JP4805680B2 - Gas-liquid mixed fluid observation device in the ground - Google Patents

Gas-liquid mixed fluid observation device in the ground Download PDF

Info

Publication number
JP4805680B2
JP4805680B2 JP2006001295A JP2006001295A JP4805680B2 JP 4805680 B2 JP4805680 B2 JP 4805680B2 JP 2006001295 A JP2006001295 A JP 2006001295A JP 2006001295 A JP2006001295 A JP 2006001295A JP 4805680 B2 JP4805680 B2 JP 4805680B2
Authority
JP
Japan
Prior art keywords
gas
water
mixed fluid
infrared light
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006001295A
Other languages
Japanese (ja)
Other versions
JP2007183160A (en
Inventor
田中秀実
Original Assignee
田中 秀実
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中 秀実 filed Critical 田中 秀実
Priority to JP2006001295A priority Critical patent/JP4805680B2/en
Publication of JP2007183160A publication Critical patent/JP2007183160A/en
Application granted granted Critical
Publication of JP4805680B2 publication Critical patent/JP4805680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、地下水及び地下ガスの状況を継続的に監視することを可能にする、地中の気液混合流体の観測装置に関する。   The present invention relates to an underground gas-liquid mixed fluid observation apparatus that enables continuous monitoring of groundwater and underground gas conditions.

従来から、地殻変動特に地震予知に関する研究は各方面において盛んに行われているが、地震予知の難しさは未だ克服されていないのが実情である。   Conventionally, research on crustal deformation, especially earthquake prediction, has been actively conducted in various fields, but the difficulty of earthquake prediction has not yet been overcome.

ところで、これらの研究成果の一つとして、観測井から採取した各種のガス及びイオン(水素ガス,ヘリウムガス,一酸化炭素,二酸化炭素,水素イオン及び炭酸水素イオンなど)の観測値が震源の浅い地震に対して応答した場合、それらの発生量が地震性破壊に伴う破壊表面積および破壊に伴う間隙率の増加に関係あることが分っている。また、近年、温泉水等の化学組成及びガス組成の変動も地震との関連が明らかにされてきた。   By the way, as one of these research results, the observed values of various gases and ions (hydrogen gas, helium gas, carbon monoxide, carbon dioxide, hydrogen ion, hydrogen carbonate ion, etc.) collected from the observation well are shallow in the epicenter When responding to earthquakes, it has been found that their generation is related to the increase in fracture surface area associated with seismic failure and the porosity associated with failure. In recent years, changes in chemical composition and gas composition of hot spring water and the like have also been revealed to be related to earthquakes.

本発明は、この研究成果に基づいて、地震予知等のために、地下水及び地下ガスの継続的な監視を行うことを可能にする、地中の気液混合流体の観測装置を提供することを目的とする。   Based on the results of this research, the present invention provides an observation apparatus for underground gas-liquid mixed fluid that enables continuous monitoring of groundwater and underground gas for earthquake prediction and the like. Objective.

上記目的を達成するため、本発明による気液混合流体観測装置は、掘削孔内より水とガスとの混合流体を汲み上げる揚水手段と、該揚水手段により汲み上げられた水とガスとを分離する気液分離手段と、該気液分離手段により分離された水の量と水質を測定する水量及び水質測定手段と、前記気液分離手段により分離されたガスの分析測定手段と、前記水量及び水質測定手段と前記分析測定手段による測定データを記録する記録手段とを備え、前記気液分離手段は、前記揚水手段の吐出側に接続されていて赤外線透過材料よりなる分離筒本体と、該分離筒本体に接続されていて分離した水を前記水量及び水質測定手段に輸送するための水輸送管と、該分離筒本体に接続されていて分離したガスを前記分析測定手段に輸送するためのガス輸送管と、該ガス輸送管に設けられた電磁弁と、所定位置で該分離筒本体を横切るように赤外光を射出する赤外光射出装置と、該赤外光射出装置から射出された前記赤外光を受光する赤外光受光装置とを有するガス水分離筒とを含み、前記所定位置よりも水位が上がり前記赤外光が遮断されたときに前記電磁弁を閉弁し、前記所定位置よりも水位が下がり前記赤外光の遮断が解除されたときに前記電磁弁を開弁させるIn order to achieve the above object, a gas-liquid mixed fluid observation apparatus according to the present invention comprises a pumping means for pumping a mixed fluid of water and gas from a borehole, and an air for separating the water and gas pumped by the pumping means. Liquid separation means, water quantity and water quality measurement means for measuring the amount and quality of water separated by the gas-liquid separation means, gas analysis and measurement means for gas separated by the gas-liquid separation means, and water quantity and water quality measurement And a recording means for recording data measured by the analytical measurement means , wherein the gas-liquid separation means is connected to the discharge side of the pumping means and is made of an infrared transmitting material, and the separation cylinder main body A water transport pipe for transporting the separated water connected to the water quantity and water quality measuring means, and a gas transport pipe for transporting the separated gas connected to the separation cylinder body to the analysis measuring means A solenoid valve provided in the gas transport pipe, an infrared light emitting device that emits infrared light so as to cross the separation cylinder body at a predetermined position, and the infrared light emitted from the infrared light emitting device A gas water separation cylinder having an infrared light receiving device for receiving light, and when the water level is higher than the predetermined position and the infrared light is shut off, the electromagnetic valve is closed, and from the predetermined position. When the water level drops and the infrared light is released from the cutoff, the solenoid valve is opened .

本発明によれば、前記揚水手段は、好ましくは、前記掘削孔内に挿入されたスリット管に接続されたチューブポンプである。   According to the present invention, the pumping means is preferably a tube pump connected to a slit pipe inserted into the excavation hole.

また、本発明によれば、前記ガス水分離筒は、好ましくは、前記分離筒本体の内部に赤外光遮断材料よりなるフロートが封入されており、該フロートにより前記赤外光の遮断及び遮断の解除を行うFurther, according to the present invention, the gas water separation cylinder preferably has a float made of an infrared light blocking material enclosed in the separation cylinder main body, and the infrared light is blocked and blocked by the float. Release .

また、本発明によれば、前記分析測定手段は、好ましくは、四重極型質量分析計を含んでいる。   Further, according to the present invention, the analytical measurement means preferably includes a quadrupole mass spectrometer.

また、本発明によれば、前記水量及び水質測定手段は、好ましくは、前記気液分離手段に接続された水量測定手段と、該水量測定手段に接続された水質測定手段とを含んでいる。
また、本発明によれば、前記ガス輸送管は、好ましくは、差圧計を有しており、該差圧計で計測されるガス圧が所定圧に達したときに前記電磁弁を開弁させる。
また、本発明によれば、好ましくは、前記気液分離手段と前記分析測定手段との間に、コールドトラップを備えている。
さらに、本発明によれば、好ましくは、地中約200mの深さから前記水とガスとの混合流体を汲み上げる。
Further, according to the present invention, the water amount and water quality measuring means preferably includes a water amount measuring means connected to the gas-liquid separating means and a water quality measuring means connected to the water amount measuring means.
According to the invention, the gas transport pipe preferably has a differential pressure gauge, and opens the electromagnetic valve when the gas pressure measured by the differential pressure gauge reaches a predetermined pressure.
According to the present invention, preferably, a cold trap is provided between the gas-liquid separation means and the analysis measurement means.
Furthermore, according to the present invention, preferably, the mixed fluid of water and gas is pumped from a depth of about 200 m in the ground.

本発明によれば、得られたデータを監視することにより、地震等の地殻変動を比較的高い確度で予知することができるばかりか、入浴用温泉としての適否等を適確に知ることのできる、地中の気液混合流体の観測装置を提供することができる。   According to the present invention, by monitoring the obtained data, it is possible not only to predict crustal movements such as earthquakes with relatively high accuracy, but also to know the suitability as a hot spring for bathing. An apparatus for observing gas-liquid mixed fluid in the ground can be provided.

以下、本発明の実施形態を図示した実施例に基づき説明する。
図1は本発明装置の全体構成を示す概略図、図2は気液分離手段としてのガス水分離筒の詳細図である。
Hereinafter, embodiments of the present invention will be described based on the illustrated examples.
FIG. 1 is a schematic diagram showing the overall configuration of the apparatus of the present invention, and FIG.

図1において、Hは地中約200mの深さまで掘削された掘削孔内に打ち込まれたスリット管、P1はスリット管H内に挿入されてチュービングポンプCPの吸入側に接続された水とガスとの混合流体を採取するための採取管、CYはチュービングポンプCPの吐出側に接続されたガス水分離筒、P2は流量測定手段としての流量計FMを介してガス水分離筒CYで分離された水を水質測定手段としての水質側定機WMへ輸送するための水輸送管、RC1は流量計FMの計測値を記録するためのパソコン等を含む記録装置、RC2は水質側定機WMの測定値を記録するためのパソコン等を含む記録装置、P3は差圧計PMD,電磁弁EV,コールドトラップCT及び圧力計PMを介してガス水分離筒CYで分離されたガスをガス分析測定手段としての四重極型質量分析計QMSへ輸送するためのガス輸送管、RC3は質量分析計QMSの計測値を記録するためのパソコン等を含む記録装置である。   In FIG. 1, H is a slit tube driven into a drilling hole excavated to a depth of about 200 m in the ground, and P1 is water and gas inserted into the slit tube H and connected to the suction side of the tubing pump CP. A sampling tube for collecting the mixed fluid, CY is a gas water separation cylinder connected to the discharge side of the tubing pump CP, and P2 is separated by a gas water separation cylinder CY through a flow meter FM as a flow rate measuring means. A water transport pipe for transporting water to a water quality side machine WM as a water quality measuring means, RC1 is a recording device including a personal computer for recording the measurement value of the flowmeter FM, RC2 is a measurement of the water quality side machine WM A recording device including a personal computer or the like for recording a value, P3 is a gas analysis measuring means for gas separated by a gas water separation cylinder CY via a differential pressure gauge PMD, a solenoid valve EV, a cold trap CT and a pressure gauge PM Gas transport pipe for transporting the quadrupole mass spectrometer QMS of Te, RC3 is a recording device, such as a personal computer or the like for recording the measured values of the mass spectrometer QMS.

図2はガス水分離筒CYの詳細構造を示す。図中、Bはアクリル等の赤外光透過材料よりなる分離筒本体、Fは分離筒本体B内に封入された赤外光遮断材料よりなるフロート、Eは赤外光射出装置、Rは赤外光受光装置である。赤外光射出装置Eと赤外光受光装置Rとは、光スイッチを構成して電磁弁EVに接続されており、分離筒本体B内の水位が所定水位にあって赤外光射出装置Eからの赤外光がフロートFにより遮断されているときは電磁弁EVを閉弁させ、分離筒本体B内の水位が所定水位より下がってフロートFによる上記赤外光の遮断が解除されたとき電磁弁EVを弁させ得るように配置されている。 FIG. 2 shows a detailed structure of the gas water separation cylinder CY. In the figure, B is a separation cylinder body made of an infrared light transmitting material such as acrylic, F is a float made of an infrared light blocking material enclosed in the separation cylinder body B, E is an infrared light emitting device, and R is red. This is an external light receiving device. The infrared light emitting device E and the infrared light receiving device R constitute an optical switch and are connected to the electromagnetic valve EV. The water level in the separation cylinder body B is at a predetermined water level, and the infrared light emitting device E When the infrared light from is blocked by the float F, the electromagnetic valve EV is closed, and when the water level in the separation cylinder main body B falls below the predetermined water level, the blocking of the infrared light by the float F is released It is arranged to the solenoid valve EV capable of valve opening.

なお、上記のガス水分離筒CYを除くその他の機器は、全て公知のものを使用しているので、それらの構成及び作用の詳細な説明は省略する。   Since all other devices except the gas water separation cylinder CY described above are well-known devices, detailed description of their configuration and operation will be omitted.

次に、上記観測装置の作用を説明する。
装置の作動開始により、採取管P1を介してチュービングポンプCPにより汲み上げられたスリット管H内の水とガスの混合流体は、ガス水分離筒CY内でガスと水とに分離されながら水位は上昇し、その水位が所定水位に達して電磁弁EVが閉弁される。そして、水は水輸送管P2により流量計FMを経て水質側定機WMへ、ガスはガス水分離筒CYの上部と電磁弁EVに至るまでのガス輸送管P3内に溜まって行く。かくして分離筒上部のガス圧が上昇し、その差圧が差圧計PDMで計測され、予め設定されている所定圧に達すると、差圧計PDMから信号が出力され、その出力信号に基づいて電磁弁EVが開弁せしめられる。従って、分離筒上部に貯留されていたガスは、ガス輸送管P3によりコールドトラップCTを経て質量分析計QMSへ送られ、周知の方法で組成が分析されて、その結果は記録装置RC3に記録される。また、流量計FMで計測された水量は記録装置RC1に、水質側定機WMにより測定された値は周知の方法で記録装置RC2にそれぞれ記録される。
Next, the operation of the observation apparatus will be described.
The water level rises while the mixed fluid of water and gas in the slit pipe H pumped up by the tubing pump CP through the sampling pipe P1 is separated into gas and water in the gas water separation cylinder CY by starting the operation of the apparatus. Then, the water level reaches a predetermined water level, and the electromagnetic valve EV is closed. Then, water accumulates in the gas transport pipe P3 from the water transport pipe P2 through the flow meter FM to the water quality side constant machine WM, and the gas reaches the upper part of the gas water separation cylinder CY and the electromagnetic valve EV. Thus, the gas pressure at the upper part of the separation cylinder rises, the differential pressure is measured by the differential pressure gauge PDM, and when a predetermined pressure set in advance is reached, a signal is output from the differential pressure gauge PDM, and the solenoid valve is based on the output signal. EV is opened. Therefore, the gas stored in the upper part of the separation cylinder is sent to the mass spectrometer QMS through the cold trap CT by the gas transport pipe P3, the composition is analyzed by a well-known method, and the result is recorded in the recording device RC3. The Further, the amount of water measured by the flow meter FM is recorded in the recording device RC1, and the value measured by the water quality side constant machine WM is recorded in the recording device RC2 by a known method.

上記のようにして電磁弁EVが開弁せしめられると、分離筒上部のガス圧は徐々に減少するから、ガス水分離筒CY内の水位は徐々に上昇し、これと共に上昇するフロートFにより赤外光射出装置Eから赤外光受光装置Rへ達していた赤外光が遮断され、これにより電磁弁EVは閉弁せしめられる。
このようにして作動の一サイクルが終了し、再び上記の作動が開始されて、このサイクルが繰り返される。
When the solenoid valve EV is opened as described above, the gas pressure in the upper part of the separation cylinder gradually decreases, so that the water level in the gas water separation cylinder CY gradually rises, and the float F that rises with this increases the red level. The infrared light that has reached the infrared light receiving device R from the external light emitting device E is blocked, and the electromagnetic valve EV is thereby closed.
In this way, one cycle of operation is completed, the above operation is started again, and this cycle is repeated.

本発明装置は、以上説明したように作動するから、長期に亘る地下ガス成分及び地下水の水質の監視が可能となり、得られた記録データから、研究成果を参照しながら、地震等の地殻変動を予知したり、温泉の変化等を適確に把握したりすることができる。   Since the device of the present invention operates as described above, it becomes possible to monitor the underground gas components and groundwater quality over a long period of time. It is possible to predict and accurately grasp changes in hot springs.

以上実施例では、光スイッチに赤外光を用いたり、記録装置を各計測手段毎に設けたりしたが、これに限定されるものではなく、赤外光以外の光を用いたり、各記録装置をユニットとして集約させたりすることも可能であり、本発明の範囲を逸脱することなしに、種々の変形及び修正が可能である。   In the above embodiments, infrared light is used for the optical switch or a recording device is provided for each measuring means. However, the present invention is not limited to this, and light other than infrared light can be used. Can be integrated as a unit, and various changes and modifications can be made without departing from the scope of the present invention.

本発明装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of this invention apparatus. 気液分離手段としてのガス水分離筒の一部破断正面図である。It is a partially broken front view of the gas water separation cylinder as a gas-liquid separation means.

符号の説明Explanation of symbols

H スリット管
P1 採取管
CP チュービングポンプ
CY ガス水分離筒
FM 流量計
RC1,RC2,RC3 記録装置
P2 水輸送管
WM 水質測定機
PDM 差圧計
EV 電磁弁
P3 ガス輸送管
CT コールドフラップ
PM 圧力計
QMS 質量分析計
B ガス水分離筒の本体
E 赤外光射出装置
F フロート
R 赤外光受光装置
H Slit tube P1 Sampling tube CP Tubing pump CY Gas water separator FM Flow meter RC1, RC2, RC3 Recording device P2 Water transport pipe WM Water quality measuring machine PDM Differential pressure gauge EV Solenoid valve P3 Gas transport pipe CT Cold flap PM Pressure gauge QMS Mass Analyzer B Main body of gas water separation tube E Infrared light emitting device F Float R Infrared light receiving device

Claims (8)

掘削孔内より水とガスとの混合流体を汲み上げる揚水手段と、該揚水手段により汲み上げられた水とガスとを分離する気液分離手段と、該気液分離手段により分離された水の量と水質を測定する水量及び水質測定手段と、前記気液分離手段により分離されたガスの分析測定手段と、前記水量及び水質測定手段と前記分析測定手段による測定データを記録する記録手段とを備え
前記気液分離手段は、前記揚水手段の吐出側に接続されていて赤外線透過材料よりなる分離筒本体と、該分離筒本体に接続されていて分離した水を前記水量及び水質測定手段に輸送するための水輸送管と、該分離筒本体に接続されていて分離したガスを前記分析測定手段に輸送するためのガス輸送管と、該ガス輸送管に設けられた電磁弁と、所定位置で該分離筒本体を横切るように赤外光を射出する赤外光射出装置と、該赤外光射出装置から射出された前記赤外光を受光する赤外光受光装置とを有するガス水分離筒とを含み、
前記所定位置よりも水位が上がり前記赤外光が遮断されたときに前記電磁弁を閉弁し、前記所定位置よりも水位が下がり前記赤外光の遮断が解除されたときに前記電磁弁を開弁させる、気液混合流体観測装置。
Pumping means for pumping a mixed fluid of water and gas from the borehole, gas-liquid separation means for separating water and gas pumped by the pumping means, and the amount of water separated by the gas-liquid separation means; Water quantity and water quality measurement means for measuring water quality, analysis and measurement means for gas separated by the gas-liquid separation means, and recording means for recording measurement data by the water quantity and water quality measurement means and the analysis measurement means ,
The gas-liquid separating means is connected to the discharge side of the pumping means and transports the separated cylinder body made of an infrared transmitting material and the separated water connected to the separation cylinder body to the water quantity and water quality measuring means. A water transport pipe, a gas transport pipe connected to the separation cylinder main body for transporting the separated gas to the analytical measurement means, an electromagnetic valve provided in the gas transport pipe, A gas water separation cylinder having an infrared light emitting device for emitting infrared light so as to cross the separation tube main body, and an infrared light receiving device for receiving the infrared light emitted from the infrared light emitting device; Including
The electromagnetic valve is closed when the water level rises above the predetermined position and the infrared light is blocked, and the electromagnetic valve is closed when the water level falls below the predetermined position and the blocking of the infrared light is released. Gas-liquid mixed fluid observation device that opens the valve .
前記揚水手段は、前記掘削孔内に挿入されたスリット管に接続されたチューブポンプである、請求項1に記載の気液混合流体観測装置。   The gas-liquid mixed fluid observation apparatus according to claim 1, wherein the pumping means is a tube pump connected to a slit pipe inserted into the excavation hole. 前記ガス水分離筒は、前記分離筒本体の内部に赤外光遮断材料よりなるフロートが封入されており、該フロートにより前記赤外光の遮断及び遮断の解除を行う、請求項1または2に記載の気液混合流体観測装置。 3. The gas water separation cylinder according to claim 1 , wherein a float made of an infrared light blocking material is sealed inside the separation cylinder main body, and the infrared light is blocked and released by the float. The gas-liquid mixed fluid observation apparatus described. 前記分析測定手段は、四重極型質量分析計を含んでいる、請求項1乃至3の何れかに記載の気液混合流体観測装置。   The gas-liquid mixed fluid observation apparatus according to any one of claims 1 to 3, wherein the analysis measurement unit includes a quadrupole mass spectrometer. 前記水量及び水質測定手段は、前記気液分離手段に接続された水量測定手段と、該水量測定手段に接続された水質測定手段とを含んでいる、請求項1乃至の何れかに記載の気液混合流体観測装置。 The water quantity and water quality measuring means, and quantity measuring means connected to said gas-liquid separating means, and a water quality measuring means connected to the water amount measuring means, according to any one of claims 1 to 4 Gas-liquid mixed fluid observation device. 前記ガス輸送管は、差圧計を有しており、該差圧計で計測されるガス圧が所定圧に達したときに前記電磁弁を開弁させる、請求項1乃至5の何れかに記載の気液混合流体観測装置。The said gas transport pipe has a differential pressure gauge, and when the gas pressure measured with this differential pressure gauge reaches a predetermined pressure, the said solenoid valve is opened. Gas-liquid mixed fluid observation device. 前記気液分離手段と前記分析測定手段との間に、コールドトラップを備えている、請求項1乃至6の何れかに記載の気液混合流体観測装置。The gas-liquid mixed fluid observation apparatus according to any one of claims 1 to 6, further comprising a cold trap between the gas-liquid separation unit and the analysis measurement unit. 地中約200mの深さから前記水とガスとの混合流体を汲み上げる、請求項1乃至7の何れかに記載の気液混合流体観測装置。The gas-liquid mixed fluid observation device according to any one of claims 1 to 7, wherein the mixed fluid of water and gas is pumped from a depth of about 200m in the ground.
JP2006001295A 2006-01-06 2006-01-06 Gas-liquid mixed fluid observation device in the ground Expired - Fee Related JP4805680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001295A JP4805680B2 (en) 2006-01-06 2006-01-06 Gas-liquid mixed fluid observation device in the ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001295A JP4805680B2 (en) 2006-01-06 2006-01-06 Gas-liquid mixed fluid observation device in the ground

Publications (2)

Publication Number Publication Date
JP2007183160A JP2007183160A (en) 2007-07-19
JP4805680B2 true JP4805680B2 (en) 2011-11-02

Family

ID=38339390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001295A Expired - Fee Related JP4805680B2 (en) 2006-01-06 2006-01-06 Gas-liquid mixed fluid observation device in the ground

Country Status (1)

Country Link
JP (1) JP4805680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486426A (en) * 2010-12-06 2012-06-06 淮南矿业(集团)有限责任公司 Gas pressure measurement device
JP5465737B2 (en) * 2012-01-27 2014-04-09 中国電力株式会社 Sample gas sampling device
JP6337405B2 (en) * 2016-01-21 2018-06-06 秀実 田中 Gas purification / discharge unit for underground gas-liquid mixed fluid observation equipment
JP6288783B2 (en) * 2016-01-21 2018-03-07 秀実 田中 Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground
CN115753263B (en) * 2022-11-22 2024-02-02 张家口地震监测中心站 Gas collecting device for continuous measurement of chemical quantity of non-self-flowing well

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122932A (en) * 1980-03-05 1981-09-26 Nippon Oil Co Ltd Collecting and detecting device for leaked fluid
JPS62203438U (en) * 1986-06-16 1987-12-25
JPH0735997B2 (en) * 1987-11-18 1995-04-19 キッコーマン株式会社 Liquid analyzer
JP2559654B2 (en) * 1992-05-19 1996-12-04 株式会社日さく Equipment for monitoring and decontaminating groundwater flow rate and specific water quality
JPH1110130A (en) * 1997-06-20 1999-01-19 Kawasaki Steel Corp Method and apparatus for removal of underground pollutant
JP3348028B2 (en) * 1998-10-21 2002-11-20 横河電機株式会社 Volcanic phreatic explosion prediction system
JP3615064B2 (en) * 1998-11-02 2005-01-26 同和鉱業株式会社 Contaminated soil purification method
JP2001141717A (en) * 1999-11-16 2001-05-25 Tlv Co Ltd Property measuring device of vapor
JP2001146767A (en) * 1999-11-24 2001-05-29 Doriko Kk Well for cleaning ground water, ground water-cleaning device using it, and ground water-cleaning method
JP2005150027A (en) * 2003-11-19 2005-06-09 Toyota Motor Corp Component measuring apparatus for humidifying gas

Also Published As

Publication number Publication date
JP2007183160A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
CA2719816C (en) Method and apparatus for liberating gases from drilling fluid
JP6288783B2 (en) Gas extraction / separation unit for gas-liquid mixed fluid observation equipment in the ground
JP4805680B2 (en) Gas-liquid mixed fluid observation device in the ground
CN103776722B (en) The coal seam gas-bearing capacity method of testing of sampling under subnormal ambient
CN103776659B (en) Negative pressure pull-out type coal seam gas-bearing capacity spot sampling method
Kissell et al. The direct method of determining methane content of coalbeds for ventilation design
US7507952B2 (en) Apparatus and method for fluid density determination
EP0543944B1 (en) A method and an apparatus for taking and analysing level determined samples of pore gas/liquid from a subterranean formation
JP4870579B2 (en) Pumping test method and pumping test equipment
US8256282B2 (en) In situ determination of critical desorption pressures
US8006576B2 (en) Condensation collection device and methods of use
US9970290B2 (en) Borehole logging methods and apparatus
KR101334041B1 (en) Sampler of soil for measuring optically stimulated luminescence age and storage apparatus of soil sample
US11519895B2 (en) In situ evaluation of gases and liquids in low permeability reservoirs
CN105628549B (en) A kind of coal seam can desorbing mash gas content direct quickly full-automatic measuring method
CN106198117B (en) The in-site detecting device and measuring method of gas parameter
CN108593371A (en) The de- solution collection device and method of solution gas in water body
RU2526962C1 (en) Method of determining gas kinetic characteristics of coal-bed
Sapienza et al. Helium isotopes in peridotite mineral phases from Hyblean Plateau xenoliths (south-eastern Sicily, Italy)
JP5433523B2 (en) Geochemical sampler
CN208383531U (en) The de- solution collection device of solution gas in water body
Freifeld et al. Real‐time quadrupole mass spectrometer analysis of gas in borehole fluid samples acquired using the U‐tube sampling methodology
CN104730225B (en) A kind of ground saturation degree on-site testing device and method
KR101981650B1 (en) Real-Time Radon Monitoring System for Underground Watershed
WO2020114866A1 (en) A collecting device for collecting gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Ref document number: 4805680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees