation of symbols

5a〜5d 空気圧センサ
9 舵角センサ
10 増速装置
12 リヤデファレンシャル装置
21 左前輪
23 右前輪
25 左後輪
27 右後輪
88 左前輪タイヤの空気圧
92 左後輪のトルク配分量
94 右後輪のトルク配分量
96 左右前輪の空気圧比
98 左後輪のトルク配分量の係数
100 右後輪のトルク配分量の係数
5a to 5d Pneumatic sensor 9 Steering angle sensor 10 Speed increasing device 12 Rear differential device 21 Left front wheel 23 Right front wheel 25 Left rear wheel 27 Right rear wheel 88 Left front wheel tire air pressure 92 Left rear wheel torque distribution 94 Right rear wheel Torque distribution amount 96 Air pressure ratio of left and right front wheels 98 Coefficient of torque distribution amount of left rear wheel 100 Coefficient of torque distribution amount of right rear wheel

Claims (8)

駆動源と常に連結された一対の主駆動輪と、該駆動源により駆動力配分装置を介して駆動される一対の従駆動輪とを有し、該駆動力配分装置により主駆動輪と従駆動輪間及び左右の従駆動輪間で駆動力を配分可能な四輪駆動車両の制御装置であって、
車両の運転状態を検出する運転状態検出手段と、
前記一対の主駆動輪の空気圧を検出する第1及び第2空気圧検出手段と、
予め定められた車輪の空気圧の閾値と前記第1及び第2空気圧検出手段で検出した空気圧とを比較する空気圧比較手段と、
前記空気圧比較手段の出力に基づいて空気圧が前記閾値以下の主駆動輪を検出する空気圧異常検出手段と、
前記第1及び第2空気圧検出手段の出力に基づいて前記一対の主駆動輪の空気圧の比を算出する空気圧比算出手段と、
前記空気圧異常検出手段により空気圧の異常が検出されたとき、前記運転状態検出手段で検出した車両の運転状態及び前記空気圧比算出手段で算出した空気圧比に応じて、前記駆動力配分装置の駆動力配分量を変更する制御手段と、
を具備したことを特徴とする四輪駆動車両の制御装置。
A pair of main drive wheels always connected to the drive source, and a pair of slave drive wheels driven by the drive source via a drive force distribution device, the main drive wheel and the slave drive by the drive force distribution device A control device for a four-wheel drive vehicle capable of distributing driving force between wheels and between left and right driven wheels,
Driving state detection means for detecting the driving state of the vehicle;
First and second air pressure detecting means for detecting air pressure of the pair of main drive wheels;
An air pressure comparison means for comparing a predetermined wheel air pressure threshold value with the air pressure detected by the first and second air pressure detection means;
An air pressure abnormality detecting means for detecting a main drive wheel having an air pressure equal to or lower than the threshold based on an output of the air pressure comparing means;
An air pressure ratio calculating means for calculating a ratio of air pressures of the pair of main drive wheels based on outputs of the first and second air pressure detecting means;
When an abnormality in air pressure is detected by the air pressure abnormality detecting means, the driving force of the driving force distribution device is determined according to the vehicle operating state detected by the operating state detecting means and the air pressure ratio calculated by the air pressure ratio calculating means. Control means for changing the distribution amount;
A control device for a four-wheel drive vehicle.
前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常が検出された主駆動輪側に旋回中である場合には、空気圧の異常が検出された主駆動輪と反対側の従駆動輪の駆動力配分量を、空気圧の異常が検出された主駆動輪と同一側の従駆動輪に配分する駆動力配分量よりも大きくなるように制御することを特徴とする請求項1記載の四輪駆動車両の制御装置。   The control means detects an abnormality in air pressure when the driving state of the vehicle detected by the driving state detection means is turning to the main drive wheel side where the air pressure abnormality is detected by the air pressure abnormality detection means. The driving force distribution amount of the slave driving wheel opposite to the main driving wheel is controlled to be larger than the driving force distribution amount distributed to the slave driving wheel on the same side as the main driving wheel in which an abnormality in air pressure is detected. The control device for a four-wheel drive vehicle according to claim 1. 前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常が検出された主駆動輪と反対側に旋回中である場合には、前記空気圧異常検出手段により空気圧の異常が検出された主駆動輪と同一側の従駆動輪の駆動力配分量を、前記空気圧異常検出手段により異常が検出された主駆動輪と反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする請求項1記載の四輪駆動車両の制御装置。   The control means detects the air pressure abnormality when the driving state of the vehicle detected by the driving state detection means is turning to the opposite side of the main drive wheel where the air pressure abnormality is detected by the air pressure abnormality detecting means. The driving force distribution amount of the slave driving wheel on the same side as the main driving wheel in which the abnormality of the air pressure is detected by the means is the driving force of the slave driving wheel on the opposite side of the main driving wheel in which the abnormality is detected by the air pressure abnormality detecting means. 2. The control device for a four-wheel drive vehicle according to claim 1, wherein the control is performed so as to be larger than the distribution amount. 前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が直進走行状態である場合には、前記空気圧異常検出手段により空気圧の異常を検出した主駆動輪側と同一側の従駆動輪の駆動力配分量を、反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする請求項1記載の四輪駆動車両の制御装置。   When the driving state of the vehicle detected by the driving state detecting unit is a straight running state, the control unit is a driven wheel on the same side as the main driving wheel side where the abnormality in the air pressure is detected by the air pressure abnormality detecting unit. 2. The control device for a four-wheel drive vehicle according to claim 1, wherein the drive force distribution amount is controlled to be larger than the drive force distribution amount of the opposite driven wheel on the opposite side. 駆動源と常に連結された一対の主駆動輪と、該駆動源により駆動力配分装置を介して駆動される一対の従駆動輪とを有し、該駆動力配分装置により主駆動輪と従駆動輪間及び左右の従駆動輪間で駆動力を配分可能な四輪駆動車両の制御装置であって、
車両の運転状態を検出する運転状態検出手段と、
前記一対の従駆動輪の空気圧を検出する第1及び第2空気圧検出手段と、
予め定められた車輪の空気圧の閾値と前記第1及び第2空気圧検出手段で検出した空気圧とを比較する空気圧比較手段と、
前記空気圧比較手段の出力に基づいて空気圧が前記閾値以下の従駆動輪を検出する空気圧異常検出手段と、
前記第1及び第2空気圧検出手段の出力に基づいて前記一対の従駆動輪の空気圧の比を算出する空気圧比算出手段と、
前記空気圧異常検出手段により空気圧の異常が検出されたとき、前記運転状態検出手段で検出した車両の運転状態及び前記空気圧比算出手段で算出した空気圧比に応じて、前記駆動力配分装置の駆動力配分量を変更する制御手段と、
を具備したことを特徴とする四輪駆動車両の制御装置。
A pair of main drive wheels always connected to the drive source, and a pair of slave drive wheels driven by the drive source via a drive force distribution device, the main drive wheel and the slave drive by the drive force distribution device A control device for a four-wheel drive vehicle capable of distributing driving force between wheels and between left and right driven wheels,
Driving state detection means for detecting the driving state of the vehicle;
First and second air pressure detecting means for detecting air pressure of the pair of driven wheels;
An air pressure comparison means for comparing a predetermined wheel air pressure threshold value with the air pressure detected by the first and second air pressure detection means;
An air pressure abnormality detecting means for detecting a driven wheel whose air pressure is equal to or lower than the threshold based on an output of the air pressure comparing means;
An air pressure ratio calculating means for calculating a ratio of air pressures of the pair of driven wheels based on outputs of the first and second air pressure detecting means;
When an abnormality in air pressure is detected by the air pressure abnormality detecting means, the driving force of the driving force distribution device is determined according to the vehicle operating state detected by the operating state detecting means and the air pressure ratio calculated by the air pressure ratio calculating means. Control means for changing the distribution amount;
A control device for a four-wheel drive vehicle.
前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常を検出した従駆動輪側に旋回中である場合には、前記空気圧異常検出手段により空気圧の異常を検出した従駆動輪と反対側の従駆動輪の駆動力配分量を、空気圧の異常が検出された従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする請求項5記載の四輪駆動車両の制御装置。   When the vehicle driving state detected by the driving state detecting unit is turning to the driven wheel where the air pressure abnormality is detected by the air pressure abnormality detecting unit, the control unit detects the air pressure by the air pressure abnormality detecting unit. The drive force distribution amount of the slave drive wheel on the opposite side to the slave drive wheel in which the abnormality is detected is controlled to be larger than the drive force distribution amount of the slave drive wheel in which the abnormality in air pressure is detected The control device for a four-wheel drive vehicle according to claim 5. 前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が前記空気圧異常検出手段により空気圧の異常を検出した従駆動輪と反対側に旋回中である場合には、前記空気圧異常手段により空気圧の異常を検出した従駆動輪の駆動力配分量を、反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする請求項5記載の四輪駆動車両の制御装置。   When the driving state of the vehicle detected by the driving state detecting unit is turning to the opposite side of the driven wheel that has detected the abnormal air pressure by the air pressure abnormality detecting unit, the control unit uses the air pressure abnormality unit. 6. The four-wheel drive vehicle according to claim 5, wherein the drive force distribution amount of the slave drive wheel that detects an abnormality in air pressure is controlled to be larger than the drive force distribution amount of the slave drive wheel on the opposite side. Control device. 前記制御手段は、前記運転状態検出手段で検出した車両の運転状態が直進走行状態である場合には、前記空気圧異常検出手段により空気圧の異常が検出された従駆動輪の駆動力配分量を、反対側の従駆動輪の駆動力配分量よりも大きくなるように制御することを特徴とする請求項5記載の四輪駆動車両の制御装置。   When the driving state of the vehicle detected by the driving state detection unit is a straight traveling state, the control unit determines the driving force distribution amount of the driven wheel in which an abnormality in air pressure is detected by the air pressure abnormality detection unit, 6. The control device for a four-wheel drive vehicle according to claim 5, wherein the control is performed so as to be larger than a driving force distribution amount of the opposite driven wheel on the opposite side.
JP2006044111A 2006-02-21 2006-02-21 Control device for four-wheel drive vehicle Expired - Fee Related JP4810253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044111A JP4810253B2 (en) 2006-02-21 2006-02-21 Control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044111A JP4810253B2 (en) 2006-02-21 2006-02-21 Control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JP2007223370A JP2007223370A (en) 2007-09-06
JP4810253B2 true JP4810253B2 (en) 2011-11-09

Family

ID=38545587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044111A Expired - Fee Related JP4810253B2 (en) 2006-02-21 2006-02-21 Control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP4810253B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716237B1 (en) * 2015-08-05 2017-03-14 주식회사 로보쓰리 The automatic straight travel type driving method of two wheeled self balancing motor scooter in spite of the external force

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275834A (en) * 1986-05-23 1987-11-30 Fuji Heavy Ind Ltd Torque distribution control device for four-wheel drive vehicle
JPH02106442A (en) * 1988-10-17 1990-04-18 Toyota Motor Corp Control of differential movement control clutch for front/rear-wheel drive vehicle
JPH06286436A (en) * 1993-03-30 1994-10-11 Mazda Motor Corp Vehicle controller
JP3822042B2 (en) * 2000-09-06 2006-09-13 株式会社日立製作所 Different diameter tire discrimination method and driving force distribution control device
JP4004990B2 (en) * 2003-05-13 2007-11-07 住友ゴム工業株式会社 Slip ratio calculation method, tire pressure drop detection method and apparatus, slip ratio calculation program, and tire decompression determination program

Also Published As

Publication number Publication date
JP2007223370A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5442302B2 (en) Driving force distribution device
US7549941B2 (en) Vehicle differential including pump with variable-engagement clutch
KR101262601B1 (en) Electromagnetic locking differential assembly
JP4267495B2 (en) Driving force control method for four-wheel drive vehicle
US7361114B2 (en) Vehicle differential including pump with variable-engagement clutch
US10166865B2 (en) Automatic control of driveline states
US20120095659A1 (en) Automatic Control of Driveline States
CN108312846B (en) Method for operating a motor vehicle with selectable all-wheel drive
JP4429845B2 (en) Failure detection device for four-wheel drive vehicles
JP2010173523A (en) Drive control device for front engine-front drive vehicle
RU2390433C2 (en) Higher-friction differential
JP4417203B2 (en) Driving force control method for four-wheel drive vehicle
JP4810253B2 (en) Control device for four-wheel drive vehicle
JP2008189110A (en) Power transmission device of four-wheel drive car
JPH02290735A (en) Differential limit control device for vehicle
JP4306308B2 (en) Torque distribution control device for four-wheel drive vehicles
JP2012057638A (en) Control device of differential limiting mechanism
JP4254428B2 (en) Driving force distribution control device for four-wheel drive vehicles
JPH08324273A (en) Four-wheel drive car
JP2011251628A (en) Control device of vehicle
JP2020006868A (en) Control device for four-wheel drive vehicle
JP2008056157A (en) Fail-safe device of control device for four-wheel drive vehicle
JP2018158643A (en) Drive force distribution unit control apparatus
JP2006137268A (en) Device for controlling front and rear wheel torque distribution for four-wheel drive vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101209

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20110113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4810253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees