JP4804237B2 - Current control device for three-phase AC motor - Google Patents

Current control device for three-phase AC motor Download PDF

Info

Publication number
JP4804237B2
JP4804237B2 JP2006168230A JP2006168230A JP4804237B2 JP 4804237 B2 JP4804237 B2 JP 4804237B2 JP 2006168230 A JP2006168230 A JP 2006168230A JP 2006168230 A JP2006168230 A JP 2006168230A JP 4804237 B2 JP4804237 B2 JP 4804237B2
Authority
JP
Japan
Prior art keywords
current
axis
phase
deviation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006168230A
Other languages
Japanese (ja)
Other versions
JP2007336756A (en
Inventor
善久 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2006168230A priority Critical patent/JP4804237B2/en
Publication of JP2007336756A publication Critical patent/JP2007336756A/en
Application granted granted Critical
Publication of JP4804237B2 publication Critical patent/JP4804237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、三相交流電動機の電流を電流検出器で検出し、検出した電流値を電流制御器にフィードバックして電流制御する電流制御装置に関するものである。   The present invention relates to a current control device that detects a current of a three-phase AC motor with a current detector and feeds back the detected current value to a current controller to control the current.

従来の三相交流電動機の電流制御の構成を図4に示し、図4に基づいて構成を説明する。   The configuration of current control of a conventional three-phase AC motor is shown in FIG. 4, and the configuration will be described based on FIG.

三相交流電動機1には電力変換器2により三相の平衡した交流電圧が印加され、三相平衡した電流が流れる。 A three-phase balanced AC voltage is applied to the three-phase AC motor 1 by the power converter 2, and a three-phase balanced current flows.

電流検出器31〜33は、三相交流電動機1に流れるU相電流、V相電流、W相電流をそれぞれ検出する。 The current detectors 31 to 33 detect a U-phase current, a V-phase current, and a W-phase current flowing through the three-phase AC motor 1, respectively.

回転座標変換器5は電流検出器31〜33により検出されたU相電流値iu、V相電流値iv、W相電流値iwと三相交流電動機1に取り付けられた位置検出器4からの位置情報θにより(1)と(2)式に基づいて三相―dq座標変換を行い回転座標上において直流状態として扱えるd軸電流idとq軸電流iqを出力する。 The rotary coordinate converter 5 includes a U-phase current value iu, a V-phase current value iv, and a W-phase current value iw detected by the current detectors 31 to 33, and a position from the position detector 4 attached to the three-phase AC motor 1. Based on the information θ, three-phase-dq coordinate conversion is performed based on the equations (1) and (2), and a d-axis current id and a q-axis current iq that can be handled as a DC state on the rotation coordinates are output.

Figure 0004804237
Figure 0004804237

d軸電流制御器81はd軸電流指令61とd軸電流idとの偏差を入力として、偏差が0となるようPI調整器を介してd軸電圧指令vdrefを出力する。   The d-axis current controller 81 receives the deviation between the d-axis current command 61 and the d-axis current id and outputs a d-axis voltage command vdref via the PI adjuster so that the deviation becomes zero.

q軸電流制御器82はq軸電流指令62とq軸電流との偏差を入力として、偏差が0となるようPI調整器を介してq軸電圧指令vqrefを出力する。 The q-axis current controller 82 receives the deviation between the q-axis current command 62 and the q-axis current, and outputs a q-axis voltage command vqref via the PI adjuster so that the deviation becomes zero.

回転座標変換器9はd軸電圧指令vdrefとq軸電圧指令vqrefおよび三相交流電動機1に取り付けられた位置検出器4からの位置情報θによりdq−三相座標変換を行い、平衡した三相交流電圧指令vuref,vvref,vwrefを電力変換器2に与える。 The rotary coordinate converter 9 performs dq-three-phase coordinate conversion based on the d-axis voltage command vdref, the q-axis voltage command vqref, and the position information θ from the position detector 4 attached to the three-phase AC motor 1, and performs balanced three-phase conversion. AC voltage commands vref, vvref, vwref are given to the power converter 2.

この電流制御の構成は特許文献1〜4などにも適用されている。 This current control configuration is also applied to Patent Documents 1 to 4 and the like.

図5は従来の電流制御の構成において三相交流電動機1の各相に設けられた3つの電流検出器31〜33の出力のうち1つに異常が生じ、真値とは異なる電流値がフィードバックされた場合のd軸電流idとq軸電流iqを表わしたものである。 FIG. 5 shows that in the conventional current control configuration, an abnormality occurs in one of the outputs of the three current detectors 31 to 33 provided in each phase of the three-phase AC motor 1, and a current value different from the true value is fed back. The d-axis current id and the q-axis current iq in the case of

図5の区間Aは3つの電流検出器の出力が正常の場合の動作を表わしており、d軸電流idはd軸電流指令61にほぼ一致しているものとし、またq軸電流iqはq軸電流指令62にほぼ一致している定常状態にあることとする。 The section A in FIG. 5 represents the operation when the outputs of the three current detectors are normal, the d-axis current id substantially matches the d-axis current command 61, and the q-axis current iq is q It is assumed that it is in a steady state that substantially matches the shaft current command 62.

図5の区間Bは3つの電流検出器31〜33のうちU相の電流検出器31の出力だけに異常が生じ固定値X1となった場合を、図5の区間CはV相の電流検出器32の出力だけに異常が生じ固定値X2となった場合を、図5の区間DはW相の電流検出器33の出力だけに異常が生じ固定値X3となった場合を表わしており、これらの電流値により(1)および(2)式に基づいて回転座標変換されたd軸電流idとd軸電流指令61との間には誤った偏差を生じ、同様にq軸電流iqとq軸電流指令62との間にも誤った偏差を生じることとなる。 Section B in FIG. 5 shows a case where only the output of the U-phase current detector 31 among the three current detectors 31 to 33 is abnormal and becomes a fixed value X1, and section C in FIG. 5 shows the V-phase current detection. 5 shows a case where only the output of the detector 32 is abnormal and becomes the fixed value X2, and a section D in FIG. 5 shows a case where only the output of the W-phase current detector 33 is abnormal and becomes the fixed value X3. Due to these current values, an erroneous deviation occurs between the d-axis current id and the d-axis current command 61 that have been subjected to rotational coordinate conversion based on the equations (1) and (2), and similarly q-axis currents iq and q An erroneous deviation also occurs with respect to the shaft current command 62.

d軸電流制御器81およびq軸電流制御器82にはこの誤った偏差が入力されることとなり、各電流制御器81,82はこの偏差を補償しようとするために実電流にはリップルが生じ、三相交流電動機1の出力にはトルクリップルが生じることとなる。 This erroneous deviation is input to the d-axis current controller 81 and the q-axis current controller 82, and each current controller 81, 82 tries to compensate for this deviation, so that a ripple occurs in the actual current. A torque ripple is generated in the output of the three-phase AC motor 1.

図5に示した例では、電流波形の1周期にわたって電流検出器の出力が固定値となった場合を示しているが、電流検出器31〜33の出力にノイズが混入し瞬間的に異常が生じた場合でもノイズが混入した期間において三相交流電動機1の出力にはトルクリップルを生じる。
特許3719910号 特許3719426号 特許3707528号 特許3395815号
The example shown in FIG. 5 shows a case where the output of the current detector becomes a fixed value over one period of the current waveform, but noise is mixed into the outputs of the current detectors 31 to 33 and an abnormality is instantaneously generated. Even if it occurs, torque ripple occurs in the output of the three-phase AC motor 1 during the period when noise is mixed.
Patent 3719910 Japanese Patent No. 3719426 Japanese Patent No. 3707528 Japanese Patent No. 3395815

解決しようとする問題点は、電流検出器が故障した場合や電流検出器にノイズが混入した場合に、電流制御器へのフィードバックとなる電流検出値に誤差が生じ、その電流検出値を用いて電流制御を行うことによりモータからトルクリップルを発生する点である。   The problem to be solved is that when the current detector fails or noise is mixed in the current detector, an error occurs in the current detection value that is fed back to the current controller. The torque ripple is generated from the motor by performing the current control.

本発明の請求項1では、三相の平衡した電圧指令に基づいて三相交流電動機に電圧を印加する電力変換器と該三相交流電動機のU相に流れる電流を検出するU相の電流検出器とV相に流れる電流を検出するV相の電流検出器とW相に流れる電流を検出するW相の電流検出器の3つの電流検出器と、該電流検出器にて検出した前記三相交流電動機の電流値と前記三相交流電動機に取り付けられた位置検出器の情報に基づいて回転座標上において直流状態として扱えるd軸電流およびq軸電流に変換する回転座標変換器と、d軸電流指令と該d軸電流との偏差を演算するd軸偏差演算器の演算結果を入力として該d軸電流指令と前記d軸電流の偏差をゼロするためのd軸電圧指令を出力するd軸電流制御器と、q軸電流指令と該q軸電流との偏差を演算するq軸偏差演算器の演算結果を入力としてq軸電流指令と前記q軸電流の偏差をゼロするためのq軸電圧指令を出力するq軸電流制御器と、該d軸電圧指令と該q軸電圧指令および前記三相交流電動機に取り付けられた前記位置検出器の情報を基に平衡した三相の交流電圧指令に変換する回転座標変換器を具備し、前記三相交流電動機に流れる電流を制御する電流制御装置において、
該3つの電流検出器のうち該U相の電流検出器と該V相の電流検出器および該位置検出器の情報に基づいて回転座標上において直流状態として扱える第2d軸電流および第2q軸電流に変換する第2回転座標変換器と、前記3つの電流検出器のうち前記U相の電流検出器と該W相の電流検出器および前記位置検出器の情報に基づいて回転座標上において直流状態として扱える第3d軸電流および第3q軸電流に変換する第3回転座標変換器と、前記3つの電流検出器のうち前記V相の電流検出器と前記W相の電流検出器および前記位置検出器の情報に基づいて回転座標上において直流状態として扱える第4d軸電流および第4q軸電流に変換する第4回転座標変換器と、前記d軸電流指令と該第2d軸電流との偏差を演算する第2d軸偏差演算器と、前記q軸電流指令と該第2q軸電流との偏差を演算する第2q軸偏差演算器と、前記d軸電流指令と該第3d軸電流との偏差を演算する第3d軸偏差演算器と、前記q軸電流指令と該第3q軸電流との偏差を演算する第3q軸偏差演算器と、前記d軸電流指令と該第4d軸電流との偏差を演算する第4d軸偏差演算器と、前記q軸電流指令と該第4q軸電流との偏差を演算する第4q軸偏差演算器と、該d軸偏差演算器、該第2d軸偏差演算器、該第3d軸偏差演算器、該第4d軸偏差演算器の出力のうち絶対値が最小となる出力を選択するd軸電流選択器と、該q軸偏差演算器、該第2q軸偏差演算器、該第3q軸偏差演算器、該第4q軸偏差演算器の出力のうち絶対値が最小となる出力を選択するq軸電流選択器を具備し、該d軸電流選択器の出力を前記d軸電流制御器の入力とし、該q軸電流選択器の出力を前記q軸電流制御器の入力とすることを特徴とする。
According to claim 1 of the present invention, a power converter for applying a voltage to a three-phase AC motor based on a three-phase balanced voltage command and a U-phase current detection for detecting a current flowing in the U-phase of the three-phase AC motor And three current detectors, a V-phase current detector for detecting the current flowing in the V-phase and a W-phase current detector for detecting the current flowing in the W-phase, and the three-phase detected by the current detector A rotary coordinate converter for converting into a d-axis current and a q-axis current that can be handled as a DC state on the rotary coordinate based on the current value of the AC motor and information on a position detector attached to the three-phase AC motor, and a d-axis current A d-axis current that outputs the d-axis voltage command for zeroing the deviation between the d-axis current command and the d-axis current by using the calculation result of the d-axis deviation calculator for calculating the deviation between the command and the d-axis current. Deviation between controller, q-axis current command and q-axis current A q-axis current controller for outputting a q-axis current command and a q-axis voltage command for zeroing the deviation of the q-axis current by using the calculation result of the q-axis deviation calculator to be calculated, and the d-axis voltage command and the a rotating coordinate converter for converting the three-phase AC voltage command into a balanced three-phase AC voltage command based on a q-axis voltage command and information on the position detector attached to the three-phase AC motor, and a current flowing through the three-phase AC motor In the current control device for controlling
Of the three current detectors, a second d-axis current and a second q-axis current that can be treated as a DC state on the rotational coordinates based on information of the U-phase current detector, the V-phase current detector, and the position detector. A second rotating coordinate converter for converting to a DC state on the rotating coordinates based on information of the U-phase current detector, the W-phase current detector and the position detector among the three current detectors. A third rotation coordinate converter that converts the current into a third d-axis current and a third q-axis current, the V-phase current detector, the W-phase current detector, and the position detector among the three current detectors And a fourth rotational coordinate converter for converting the fourth d-axis current and the fourth q-axis current to be treated as a direct current state on the rotational coordinates, and calculating a deviation between the d-axis current command and the second d-axis current. Second d-axis deviation performance A second q-axis deviation calculator for calculating a deviation between the q-axis current command and the second q-axis current, and a third d-axis deviation calculation for calculating a deviation between the d-axis current command and the third d-axis current. A third q-axis deviation calculator for calculating a deviation between the q-axis current command and the third q-axis current, and a fourth d-axis deviation calculation for calculating a deviation between the d-axis current command and the fourth d-axis current. A fourth q-axis deviation calculator for calculating a deviation between the q-axis current command and the fourth q-axis current, the d-axis deviation calculator, the second d-axis deviation calculator, and the third d-axis deviation calculator A d-axis current selector for selecting an output having the smallest absolute value from outputs of the fourth d-axis deviation calculator, the q-axis deviation calculator, the second q-axis deviation calculator, and the third q-axis deviation calculation A q-axis current selector for selecting an output having a minimum absolute value among outputs of the fourth q-axis deviation calculator, and d The output of the current selector as an input of the d-axis current controller, characterized in that the output of the q-axis current selector as an input of the q-axis current controller.

また、請求項2では請求項1の電流制御装置において、前記d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に0を出力する第1判断器と、前記第2d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に−1を出力する第2判断器と、該第2判断器の出力を積算し下限値が0である第1カウンタと、前記第3d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に−1を出力する第3判断器と、該第3判断器の出力を積算し下限値が0である第2カウンタと、前記第4d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に−1を出力する第4判断器と、該第4判断器の出力を積算し下限値が0である第3カウンタと、第1判断器の出力が1の場合に第1カウンタ、第2カウンタ、第3カウンタのカウント値を0にクリアするリセット信号を具備し、第1カウンタが所定値を越えたら前記W相の電流検出器が故障したことを第2カウンタが所定値を越えたら前記V相の電流検出器が故障したことを第3カウンタが所定値を越えたら前記U相の電流検出器が故障したことを表示器に表示することを特徴とする。 According to a second aspect of the present invention, in the current control device according to the first aspect, the first determination unit that outputs 1 when the output of the d-axis deviation calculator is selected and outputs 0 when the output is not selected; When the output of the second d-axis deviation calculator is selected, the output is 1 and when it is not selected, the output of the second determiner is integrated and the lower limit is 0. A first counter, a third determiner that outputs 1 when the output of the third d-axis deviation calculator is selected and outputs -1 when the output is not selected, and an output of the third determiner. A second counter that integrates and has a lower limit value of 0, a fourth determiner that outputs 1 when the output of the fourth d-axis deviation calculator is selected and outputs -1 when it is not selected, When the output of the fourth discriminator is integrated and the third counter whose lower limit is 0 and the output of the first discriminator is 1, Includes a reset signal for clearing the count values of the first counter, the second counter, and the third counter to 0, and the second counter indicates that the W-phase current detector has failed when the first counter exceeds a predetermined value. If the third counter exceeds a predetermined value, the display indicates that the U-phase current detector has failed.

三相交流電動機の各相の電流を検出する3つの電流検出器のうち一つが故障あるいは電流検出器にノイズが混入してもトルクリップルを発生せず安定したトルクを出力することができるようになる。   Even if one of the three current detectors that detect the current of each phase of a three-phase AC motor fails or noise is mixed in the current detector, torque ripple is not generated and stable torque can be output. Become.

三相交流電動機の各相の電流を検出する3つの電流検出器のうち一つが故障あるいは電流検出器にノイズが混入してもトルクリップルを発生せず安定したトルク出力を提供するという目的を、電流検出値へのフィルタ処理などによる遅れを発生させず、また三相交流電動機の一相に対して電流検出器を多重化することなしに実現した。   The purpose of providing a stable torque output without generating torque ripple even if one of the three current detectors detecting the current of each phase of the three-phase AC motor fails or noise is mixed in the current detector, This was realized without causing a delay due to filtering to the current detection value and without multiplexing the current detector for one phase of the three-phase AC motor.

図1に本発明の請求項1の実施例を示し、図1に基づいて本発明の詳細な説明をする。   FIG. 1 shows an embodiment of claim 1 of the present invention, and the present invention will be described in detail based on FIG.

三相交流電動機1には電力変換器2により三相の平衡した交流電圧が印加され、三相平衡した電流が流れる。   A three-phase balanced AC voltage is applied to the three-phase AC motor 1 by the power converter 2, and a three-phase balanced current flows.

電流検出器31〜33は、三相交流電動機1に流れるU相電流、V相電流、W相電流をそれぞれ検出する。 The current detectors 31 to 33 detect a U-phase current, a V-phase current, and a W-phase current flowing through the three-phase AC motor 1, respectively.

回転座標変換器51〜54には三相交流電動機1に取り付けられた位置検出器4からの位置情報θが入力される。 Position information θ from the position detector 4 attached to the three-phase AC motor 1 is input to the rotary coordinate converters 51 to 54.

回転座標変換器51は電流検出器31〜33により検出されたU相電流値iu、V相電流値iv、W相電流値iwと位置検出器4からの位置情報θにより(3)と(4)式に基づいて三相―dq座標変換を行いd軸電流id1とq軸電流iq1を出力する。 The rotary coordinate converter 51 uses the U-phase current value iu, the V-phase current value iv, the W-phase current value iw detected by the current detectors 31 to 33 and the position information θ from the position detector 4 to (3) and (4 ) To perform three-phase-dq coordinate conversion and output a d-axis current id1 and a q-axis current iq1.

Figure 0004804237
Figure 0004804237

回転座標変換器52は電流検出器31,32により検出されたU相電流値iuとV相電流値ivおよび位置検出器4からの位置情報θにより(5)と(6)式に基づいて三相―dq座標変換を行いd軸電流id2とq軸電流iq2を出力する。 The rotary coordinate converter 52 is based on the U-phase current value iu and V-phase current value iv detected by the current detectors 31 and 32 and the position information θ from the position detector 4 based on the equations (5) and (6). Phase-dq coordinate conversion is performed and d-axis current id2 and q-axis current iq2 are output.

Figure 0004804237
Figure 0004804237

回転座標変換器53は電流検出器31,33により検出されたU相電流値iuとW相電流値iwおよび位置検出器4からの位置情報θにより(7)と(8)式に基づいて三相―dq座標変換を行いd軸電流id3,q軸電流iq3を出力する。 The rotary coordinate converter 53 is based on the U-phase current value iu and the W-phase current value iw detected by the current detectors 31 and 33 and the position information θ from the position detector 4 based on the equations (7) and (8). Phase-dq coordinate conversion is performed and d-axis current id3 and q-axis current iq3 are output.

Figure 0004804237
Figure 0004804237

回転座標変換器54は電流検出器32,33により検出されたV相電流値ivとW相電流値iwおよび位置検出器4からの位置情報θにより(9)と(10)式に基づいて三相―dq座標変換を行いd軸電流id4,q軸電流iq4を出力する。 The rotary coordinate converter 54 is based on the V-phase current value iv and the W-phase current value iw detected by the current detectors 32 and 33 and the position information θ from the position detector 4 based on the equations (9) and (10). Phase-dq coordinate conversion is performed and d-axis current id4 and q-axis current iq4 are output.

Figure 0004804237
Figure 0004804237

d軸電流選択器101はd軸電流指令61とd軸電流id1〜id4との偏差を各々演算するd軸偏差演算器711〜714の演算結果より、絶対値が最小となるd軸偏差演算器の出力を選択する。 The d-axis current selector 101 is a d-axis deviation calculator whose absolute value is minimized based on the calculation results of the d-axis deviation calculators 711 to 714 that calculate the deviation between the d-axis current command 61 and the d-axis currents id1 to id4, respectively. Select the output.

q軸電流選択器102はq軸電流指令62とq軸電流iq1〜iq4との偏差を各々演算するq軸偏差演算器721〜724の演算結果より、絶対値が最小となるq軸偏差演算器の出力を選択する。 The q-axis current selector 102 is a q-axis deviation calculator whose absolute value is minimized based on the calculation results of the q-axis deviation calculators 721 to 724 that calculate the deviations between the q-axis current command 62 and the q-axis currents iq1 to iq4, respectively. Select the output.

d軸電流制御器81はd軸電流選択器101で選択されたd軸電流指令61とd軸電流との偏差を入力として、偏差がゼロとなるようPI調整器を介してd軸電圧指令vdrefを出力する。   The d-axis current controller 81 receives the deviation between the d-axis current command 61 selected by the d-axis current selector 101 and the d-axis current and inputs the d-axis voltage command vdref via the PI adjuster so that the deviation becomes zero. Is output.

q軸電流制御器82はq軸電流選択器102で選択されたq軸電流指令62とq軸電流との偏差を入力として、偏差がゼロとなるようPI調整器を介してq軸電圧指令vqrefを出力する。 The q-axis current controller 82 receives the deviation between the q-axis current command 62 selected by the q-axis current selector 102 and the q-axis current and inputs the q-axis voltage command vqref via the PI adjuster so that the deviation becomes zero. Is output.

回転座標変換器9はd軸電圧指令vdrefとq軸電圧指令vqrefおよび三相交流電動機1に取り付けられた位置検出器4からの位置情報θにより(11)と(12)式に基づいてdq−三相座標変換を行い、平衡した三相交流電圧指令vuref,vvref,vwrefを電力変換器2に与える。 The rotary coordinate converter 9 is based on dq− based on the equations (11) and (12) based on the d-axis voltage command vdref, the q-axis voltage command vqref and the position information θ from the position detector 4 attached to the three-phase AC motor 1. Three-phase coordinate conversion is performed, and balanced three-phase AC voltage commands vref, vvref, vwref are given to the power converter 2.

Figure 0004804237
Figure 0004804237

図3は本発明の請求項1を適用した電流制御の構成において三相交流電動機1の各相の電流を検出する3つの電流検出器31〜33の出力のいずれかに異常が生じ、真値とは異なる電流値がフィードバックされた場合のd軸電流とq軸電流を表わしたものである。 FIG. 3 shows the true value of any of the outputs of the three current detectors 31 to 33 for detecting the current of each phase of the three-phase AC motor 1 in the current control configuration to which claim 1 of the present invention is applied. Represents the d-axis current and the q-axis current when different current values are fed back.

図3の区間Aは3つの電流検出器31〜33の出力が正常の場合の動作を表わしており、三相の電流が平衡している条件のもとではd軸電流はid1、id2、id3、id4はすべて同一の値となり、q軸電流についてもiq1,iq2、iq3,iq4はすべて同一の値となる。このときd軸電流はd軸電流指令61にほぼ一致しているものとし、またq軸電流はq軸電流指令62にほぼ一致している定常状態にあることとする。 3 represents the operation when the outputs of the three current detectors 31 to 33 are normal, and the d-axis current is id1, id2, and id3 under the condition that the three-phase currents are balanced. , Id4 all have the same value, and iq1, iq2, iq3, iq4 all have the same value for the q-axis current. At this time, it is assumed that the d-axis current substantially matches the d-axis current command 61, and the q-axis current is in a steady state that substantially matches the q-axis current command 62.

図3の区間Bは3つの電流検出器31〜33のうちU相の電流検出器31の出力だけに異常が生じ固定値X1となった場合を表わしている。 A section B in FIG. 3 represents a case where an abnormality occurs only in the output of the U-phase current detector 31 among the three current detectors 31 to 33 and becomes a fixed value X1.

U相の電流検出器31の出力が異常となったため、U相の電流検出器31の電流値iuを用いて回転座標変換しているd軸電流id1、id2,id3は図3の区間Bのd軸電流に示すように真値とは異なる電流値となり、d軸偏差演算器711〜713においてd軸電流id1,id2,id3とd軸電流指令61とには大きな偏差を持つことなる。 Since the output of the U-phase current detector 31 becomes abnormal, the d-axis currents id1, id2, and id3 that have been subjected to rotational coordinate conversion using the current value iu of the U-phase current detector 31 are the values in section B of FIG. As shown in the d-axis current, the current value is different from the true value, and the d-axis deviation calculators 711 to 713 have a large deviation between the d-axis current id1, id2, id3 and the d-axis current command 61.

一方、U相の電流検出器31の電流値iuを用いずに回転座標変換しているd軸電流id4は三相の電流が平衡している条件のもとでは真値となり、U相の電流検出器31の情報を用いて回転座標変換しているd軸電流id1,id2,id3に比べ、d軸偏差演算器714は大きな偏差とはなりにくい。 On the other hand, the d-axis current id4 that is subjected to rotational coordinate conversion without using the current value iu of the U-phase current detector 31 becomes a true value under the condition that the three-phase current is balanced, and the U-phase current Compared to the d-axis currents id1, id2, and id3 that are subjected to rotational coordinate conversion using the information of the detector 31, the d-axis deviation calculator 714 is unlikely to have a large deviation.

d軸電流選択器101ではd軸偏差演算器711〜714の演算結果より絶対値が最小となるd軸偏差演算器741の出力が選択され、d軸電流制御器81に入力される。 In the d-axis current selector 101, the output of the d-axis deviation calculator 741 whose absolute value is minimum is selected from the calculation results of the d-axis deviation calculators 711 to 714, and is input to the d-axis current controller 81.

q軸電流についても同様であり、U相の電流検出器31の電流値iuを用いずに回転座標変換しているq軸電流iq4が三相の電流が平衡している条件のもとでは真値となり、q軸電流選択器102ではq軸偏差演算器721〜724の演算結果より絶対値が最小となるq軸偏差演算器724の出力が選択され、q軸電流制御器82に入力される。 The same applies to the q-axis current. The q-axis current iq4, which has been subjected to rotational coordinate conversion without using the current value iu of the U-phase current detector 31, is true under the condition that the three-phase current is balanced. The q-axis current selector 102 selects the output of the q-axis deviation calculator 724 having the minimum absolute value from the calculation results of the q-axis deviation calculators 721 to 724, and inputs it to the q-axis current controller 82. .

図3の区間CはV相の電流検出器32の出力だけに異常が生じ固定値X2となった場合を表わしており、d軸電流についてはV相の電流検出器32の電流値ivを用いずに回転座標変換しているd軸電流id3が三相の電流が平衡している条件のもとでは真値となり、d軸電流選択器101ではd軸偏差演算器711〜714の演算結果より絶対値が最小となるd軸偏差演算器713の出力が選択され、d軸電流制御器81に入力される。 Section C in FIG. 3 shows a case where only the output of the V-phase current detector 32 is abnormal and becomes a fixed value X2, and the current value iv of the V-phase current detector 32 is used for the d-axis current. The d-axis current id3 that has undergone rotational coordinate conversion becomes a true value under the condition that the three-phase current is balanced, and the d-axis current selector 101 uses the calculation results of the d-axis deviation calculators 711 to 714. The output of the d-axis deviation calculator 713 that minimizes the absolute value is selected and input to the d-axis current controller 81.

q軸電流についても同様であり、V相の電流検出器32の電流値ivを用いずに回転座標変換しているq軸電流iq3が三相の電流が平衡している条件のもとでは真値となり、q軸電流選択器102ではq軸偏差演算器721〜724の演算結果より絶対値が最小となるq軸偏差演算器723の出力が選択され、q軸電流制御器82に入力される。 The same applies to the q-axis current. The q-axis current iq3, which has been subjected to rotational coordinate conversion without using the current value iv of the V-phase current detector 32, is true under the condition that the three-phase current is balanced. The q-axis current selector 102 selects the output of the q-axis deviation calculator 723 that has the minimum absolute value from the calculation results of the q-axis deviation calculators 721 to 724, and inputs it to the q-axis current controller 82. .

図3の区間DはW相の電流検出器33の出力だけに異常が生じ固定値X3となった場合を表わしており、d軸電流についてはW相の電流検出器33の電流値iwを用いずに回転座標変換しているd軸電流id2が三相の電流が平衡している条件のもとでは真値となり、d軸電流選択器101ではd軸偏差演算器711〜714の演算結果より絶対値が最小となるd軸偏差演算器712の出力が選択され、d軸電流制御器81に入力される。 A section D in FIG. 3 represents a case where an abnormality occurs only in the output of the W-phase current detector 33 and becomes a fixed value X3. For the d-axis current, the current value iw of the W-phase current detector 33 is used. The d-axis current id2 subjected to rotational coordinate conversion is true under the condition that the three-phase current is balanced, and the d-axis current selector 101 uses the calculation results of the d-axis deviation calculators 711 to 714. The output of the d-axis deviation calculator 712 having the minimum absolute value is selected and input to the d-axis current controller 81.

q軸電流についても同様であり、W相の電流検出器33の電流値iwを用いずに回転座標変換しているq軸電流iq2が三相の電流が平衡している条件のもとでは真値となり、q軸電流選択器102ではq軸偏差演算器721〜724の演算結果より絶対値が最小となるq軸偏差演算器722の出力が選択され、q軸電流制御器82に入力される。 The same applies to the q-axis current. The q-axis current iq2, which is the rotational coordinate conversion without using the current value iw of the W-phase current detector 33, is true under the condition that the three-phase current is balanced. The q-axis current selector 102 selects the output of the q-axis deviation calculator 722 that has the minimum absolute value from the calculation results of the q-axis deviation calculators 721 to 724 and inputs the output to the q-axis current controller 82. .

本発明の請求項1を適用した電流制御を構成することで、三相交流電動機1の各相の電流を検出する3つの電流検出器31〜33の出力のうち1つに異常が発生した場合でもd軸電流制御器81およびq軸電流制御器82に間違った偏差が入力されることなく、三相交流電動機1はトルクリップルを発生せずに安定したトルクを出力することができる。 When abnormality is generated in one of the outputs of the three current detectors 31 to 33 that detect the current of each phase of the three-phase AC motor 1 by configuring the current control to which claim 1 of the present invention is applied. However, the three-phase AC motor 1 can output a stable torque without generating a torque ripple without inputting a wrong deviation to the d-axis current controller 81 and the q-axis current controller 82.

図3に示した例では、電流波形の1周期にわたって電流検出器の出力が固定値となった場合を示しているが、電流検出器の出力にノイズが混入し瞬間的に異常が生じた場合でもノイズが混入した相の電流検出値を用いずに回転座標変換された真値により近いd軸電流およびq軸電流により演算された偏差がd軸電流制御器81とq軸電流制御器82にフィードバックされるため三相交流電動機1はトルクリップルを発生せず安定したトルク出力をすることができる。 The example shown in FIG. 3 shows a case where the output of the current detector becomes a fixed value over one period of the current waveform, but when noise is mixed in the output of the current detector and an abnormality occurs instantaneously However, the deviation calculated by the d-axis current and the q-axis current closer to the true value obtained by rotating coordinate conversion without using the detected current value of the phase in which noise is mixed becomes the d-axis current controller 81 and the q-axis current controller 82. Since the feedback is provided, the three-phase AC motor 1 can generate a stable torque output without generating torque ripple.

図2に本発明の請求項2の実施例を示し、図1および図2に基づいて本発明の請求項2の詳細な説明をする。 FIG. 2 shows an embodiment of claim 2 of the present invention, and a detailed description of claim 2 of the present invention will be given based on FIGS.

図2は三相交流電動機1の電流を検出する3つの電流検出器31〜33のいずれかに故障があった場合に故障している箇所を判断する判断器11と故障している箇所を表示する表示器15をd軸電流選択器101に付加したものである。 FIG. 2 shows a judgment unit 11 for judging a faulty part and a faulty part when any of the three current detectors 31 to 33 for detecting the current of the three-phase AC motor 1 is faulty. The display 15 to be added is added to the d-axis current selector 101.

d軸電流選択器101においてU相の電流検出器31の電流値iuを用いていないd軸偏差演算器714の出力が選択された場合にはU相の電流検出器31の出力に異常があるものとして判断器114は1を出力し、判断器112および判断器113は−1を出力し、判断器111は0を出力する。 When the output of the d-axis deviation calculator 714 that does not use the current value iu of the U-phase current detector 31 is selected in the d-axis current selector 101, the output of the U-phase current detector 31 is abnormal. As a result, the determiner 114 outputs 1, the determiner 112 and the determiner 113 output −1, and the determiner 111 outputs 0.

V相の電流検出器32の電流値ivを用いていないd軸偏差演算器713の出力が選択された場合にはV相の電流検出器32の出力に異常があるものとして判断器113は1を出力し、判断器112および判断器114は−1を出力し、判断器111は0を出力する。 When the output of the d-axis deviation computing unit 713 that does not use the current value iv of the V-phase current detector 32 is selected, it is determined that the output of the V-phase current detector 32 is abnormal and the determiner 113 is 1 , The determiner 112 and the determiner 114 output −1, and the determiner 111 outputs 0.

W相の電流検出器33の電流値iwを用いていないd軸偏差演算器712の出力が選択された場合にはW相の電流検出器32の出力に異常があるものとして判断器112は1を出力し、判断器113および判断器114は−1を出力し、判断器111は0を出力する。 When the output of the d-axis deviation calculator 712 that does not use the current value iw of the W-phase current detector 33 is selected, the determiner 112 assumes that the output of the W-phase current detector 32 is abnormal. , The determiner 113 and the determiner 114 output −1, and the determiner 111 outputs 0.

三相すべての電流検出器31〜33の電流値を用いているd軸偏差演算器711の出力が選択された場合には判断器112,113,114は−1を出力し、判断器111は1を出力する。 When the output of the d-axis deviation calculator 711 using the current values of all the three-phase current detectors 31 to 33 is selected, the determiners 112, 113, and 114 output -1, and the determiner 111 1 is output.

カウンタ121は判断器114の出力が1の場合にはカウントアップし、−1の場合にはカウントダウンする。同様にカウンタ122は判断器113の出力に応じてカウント動作し、カウンタ123は判断器112の出力に応じてカウント動作する。ただし、カウンタ121〜123は負の値とはならず−1が入力され続けても0でリミットされる。 The counter 121 counts up when the output of the determiner 114 is 1, and counts down when it is -1. Similarly, the counter 122 counts according to the output of the determiner 113, and the counter 123 counts according to the output of the determiner 112. However, the counters 121 to 123 are not negative values and are limited to 0 even if -1 is continuously input.

また判断器111の出力が1となった場合にはカウンタ121〜123は0にクリアされる。 When the output of the determination device 111 becomes 1, the counters 121 to 123 are cleared to 0.

カウンタ121〜123の出力はあらかじめ設定された所定値14と比較され、カウンタ121〜123の出力が所定値14を超えた時点で電流検出器の出力に異常がある箇所が表示器15に表示される。 The outputs of the counters 121 to 123 are compared with a predetermined value 14 set in advance, and when the outputs of the counters 121 to 123 exceed the predetermined value 14, the location where the output of the current detector is abnormal is displayed on the display 15. The

カウンタ121の出力が所定値14を越えた場合にはU相の電流検出器31が異常であることが表示され、カウンタ122の出力が所定値14を越えた場合にはV相の電流検出器32が異常であることが表示され、カウンタ123の出力が所定値14を越えた場合にはW相の電流検出器33が異常であることが表示器15に表示する。 When the output of the counter 121 exceeds the predetermined value 14, it is displayed that the U-phase current detector 31 is abnormal, and when the output of the counter 122 exceeds the predetermined value 14, the V-phase current detector 31 32 is displayed as abnormal, and if the output of the counter 123 exceeds the predetermined value 14, the display 15 displays that the W-phase current detector 33 is abnormal.

カウンタ121〜123と所定値14を比較して故障している電流検出器を判断するため、電流検出器の出力に混入したノイズによる故障個所の誤検知をすることなく定常的に異常となる電流検出器を故障として正確に判断することができる。 In order to compare the counters 121 to 1123 with the predetermined value 14 to determine a faulty current detector, a current that is steadily abnormal without misdetecting the fault location due to noise mixed in the output of the current detector The detector can be accurately determined as a failure.

なおこの故障している電流検出器を判断する判断器11と故障している箇所を表示する表示器15はq軸電流選択器102にも付加することができる。 It should be noted that the determination unit 11 that determines the current detector that has failed and the display unit 15 that displays the location of the failure can also be added to the q-axis current selector 102.

本発明により三相交流電動機の各相の電流を検出する3つの電流検出器の出力のうち1つに異常が生じた場合でも電流フィードバックを用いた電流制御を継続して行い、三相交流電動機は安定したトルク出力を提供することができるので産業上の利用の可能性は大いにある。   According to the present invention, even when an abnormality occurs in one of the outputs of the three current detectors that detect the current of each phase of the three-phase AC motor, current control using current feedback is continuously performed, and the three-phase AC motor Since it can provide a stable torque output, there is great industrial applicability.

請求項1の構成を示したブロック図である。(実施例1)FIG. 2 is a block diagram showing the configuration of claim 1. (Example 1) 請求項2の構成を示したブロック図である。(実施例2)It is the block diagram which showed the structure of Claim 2. (Example 2) 請求項1を適用した際の動作波形を示している。(実施例1)The operation | movement waveform at the time of applying Claim 1 is shown. (Example 1) 背景技術の構成を示したブロック図である。It is the block diagram which showed the structure of background art. 背景技術を適用した際の動作波形を示している。The operation | movement waveform at the time of applying background art is shown.

符号の説明Explanation of symbols

1 三相交流電動機
2 電力変換器
31,32,33 電流検出器
4 位置検出器
5,51,52,53,54 三相−dq回転座標変換器
61 d軸電流指令
62 q軸電流指令
711,712,713,714 d軸偏差演算器
721,722,723,724 q軸偏差演算器
81 d軸電流制御器
82 q軸電流制御器
9 dq−三相回転座標変換器
101 d軸電流選択器
102 q軸電流選択器
11,111,112,113,114 判断器
121,122,123 カウンタ
131,132,133 比較器
14 所定値
15 表示器
DESCRIPTION OF SYMBOLS 1 Three-phase AC motor 2 Power converter 31, 32, 33 Current detector 4 Position detector 5, 51, 52, 53, 54 Three-phase-dq rotation coordinate converter
61 d-axis current command 62 q-axis current commands 711, 712, 713, 714 d-axis deviation calculators 721, 722, 723, 724 q-axis deviation calculator 81 d-axis current controller 82 q-axis current controller 9 dq-3 Phase rotation coordinate converter 101 d-axis current selector 102 q-axis current selector 11, 111, 112, 113, 114 Judgment device 121, 122, 123 Counter 131, 132, 133 Comparator 14 Predetermined value 15 Display

Claims (2)

三相の平衡した電圧指令に基づいて三相交流電動機に電圧を印加する電力変換器と該三相交流電動機のU相に流れる電流を検出するU相の電流検出器とV相に流れる電流を検出するV相の電流検出器とW相に流れる電流を検出するW相の電流検出器の3つの電流検出器と、該電流検出器にて検出した前記三相交流電動機の電流値と前記三相交流電動機に取り付けられた位置検出器の情報に基づいて回転座標上において直流状態として扱えるd軸電流およびq軸電流に変換する回転座標変換器と、d軸電流指令と該d軸電流との偏差を演算するd軸偏差演算器の演算結果を入力として該d軸電流指令と前記d軸電流の偏差をゼロするためのd軸電圧指令を出力するd軸電流制御器と、q軸電流指令と該q軸電流との偏差を演算するq軸偏差演算器の演算結果を入力としてq軸電流指令と前記q軸電流の偏差をゼロするためのq軸電圧指令を出力するq軸電流制御器と、該d軸電圧指令と該q軸電圧指令および前記三相交流電動機に取り付けられた前記位置検出器の情報を基に平衡した三相の交流電圧指令に変換する回転座標変換器を具備し、前記三相交流電動機に流れる電流を制御する電流制御装置において、
該3つの電流検出器のうち該U相の電流検出器と該V相の電流検出器および該位置検出器の情報に基づいて回転座標上において直流状態として扱える第2d軸電流および第2q軸電流に変換する第2回転座標変換器と、前記3つの電流検出器のうち前記U相の電流検出器と該W相の電流検出器および前記位置検出器の情報に基づいて回転座標上において直流状態として扱える第3d軸電流および第3q軸電流に変換する第3回転座標変換器と、前記3つの電流検出器のうち前記V相の電流検出器と前記W相の電流検出器および前記位置検出器の情報に基づいて回転座標上において直流状態として扱える第4d軸電流および第4q軸電流に変換する第4回転座標変換器と、前記d軸電流指令と該第2d軸電流との偏差を演算する第2d軸偏差演算器と、前記q軸電流指令と該第2q軸電流との偏差を演算する第2q軸偏差演算器と、前記d軸電流指令と該第3d軸電流との偏差を演算する第3d軸偏差演算器と、前記q軸電流指令と該第3q軸電流との偏差を演算する第3q軸偏差演算器と、前記d軸電流指令と該第4d軸電流との偏差を演算する第4d軸偏差演算器と、前記q軸電流指令と該第4q軸電流との偏差を演算する第4q軸偏差演算器と、該d軸偏差演算器、該第2d軸偏差演算器、該第3d軸偏差演算器、該第4d軸偏差演算器の出力のうち絶対値が最小となる出力を選択するd軸電流選択器と、該q軸偏差演算器、該第2q軸偏差演算器、該第3q軸偏差演算器、該第4q軸偏差演算器の出力のうち絶対値が最小となる出力を選択するq軸電流選択器を具備し、該d軸電流選択器の出力を前記d軸電流制御器の入力とし、該q軸電流選択器の出力を前記q軸電流制御器の入力とすることを特徴とする三相交流電動機の電流制御装置。
A power converter for applying a voltage to a three-phase AC motor based on a three-phase balanced voltage command, a U-phase current detector for detecting a current flowing in the U-phase of the three-phase AC motor, and a current flowing in the V-phase Three current detectors, a V-phase current detector to detect and a W-phase current detector to detect current flowing in the W-phase, and the current value of the three-phase AC motor detected by the current detector and the three current detectors A rotary coordinate converter that converts d-axis current and q-axis current that can be handled as a DC state on the rotary coordinate based on information of a position detector attached to the phase AC motor, a d-axis current command, and the d-axis current A d-axis current controller that outputs a d-axis voltage command for zeroing a deviation between the d-axis current command and the d-axis current by using a calculation result of a d-axis deviation calculator that calculates a deviation; and a q-axis current command Q-axis deviation calculation that calculates the deviation between the q-axis current and the q-axis current And a q-axis current controller that outputs a q-axis current command and a q-axis voltage command for zeroing the deviation between the q-axis current, the d-axis voltage command, the q-axis voltage command, and the three In a current controller for controlling a current flowing in the three-phase AC motor, comprising a rotary coordinate converter for converting into a balanced three-phase AC voltage command based on information of the position detector attached to the phase AC motor ,
Of the three current detectors, a second d-axis current and a second q-axis current that can be treated as a DC state on the rotational coordinates based on information of the U-phase current detector, the V-phase current detector, and the position detector. A second rotating coordinate converter for converting to a DC state on the rotating coordinates based on information of the U-phase current detector, the W-phase current detector and the position detector among the three current detectors. A third rotation coordinate converter that converts the current into a third d-axis current and a third q-axis current, the V-phase current detector, the W-phase current detector, and the position detector among the three current detectors And a fourth rotational coordinate converter for converting the fourth d-axis current and the fourth q-axis current to be treated as a direct current state on the rotational coordinates, and calculating a deviation between the d-axis current command and the second d-axis current. Second d-axis deviation performance A second q-axis deviation calculator for calculating a deviation between the q-axis current command and the second q-axis current, and a third d-axis deviation calculation for calculating a deviation between the d-axis current command and the third d-axis current. A third q-axis deviation calculator for calculating a deviation between the q-axis current command and the third q-axis current, and a fourth d-axis deviation calculation for calculating a deviation between the d-axis current command and the fourth d-axis current. A fourth q-axis deviation calculator for calculating a deviation between the q-axis current command and the fourth q-axis current, the d-axis deviation calculator, the second d-axis deviation calculator, and the third d-axis deviation calculator A d-axis current selector for selecting an output having the smallest absolute value from outputs of the fourth d-axis deviation calculator, the q-axis deviation calculator, the second q-axis deviation calculator, and the third q-axis deviation calculation A q-axis current selector for selecting an output having a minimum absolute value among outputs of the fourth q-axis deviation calculator, and d The output of the current selector as an input of the d-axis current controller, the current controller of the three-phase AC motor the output of the q-axis current selector, characterized in that an input of the q-axis current controller.
請求項1の電流制御装置において、
前記d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に0を出力する第1判断器と、前記第2d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に−1を出力する第2判断器と、該第2判断器の出力を積算し下限値が0である第1カウンタと、前記第3d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に−1を出力する第3判断器と、該第3判断器の出力を積算し下限値が0である第2カウンタと、前記第4d軸偏差演算器の出力が選択された場合に1と出力し選択されなかった場合に−1を出力する第4判断器と、該第4判断器の出力を積算し下限値が0である第3カウンタと、第1判断器の出力が1の場合に第1カウンタ、第2カウンタ、第3カウンタのカウント値を0にクリアするリセット信号を具備し、第1カウンタが所定値を越えたら前記W相の電流検出器が故障したことを第2カウンタが所定値を越えたら前記V相の電流検出器が故障したことを第3カウンタが所定値を越えたら前記U相の電流検出器が故障したことを表示器に表示することを特徴とする請求項1の電流制御装置。
The current control device according to claim 1,
1 is output when the output of the d-axis deviation calculator is selected and 1 is output when the output of the d-axis deviation calculator is not selected, and 1 when the output of the second d-axis deviation calculator is selected. And a first counter that outputs -1 when not selected, a first counter that integrates the outputs of the second determiner and has a lower limit value of 0, and an output of the third d-axis deviation calculator Is output when it is selected and outputs -1 when it is not selected, a second counter that integrates the outputs of the third determiner and has a lower limit value of 0, When the output of the 4d-axis deviation calculator is selected, 1 is output, and when it is not selected, -1 is output, and the output of the fourth determiner is integrated, and the lower limit is 0. When the output of the third counter and the first determiner is 1, the counters of the first counter, the second counter, and the third counter A reset signal for clearing the default value to 0, and if the first counter exceeds a predetermined value, the W-phase current detector has failed. If the second counter exceeds the predetermined value, the V-phase current detector. 2. The current control device according to claim 1, wherein when the third counter exceeds a predetermined value, the display indicates that the U-phase current detector has failed.
JP2006168230A 2006-06-19 2006-06-19 Current control device for three-phase AC motor Expired - Fee Related JP4804237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168230A JP4804237B2 (en) 2006-06-19 2006-06-19 Current control device for three-phase AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168230A JP4804237B2 (en) 2006-06-19 2006-06-19 Current control device for three-phase AC motor

Publications (2)

Publication Number Publication Date
JP2007336756A JP2007336756A (en) 2007-12-27
JP4804237B2 true JP4804237B2 (en) 2011-11-02

Family

ID=38935669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168230A Expired - Fee Related JP4804237B2 (en) 2006-06-19 2006-06-19 Current control device for three-phase AC motor

Country Status (1)

Country Link
JP (1) JP4804237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187599A1 (en) * 2016-04-28 2017-11-02 三菱電機株式会社 Failure determination device for rotating machine control device and failure determination method
JP6984300B2 (en) * 2017-10-13 2021-12-17 株式会社デンソー Three-phase inverter device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335277A (en) * 1993-05-18 1994-12-02 Toshiba Corp Ac motor controller
JP2002315375A (en) * 2001-04-18 2002-10-25 Yaskawa Electric Corp Motor controller
JP4267976B2 (en) * 2003-07-29 2009-05-27 本田技研工業株式会社 Electric power steering device

Also Published As

Publication number Publication date
JP2007336756A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP6183291B2 (en) Control device for synchronous motor
JP4860012B2 (en) Electric vehicle power converter
JP5402403B2 (en) Electric motor control system
JP5957361B2 (en) Phase loss detection method and power conversion device
JP4583257B2 (en) AC rotating machine control device
JP2008050075A (en) Elevator control device
JP2010246328A (en) Fault diagnostic device for inverter
JP5270952B2 (en) Motor control device
JP7151872B2 (en) Controller for permanent magnet synchronous machine
JP5959349B2 (en) Electric vehicle control device and vehicle drive system
US10389290B2 (en) Motor control apparatus
JP4804237B2 (en) Current control device for three-phase AC motor
JP2009112143A (en) Device and method of controlling three-phase ac motor
JP5800763B2 (en) AC rotating machine control device
JP5707761B2 (en) Phase loss diagnosis apparatus and phase loss diagnosis method
JP5500189B2 (en) Motor inverter control method and control device
JP5595436B2 (en) Motor control device
JP2004056889A (en) Current sensor diagnostic device
KR101667908B1 (en) Control device for electric motor
JP2014212602A (en) Motor drive
JP6197463B2 (en) Abnormality diagnosis device for inverter controlled AC motor
JP6664292B2 (en) Motor control device
JP5546754B2 (en) Electric vehicle control device
JP5408918B2 (en) Motor control method and control apparatus
JP2019205243A (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees