JP4805097B2 - Self-luminous road fence - Google Patents

Self-luminous road fence Download PDF

Info

Publication number
JP4805097B2
JP4805097B2 JP2006307293A JP2006307293A JP4805097B2 JP 4805097 B2 JP4805097 B2 JP 4805097B2 JP 2006307293 A JP2006307293 A JP 2006307293A JP 2006307293 A JP2006307293 A JP 2006307293A JP 4805097 B2 JP4805097 B2 JP 4805097B2
Authority
JP
Japan
Prior art keywords
voltage
power
circuit
solar cell
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006307293A
Other languages
Japanese (ja)
Other versions
JP2008121315A (en
Inventor
恭大 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Original Assignee
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp filed Critical Sekisui Jushi Corp
Priority to JP2006307293A priority Critical patent/JP4805097B2/en
Publication of JP2008121315A publication Critical patent/JP2008121315A/en
Application granted granted Critical
Publication of JP4805097B2 publication Critical patent/JP4805097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、太陽電池で発電した電力で発光体を発光させる道路鋲において、太陽光によるエネルギーを効率よく発光に用いることができる自発光式道路鋲に関するものである。   TECHNICAL FIELD The present invention relates to a self-luminous road fence that can efficiently use energy from sunlight for light emission in a road fence that emits light from a light emitter using electric power generated by a solar cell.

太陽光によるエネルギーを効率よく発光に用いることができる自発光式道路鋲としては、例えば鋲本体上部に設けられ上面が道路面とほぼ同一に設置される光透過パネルと、前記光透過パネルを介して光をほぼ水平方向へ放射可能な発光体と、前記光透過パネルの下方に設けられた太陽電池と、前記太陽電池の起電力を蓄電する電気二重層コンデンサと、前記太陽電池の起電力を制御して前記電気二重層コンデンサに充電する充電制御手段と、前記電気二重層コンデンサを電源とし前記発光体を点滅するための駆動電流を出力する点滅制御回路と、前記駆動電流をパルス変調しパルス変調されたパルス電流を出力する発振回路と、前記パルス電流の一部を帰還電力に変換して前記電気二重層コンデンサへ帰還する電力帰還手段と、を備え、前記電力帰還手段は、前記パルス電流を検出する電流検出回路と、前記電流検出回路の検出出力を整流し増幅する整流増幅回路と、からなり、前記パルス電流により前記発光体が点滅駆動されるとともに、前記整流増幅回路の出力を前記電気二重層コンデンサへ帰還して蓄電可能に構成されてなる自発光道路鋲により、太陽電池の起電力を有効に蓄電して太陽光の利用効率を高めることができるようになされている構成が開示されている。   As a self-luminous road fence that can efficiently use energy from sunlight for light emission, for example, a light transmission panel provided at the upper part of the fence main body and having an upper surface set almost the same as the road surface, and through the light transmission panel A light emitter capable of emitting light in a substantially horizontal direction, a solar cell provided below the light transmissive panel, an electric double layer capacitor for storing an electromotive force of the solar cell, and an electromotive force of the solar cell. Charging control means for controlling and charging the electric double layer capacitor; a blinking control circuit for outputting a driving current for blinking the light emitter using the electric double layer capacitor as a power source; and pulse-modulating and driving the driving current An oscillation circuit that outputs a modulated pulse current; and power feedback means that converts a part of the pulse current into feedback power and feeds it back to the electric double layer capacitor. The power feedback means comprises a current detection circuit that detects the pulse current, and a rectification amplification circuit that rectifies and amplifies the detection output of the current detection circuit, and the light emitter is driven to blink by the pulse current, The self-luminous roadway constructed so that the output of the rectifying and amplifying circuit is fed back to the electric double layer capacitor and can be stored can effectively store the electromotive force of the solar cell and increase the use efficiency of sunlight. The structure made in this way is disclosed.

特開平09−041333号公報Japanese Patent Application Laid-Open No. 09-041333

しかしながら、特許文献1に記載のような従来の自発光式道路鋲では、単に整流増幅回路の出力を蓄電手段に還流させることで電力を効率的に用いようとするのみであり、還流させる電力は極僅かなものであることから、太陽光によるエネルギーが効率的に利用できる度合いは極めて小さく、山間部や都市部など太陽電池が日陰になる頻度が高い場所に用いた場合にはやはり蓄電手段に蓄電される電力が不足する恐れの高いものであった。   However, in the conventional self-luminous roadway as described in Patent Document 1, power is simply used by simply circulating the output of the rectifying and amplifying circuit to the power storage means. Since it is extremely small, the degree of efficient use of energy from sunlight is extremely small, and when used in places where solar cells are frequently shaded, such as in mountainous areas and urban areas, it is still a power storage means. There was a high possibility that the electric power stored would be insufficient.

本発明は上記の如き課題に鑑みてなされたものであり、太陽光によるエネルギーを高い効率で利用可能とできる自発光式道路鋲を提供せんとするものである。   The present invention has been made in view of the problems as described above, and is intended to provide a self-luminous roadway which can use solar energy with high efficiency.

上記目的を達成するため、本発明は以下のような構成としている。すなわち、本発明に係わる自発光式道路鋲は、太陽電池と、太陽電池で発電した電力を蓄える蓄電手段と、発光体と、蓄電手段から供給される電力を制御して発光体を発光させる制御回路とを備え、太陽電池から蓄電手段への蓄電が最大電力点追随回路を介して行われると共に、前記最大電力点追随回路は、出力電圧が太陽電池と蓄電手段とが接続された状態での太陽電池電圧より小さくなった場合に、最大電力点追随回路の介在を解除するようになされていることを特徴とするものである。 In order to achieve the above object, the present invention is configured as follows. That is, the self-luminous road fence according to the present invention includes a solar cell, a power storage means for storing power generated by the solar battery, a light emitter, and a control for controlling the power supplied from the power storage means to emit light from the light emitter. And the storage from the solar cell to the storage means is performed via the maximum power point tracking circuit, and the maximum power point tracking circuit is configured such that the output voltage is in a state where the solar cell and the storage means are connected. When the voltage becomes lower than the solar cell voltage, the intervention of the maximum power point tracking circuit is canceled .

本発明に係わる自発光式道路鋲によれば、最大電力点追随回路により蓄電手段の充電電圧に関わらず太陽電池から最大の電流値にて電力を取り出すと共に、その電力の電圧を蓄電手段の充電に適した電圧に応じて昇圧させて蓄電手段に充電できることで、日照の量が少ない場所に設置された場合でも太陽電池から最大限の電力を取り出して太陽光によるエネルギーを高い効率で利用可能とすることができる。   According to the self-luminous roadway according to the present invention, the maximum power point tracking circuit takes out power from the solar cell at the maximum current value regardless of the charging voltage of the power storage means, and the power voltage is charged to the power storage means. The battery can be charged by boosting the voltage according to the voltage suitable for the system, and even when installed in a place where the amount of sunlight is low, the maximum power can be extracted from the solar cell and the energy from sunlight can be used with high efficiency. can do.

また前記最大電力点追随回路は、出力電圧が太陽電池と蓄電手段とが接続された状態での太陽電池電圧より小さくなった場合に、最大電力点追随回路の介在を解除するようになされているので、最大電力点追随回路を用いる必要がなくなる状態において最大電力点追随回路を解除して最大電力点追随回路による電力消費をなくして、更に太陽光によるエネルギーを高い効率による利用が可能とできる。 The maximum power point tracking circuit is configured to cancel the intervention of the maximum power point tracking circuit when the output voltage becomes lower than the solar cell voltage when the solar cell and the power storage means are connected . since, by eliminating the power consumption by the maximum power point tracking circuit to release the maximum power point tracking circuit in a state where it is not necessary to use a maximum power point tracking circuit, Ru can allow further use by high efficiency energy by solar light .

本発明に係わる最大電力点追随回路により蓄電手段の充電電圧に関わらず太陽電池から最大の電流にて電力を取り出し、その電力を昇圧回路により蓄電手段の充電に適した電圧に昇圧させて蓄電手段に充電できることで、日照の量が少ない場所に設置された場合でも太陽電池から最大限の電力を取り出して太陽光によるエネルギーを高い効率で利用可能とすることができる。   The power is extracted from the solar cell with the maximum current regardless of the charging voltage of the power storage means by the maximum power point tracking circuit according to the present invention, and the power is boosted to a voltage suitable for charging the power storage means by the booster circuit. By being able to be charged, even when installed in a place where the amount of sunlight is small, the maximum electric power can be taken out from the solar cell and the energy from sunlight can be used with high efficiency.

本発明に係わる最良の実施の形態について、図面に基づき以下に具体的に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment according to the present invention will be specifically described below with reference to the drawings.

図1は、本発明に係わる自発光式道路鋲の、実施の一形態における回路ブロック図である。まず図1において、太陽電池1は太陽光エネルギーを直接電気エネルギーに変換する発電装置であり、結晶系、アモルファス系、化合物系のいずれでも使用できる。太陽電池1に太陽光等の光が照射されることで生起された電力は、電気二重層コンデンサである蓄電手段2に蓄電される。この電気二重層コンデンサ2は電気二重層の誘電現象を利用したものであり、50ファラッド程度のものが実用化されている。本実施例ではこの実用化されている50ファラッドの電気二重層コンデンサである蓄電手段2を使用している。   FIG. 1 is a circuit block diagram of an embodiment of a self-luminous road fence according to the present invention. First, in FIG. 1, a solar cell 1 is a power generation device that directly converts solar energy into electric energy, and can be used in any of a crystalline system, an amorphous system, and a compound system. The electric power generated by irradiating the solar cell 1 with light such as sunlight is stored in the power storage means 2 that is an electric double layer capacitor. This electric double layer capacitor 2 utilizes the dielectric phenomenon of the electric double layer, and about 50 Farads have been put into practical use. In this embodiment, the power storage means 2 which is a 50 Farad electric double layer capacitor which has been put into practical use is used.

太陽電池1により生起された電力は、最大電力点追随回路3により最大の電流値にて電力を取り出すようになされている。最大電力点追随回路3は、記憶回路31、制御回路32及び昇圧回路33を含むもので、取り出された電力は、最大電力点追随回路3により蓄電手段2への蓄電に適する電圧にまで昇圧されることで、太陽光によるエネルギーを高い効率で利用可能とできるようになされている。   The power generated by the solar cell 1 is extracted by the maximum power point tracking circuit 3 at the maximum current value. The maximum power point tracking circuit 3 includes a storage circuit 31, a control circuit 32, and a booster circuit 33. The extracted power is boosted to a voltage suitable for storing power in the power storage means 2 by the maximum power point tracking circuit 3. This makes it possible to use solar energy with high efficiency.

最大電力点追随回路3による蓄電手段2への蓄電方法としては、例えば以下に示す山登り法と呼ばれる方法にて行うことができる。具体的には、太陽電池1の開放電圧=a(V)、太陽電池1と蓄電手段2とを接続した状態での太陽電池電圧=b(V)、太陽電池1の最適動作電圧=c(V)である場合、最大電力点追随回路3に電圧a、及びその電圧aに対応する電圧cを記憶回路31に記憶させておき、制御回路32により上記電圧a〜cを逐一測定可能としておく。次に太陽電池1の開放電圧aに対応する電圧cを記憶回路31から制御回路32に読み出し、制御回路32により例えばPWM制御によるパルスによって電圧cの電力を出力すると共に、昇圧回路33によって電圧dの電力を出力する。ここで電圧dについても制御回路32により測定可能としておき、制御回路32において検知した電圧dが電圧bより小さい場合には、更に昇圧回路33にて電圧dを高めるようにし、この操作を電圧b=電圧dとなるまで繰り返す。電圧b=電圧dの状態で最大電力点追随回路3から電力を出力することで、太陽電池1の開放電圧aが電圧bより低い状態であっても、蓄電手段2への充電に最適な電圧bによる充電を行うことができるようになされている。   As a power storage method to the power storage means 2 by the maximum power point tracking circuit 3, for example, a method called a hill climbing method shown below can be used. Specifically, the open voltage of the solar cell 1 = a (V), the solar cell voltage when the solar cell 1 and the storage means 2 are connected = b (V), the optimum operating voltage of the solar cell 1 = c ( V), the maximum power point tracking circuit 3 stores the voltage a and the voltage c corresponding to the voltage a in the storage circuit 31, and the control circuit 32 makes it possible to measure the voltages a to c one by one. . Next, the voltage c corresponding to the open circuit voltage a of the solar cell 1 is read from the storage circuit 31 to the control circuit 32, and the power of the voltage c is output by the control circuit 32 by, for example, a pulse by PWM control. Output power. Here, the voltage d can also be measured by the control circuit 32. When the voltage d detected by the control circuit 32 is smaller than the voltage b, the voltage d is further increased by the booster circuit 33, and this operation is performed by the voltage b. Repeat until voltage d. By outputting power from the maximum power point tracking circuit 3 in the state of voltage b = voltage d, the optimum voltage for charging the power storage means 2 even when the open voltage a of the solar cell 1 is lower than the voltage b. The charging by b can be performed.

また、太陽電池の最適動作電圧cが、蓄電手段2への蓄電に適する電圧bを上回った場合、最大電力点追随回路3により電圧を高める必要がなくなることから、最大電力点追随回路3を解除するのが好ましい。最大電力点追随回路3を解除することで、最大電力点追随回路3により消費される電力をなくして更に電力を効率的に用いることができる。更に、制御手段32による電圧cの測定は継続させ、再び電圧cが電圧bを下回った際に最大電力点追随回路3を動作させるようにしておくのが好ましい。   In addition, when the optimum operating voltage c of the solar cell exceeds the voltage b suitable for power storage in the power storage means 2, it is not necessary to increase the voltage by the maximum power point tracking circuit 3, so the maximum power point tracking circuit 3 is released. It is preferable to do this. By canceling the maximum power point tracking circuit 3, the power consumed by the maximum power point tracking circuit 3 can be eliminated and the power can be used more efficiently. Further, it is preferable that the measurement of the voltage c by the control means 32 is continued and the maximum power point tracking circuit 3 is operated when the voltage c falls below the voltage b again.

蓄電手段2に蓄電された電力は、放電定電圧回路5によって所定電圧とされて、8ビットのマイコンである発光パターン制御回路8を介して発光体4に供給され、発光パターン回路8に記憶された発光モードにて発光体4が発光される。発光体4による発光は、昼夜判別回路7により夜間であることが検知された場合にのみ行われ、昼夜判別回路7が周囲の照度が一定以下と検知した場合に、放電定電圧回路5から発光パターン制御回路8に電力が供給されて発光体4が発光され、周囲の照度が一定以上となると昼であると検知して、発光パターン制御回路8への電力の供給が停止される。   The electric power stored in the electric storage means 2 is made a predetermined voltage by the discharge constant voltage circuit 5, supplied to the light emitter 4 through the light emission pattern control circuit 8 which is an 8-bit microcomputer, and stored in the light emission pattern circuit 8. The light emitter 4 emits light in the light emission mode. Light emission by the illuminant 4 is performed only when it is detected by the day / night discrimination circuit 7 that it is nighttime. When the day / night discrimination circuit 7 detects that the ambient illuminance is below a certain level, the light emission from the discharge constant voltage circuit 5 occurs. When power is supplied to the pattern control circuit 8 and the illuminant 4 emits light, and the ambient illuminance exceeds a certain level, it is detected that it is daytime, and the supply of power to the light emission pattern control circuit 8 is stopped.

図2は、本発明に係わる自発光式道路鋲の、実施の一形態を示す縦断面図である。自発光式道路鋲は、路面Gに埋設された本体10中に、太陽電池1、蓄電手段2及び制御装置11が収納され、制御装置11内に最大電力点追随回路3、放電定電圧回路5、昼夜判別回路7及び発光パターン回路8が設けられている。本体10の上面は透明な合成樹脂製のレンズ体20により閉塞され、太陽電池1への光の入射が妨げられないようになされていると共に、レンズ体20の下面に嵌入された発光ダイオードである発光体4から発せられた光がレンズ体20により屈折されて路面Gと僅かに角度が付けられて外界に発せられるようになされている。   FIG. 2 is a longitudinal sectional view showing an embodiment of a self-luminous road fence according to the present invention. The self-luminous road fence has a solar cell 1, a power storage means 2, and a control device 11 housed in a main body 10 embedded in a road surface G, and a maximum power point tracking circuit 3 and a discharge constant voltage circuit 5 in the control device 11. A day / night discrimination circuit 7 and a light emission pattern circuit 8 are provided. The upper surface of the main body 10 is a light-emitting diode that is blocked by a transparent synthetic resin lens body 20 so as not to prevent light from entering the solar cell 1 and is fitted into the lower surface of the lens body 20. The light emitted from the light emitting body 4 is refracted by the lens body 20 and is emitted at a slight angle with the road surface G to the outside.

本発明に係わる自発光式道路鋲における蓄電手段への効率的な蓄電に係わる効果を以下の実施例に基づき説明する。   The effects relating to the efficient power storage to the power storage means in the self-luminous road fence according to the present invention will be described based on the following examples.

太陽電池に蓄電手段を接続し、日の出からの蓄電手段への充電状態を75分間測定し、その結果を図3に示している。図3中、本発明に係わる自発光式道路鋲における蓄電手段の出力電圧はα、並びに最大電力点追随回路からの出力電圧はdで示す。また最大電力点追随回路を用いていない場合の、蓄電手段の出力電圧はβ、太陽電池と蓄電手段とを接続した状態での太陽電池電圧はbで示している。   The storage means is connected to the solar cell, the state of charge of the storage means from sunrise is measured for 75 minutes, and the result is shown in FIG. In FIG. 3, the output voltage of the power storage means in the self-light-emitting road fence according to the present invention is indicated by α, and the output voltage from the maximum power point tracking circuit is indicated by d. Further, when the maximum power point tracking circuit is not used, the output voltage of the power storage means is indicated by β, and the solar battery voltage in a state where the solar battery and the power storage means are connected is indicated by b.

電圧αと電圧βを比較すると、最大電力点追随回路の動作が不安定な15分後辺りまでは電圧βが明らかに上回っているが、安定した20分後辺りからは電圧αが高まってきており、30分後からは電圧αが上回り、75分後における電圧の差ΔEは約0.1Vとなっていることから、市街地や山間部等の日照の少ない場所において、太陽光によるエネルギーを高い効率で利用可能とすることができることが明確に示されている。また本実施例においては、蓄電手段の出力電圧が最大電力点追随回路からの出力電圧を上回った63分後時点で最大電力点追随回路を解除している。   Comparing the voltage α and the voltage β, the voltage β is clearly higher until about 15 minutes after the maximum power point tracking circuit is unstable, but the voltage α increases after about 20 minutes after the stable operation. Since the voltage α exceeds 30 minutes later and the voltage difference ΔE after 75 minutes is about 0.1 V, the energy from sunlight is high in places with little sunlight such as urban areas and mountain areas. It is clearly shown that it can be used efficiently. In the present embodiment, the maximum power point tracking circuit is canceled 63 minutes after the output voltage of the power storage means exceeds the output voltage from the maximum power point tracking circuit.

本発明に係わる自発光式道路鋲の、実施の一形態における回路ブロック図である。It is a circuit block diagram in one embodiment of a self-luminous roadway concerning the present invention. 本発明に係わる自発光式道路鋲の、実施の一形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the self-light-emitting road fence concerning this invention. 自発光式道路鋲における最大電力点追随回路を用いたものと用いていないものの蓄電状態を比較するグラフである。It is a graph which compares the electrical storage state of what used the maximum electric power point tracking circuit in a self-light-emitting type roadside, and what is not used.

符号の説明Explanation of symbols

1 太陽電池
2 蓄電手段
3 最大電力点追随回路
4 発光体
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Power storage means 3 Maximum power point tracking circuit 4 Luminescent body

Claims (1)

太陽電池と、太陽電池で発電した電力を蓄える蓄電手段と、発光体と、蓄電手段から供給される電力を制御して発光体を発光させる制御回路とを備え、太陽電池から蓄電手段への蓄電が最大電力点追随回路を介して行われると共に、前記最大電力点追随回路は、出力電圧が太陽電池と蓄電手段とが接続された状態での太陽電池電圧より小さくなった場合に、最大電力点追随回路の介在を解除するようになされていることを特徴とする自発光式道路鋲。 Power storage from a solar cell to a power storage means, comprising a solar cell, power storage means for storing power generated by the solar battery, a light emitter, and a control circuit for controlling the power supplied from the power storage means to cause the light emitter to emit light Is performed via a maximum power point tracking circuit, and the maximum power point tracking circuit is configured to output a maximum power point when the output voltage becomes lower than the solar cell voltage in a state where the solar cell and the storage means are connected. A self-luminous road fence characterized in that the intervention of the following circuit is canceled .
JP2006307293A 2006-11-14 2006-11-14 Self-luminous road fence Expired - Fee Related JP4805097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307293A JP4805097B2 (en) 2006-11-14 2006-11-14 Self-luminous road fence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307293A JP4805097B2 (en) 2006-11-14 2006-11-14 Self-luminous road fence

Publications (2)

Publication Number Publication Date
JP2008121315A JP2008121315A (en) 2008-05-29
JP4805097B2 true JP4805097B2 (en) 2011-11-02

Family

ID=39506366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307293A Expired - Fee Related JP4805097B2 (en) 2006-11-14 2006-11-14 Self-luminous road fence

Country Status (1)

Country Link
JP (1) JP4805097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023603A (en) * 2013-07-16 2015-02-02 株式会社リコー Charge control device, image forming apparatus, charge control method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548870B2 (en) * 1994-09-02 2004-07-28 オムロン株式会社 Maximum power point tracking device
JP3634430B2 (en) * 1995-02-24 2005-03-30 積水樹脂株式会社 Self-luminous road fence
JP4624717B2 (en) * 2004-05-14 2011-02-02 三菱電機株式会社 Power system

Also Published As

Publication number Publication date
JP2008121315A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
KR100311665B1 (en) Battery device and intermittent operation device using it
JP3818439B2 (en) Road marking device and self-luminous marking system used in the device
JP4829574B2 (en) Lighting system
US20070052385A1 (en) Streetlight powered by solar energy
US10115853B2 (en) Electronic power cell memory back-up battery
KR100876968B1 (en) Lighting apparatus using light emitting element
KR20130082240A (en) Control device for charging and discharging of super capacitor and rechargeable battery
US9797566B2 (en) Self-powered street light
JP4805097B2 (en) Self-luminous road fence
KR101557989B1 (en) Led footway brick of outputting a sound
JP4907599B2 (en) Lighting device with solar battery
KR100852505B1 (en) Power supplier for street lamp
KR200429419Y1 (en) Solar cell lumination system
KR101424548B1 (en) Apparatus for controling led using the light of the sun
JP2740945B2 (en) Buoy
US20110084646A1 (en) Off-grid led street lighting system with multiple panel-storage matching
KR20100119952A (en) Solar road marker
US20080230113A1 (en) Lighting system
CN212305720U (en) Circuit of solar lamp and solar LED lamp using same
KR102413407B1 (en) Battery power control system supplied to LED lighting
JP3030191B2 (en) Self-luminous sign
JP2920357B2 (en) Light emitting road tack
JP3634430B2 (en) Self-luminous road fence
JP2006288039A (en) Exterior lighting system
JP2835500B2 (en) Light-emitting gaze guide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4805097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees