JP4803699B2 - Polymer electrolysis cell degradation assessment method - Google Patents

Polymer electrolysis cell degradation assessment method Download PDF

Info

Publication number
JP4803699B2
JP4803699B2 JP2004352143A JP2004352143A JP4803699B2 JP 4803699 B2 JP4803699 B2 JP 4803699B2 JP 2004352143 A JP2004352143 A JP 2004352143A JP 2004352143 A JP2004352143 A JP 2004352143A JP 4803699 B2 JP4803699 B2 JP 4803699B2
Authority
JP
Japan
Prior art keywords
amount
deterioration
polymer electrolyte
water
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004352143A
Other languages
Japanese (ja)
Other versions
JP2006161083A (en
Inventor
保則 岩井
兼嗣 磯部
敏彦 山西
正孝 西
敏明 八木
正男 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2004352143A priority Critical patent/JP4803699B2/en
Publication of JP2006161083A publication Critical patent/JP2006161083A/en
Application granted granted Critical
Publication of JP4803699B2 publication Critical patent/JP4803699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、核融合炉などのトリチウム(三重水素、水素の放射性同位元素)取扱い施設において、トリチウム水が混在する水を電気分解する目的で使用されるフッ素樹脂系高分子電解膜の劣化測定に利用される。   The present invention is for measuring the deterioration of a fluororesin polymer electrolyte membrane used for the purpose of electrolyzing water mixed with tritium water in a facility for handling tritium (tritium, hydrogen radioisotope) such as a nuclear fusion reactor. Used.

核融合炉などの水素同位体取扱い施設では、トリチウム(T:三重水素、水素の放射性同位元素)が水の分子内に化学的に取り込まれたトリチウム水(HTO)が通常の水(H2O)に混入したトリチウム汚染水が大量に発生する。そのトリチウム汚染水を環境に排出するためには、排出する水中のHTOを除去すると共に、HTOから核融合炉の燃料であるTを回収する必要がある。この目的のために、トリチウム水濃縮システムとトリチウム水電解システムを組み合わせた複合システムによりトリチウム汚染水を処理する。上記複合システムのトリチウム水電解システムの代表例としてフッ素樹脂系高分子電解膜を用いた固体高分子電解槽が挙げられる(例えば、非特許文献1参照)。 In hydrogen isotope handling facilities such as fusion reactors, tritium water (HTO) in which tritium (T: tritium, a radioactive isotope of hydrogen) is chemically incorporated into the water molecule is used as normal water (H 2 O ) A large amount of tritium contaminated water is generated. In order to discharge the tritium-contaminated water to the environment, it is necessary to remove the HTO in the discharged water and collect T, which is the fuel for the fusion reactor, from the HTO. For this purpose, tritium contaminated water is treated by a combined system combining tritium water concentration system and tritium water electrolysis system. A typical example of the tritium water electrolysis system of the composite system is a solid polymer electrolytic cell using a fluororesin polymer electrolyte membrane (see, for example, Non-Patent Document 1).

フッ素樹脂系高分子電解膜は強度を維持する機能を有するフッ素系高分子の主鎖からプロトン伝導を司る酸基(スルホン酸基、カルボン酸基等)を含むフッ素系高分子の側鎖が多く枝分かれする構成となっている。固体高分子電解槽の使用において、フッ素樹脂系高分子電解膜は放射線の存在化で比較的短期間で劣化するため、その度合いの把握は運転管理において最も重要となるが、劣化度合いを評価する方法は従来、定期的にサンプリングにより試料を取り出し、引っ張り試験等の破壊検査を繰り返すしかなかった。
"The water detritiation system of the ITER tritium plant", Y. Iwai, Y. Misaki, T. Hayashi, et al.,Fusion Sci. Technol., 41, 1126-1130 (2002)
Fluoropolymer polymer electrolyte membranes have many fluoropolymer side chains containing acid groups (sulfonic acid groups, carboxylic acid groups, etc.) that control proton conduction from the main chain of fluoropolymers that have the function of maintaining strength. The structure is branched. In the use of solid polymer electrolysers, fluororesin-based polymer electrolyte membranes deteriorate in a relatively short period of time due to the presence of radiation, so grasping the degree is most important in operation management, but assessing the degree of deterioration Conventionally, the method has been to periodically take a sample by sampling and repeat destructive inspection such as a tensile test.
"The water detritiation system of the ITER tritium plant", Y. Iwai, Y. Misaki, T. Hayashi, et al., Fusion Sci. Technol., 41, 1126-1130 (2002)

従来法には以下の課題がある。
第一の課題は破壊検査のためにサンプリング試料が必要なことにある。実システムではサンプリングのために装置を停止することは現実的でなく、別途装置でサンプリングを定期的に行い、運転時間と劣化の度合いに関する関係を積み重ねておく必要がある。しかしながら、運転条件の変更等に柔軟に対応することはできない。
The conventional method has the following problems.
The first problem is that a sampling sample is required for destructive inspection. In an actual system, it is not practical to stop the apparatus for sampling. It is necessary to periodically perform sampling separately in the apparatus, and to accumulate the relationship between the operation time and the degree of deterioration. However, it cannot respond flexibly to changes in operating conditions.

また、第二の課題は一つの検査では劣化度合いが評価できないことにある。フッ素樹脂系高分子電解膜の主鎖、側鎖はその劣化挙動が異なり、主鎖は機械的強度の測定、側鎖は化学的分析と異なった破壊検査を組み合わせて実施する必要がある。   The second problem is that the degree of deterioration cannot be evaluated by one inspection. The main chain and side chain of the fluororesin-based polymer electrolyte membrane have different deterioration behaviors, the main chain needs to be measured by mechanical strength measurement, and the side chain needs to be combined with chemical analysis and different destructive tests.

第三の課題は、サンプリング試料が放射性物質で汚染しているため、その試料の採取作業、機械的強度測定作業が困難であり、被爆防止対策等でコストが高くなることにある。
本発明は以上のような課題を解決するためになされたものであり、サンプリング作業を排除しかつ遠隔での測定を実現することで、フッ素樹脂系高分子電解膜の劣化度合いを連続で、かつ一つの因子の測定により多元的に劣化度合いを評価できる方法を提供するものである。
The third problem is that the sampling sample is contaminated with a radioactive substance, so that it is difficult to collect the sample and measure the mechanical strength, and the cost is increased due to measures to prevent the exposure.
The present invention has been made in order to solve the above-described problems. By eliminating the sampling operation and realizing remote measurement, the degree of deterioration of the fluororesin-based polymer electrolyte membrane can be continuously obtained, and The present invention provides a method capable of evaluating the degree of deterioration in a multi-dimensional manner by measuring one factor.

上記のように、フッ素樹脂系高分子電解膜は、強度を維持する機能を有するフッ素系高分子の主鎖とプロトン伝導を司る酸基(スルホン酸基、カルボン酸基等)を含むフッ素系高分子の側鎖が多く枝分かれする構成となっており、いずれもフッ素系高分子であるため、膜の劣化が進んだ場合、どちらからも溶液中にフッ素イオンが溶出する。この現象及びフッ素イオン量はセンサーにより連続・遠隔で測定できることに着目し、高分子膜の主鎖および側鎖の性能を示す指標である強度及びイオン交換容量値を、膜の劣化によって水中に溶出するフッ素イオン量で評価することを発明した。   As described above, a fluororesin-based polymer electrolyte membrane is a fluorine-based polymer electrolyte containing a main chain of a fluoropolymer having a function of maintaining strength and an acid group (sulfonic acid group, carboxylic acid group, etc.) that controls proton conduction. Since many side chains of the molecule are branched and both are fluorine-based polymers, when the deterioration of the film proceeds, fluorine ions are eluted into the solution from both. Focusing on this phenomenon and the amount of fluorine ions that can be measured continuously and remotely with a sensor, the strength and ion exchange capacity values, which are indicators of the performance of the main and side chains of the polymer membrane, are eluted in water due to membrane degradation. It was invented to be evaluated by the amount of fluorine ions.

本発明は、放射性を持つトリチウム水を含む水を電気分解して水素ガスと酸素ガスを得る固体高分子型電解槽において、プロトン(H+)伝導性の固体電解質として用いるフッ素樹脂系高分子電解膜の劣化度合いを非破壊にて連続的に評価する方法である。 The present invention relates to a fluororesin-based polymer electrolysis used as a proton (H + ) conductive solid electrolyte in a solid polymer electrolytic cell that electrolyzes water containing radioactive tritium water to obtain hydrogen gas and oxygen gas. This is a method for continuously evaluating the degree of deterioration of the film in a non-destructive manner.

フッ素樹脂系高分子電解膜は膜強度を維持する機能を有するフッ素系高分子の主鎖と、プロトン伝導を司る酸基(スルホン酸基、カルボン酸基等)を持つフッ素系高分子の側鎖から構成される。この電解膜は、放射線の存在下で比較的短期間で劣化することが知られており、定期的に劣化度合いを評価しなければならない。よって、定期的にサンプリングした試料により、引っ張り試験、イオン交換容量滴定等の破壊検査、オフライン検査が必要である。トリチウム水を扱う電解膜では、上記定期的サンプリングは、被爆の危険性等から、頻度・コストの面で非現実的である。   Fluororesin polymer electrolyte membrane is a fluoropolymer main chain that has the function of maintaining membrane strength and a fluoropolymer side chain that has an acid group (sulfonic acid group, carboxylic acid group, etc.) that controls proton conduction. Consists of This electrolytic membrane is known to deteriorate in a relatively short period of time in the presence of radiation, and the degree of deterioration must be periodically evaluated. Therefore, it is necessary to perform a destructive inspection such as a tensile test, ion exchange capacity titration, and off-line inspection using a sample sampled periodically. In electrolytic membranes that handle tritium water, the above periodic sampling is impractical in terms of frequency and cost due to the risk of exposure.

本発明の方法は、高分子膜の主鎖および側鎖の性能を示す指標である引っ張り強度及びイオン交換容量が、劣化によって水中に溶出するフッ素イオン量と強い相関があることを利用するものである。連続・遠隔・オンラインで測定可能なフッ素イオン量測定を行うことで、放射性元素取り扱い環境下における上記定期的サンプリングを除外することができると共に、フッ素イオン量測定のみで、電解膜の劣化度合いを連続・多元的に評価することができる。  The method of the present invention utilizes the fact that the tensile strength and ion exchange capacity, which are indicators of the performance of the main chain and side chain of the polymer membrane, have a strong correlation with the amount of fluorine ions eluted into water due to deterioration. is there. By measuring the amount of fluorine ions that can be measured continuously, remotely, and online, it is possible to eliminate the above-mentioned periodic sampling in the environment where radioactive elements are handled, and the degree of deterioration of the electrolyte membrane can be continuously measured only by measuring the amount of fluorine ions.・ Can be evaluated in multiple ways.

以下、本発明に係る評価方法の実施例を添付図面に基づいて説明する。
図1にフッ素樹脂系高分子電解膜の構造と従来の劣化度合い評価法を示す。電解膜の劣化により、主鎖の切断と側鎖の主鎖からの脱離が生じるが、その現象は機械的強度値(引っ張り強度:最大点強度)の低下とイオン交換容量値の低下によりそれぞれ評価することが出来る。しかしながら、その測定には多くの工程が必要となる。
Embodiments of an evaluation method according to the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows the structure of a fluororesin polymer electrolyte membrane and a conventional method for evaluating the degree of deterioration. The degradation of the electrolyte membrane causes the main chain to be broken and the side chain to be detached from the main chain. This phenomenon is caused by a decrease in mechanical strength (tensile strength: maximum point strength) and a decrease in ion exchange capacity. Can be evaluated. However, the measurement requires many steps.

図2に従来法で測定した引っ張り強度(最大点強度)とγ線照射線量の関係、及びγ線照射線量と溶存フッ素量の関係の実験データを示す。本実験ではDupont社製のNafionR (グレートN117)を10kGy/hの照射線量で照射し、実際の使用条件よりも時間あたりの照射線量が大きい加速試験を行った。最大点強度を評価する引っ張り試験は引っ張り試験規格(ASTMD-1822L)を用いた。フッ素濃度はイオン電極法で測定し、フッ素樹脂系高分子電解膜の単位乾燥重量あたりの溶存フッ素量に換算した。 FIG. 2 shows experimental data of the relationship between the tensile strength (maximum point strength) measured by the conventional method and the γ-ray irradiation dose, and the relationship between the γ-ray irradiation dose and the dissolved fluorine amount. In this experiment, Nafion R (Great N117) manufactured by Dupont was irradiated at an irradiation dose of 10 kGy / h, and an acceleration test was performed in which the irradiation dose per hour was larger than the actual usage conditions. The tensile test standard (ASTMD-1822L) was used for the tensile test for evaluating the maximum point strength. The fluorine concentration was measured by an ion electrode method and converted to the amount of dissolved fluorine per unit dry weight of the fluororesin polymer electrolyte membrane.

γ線照射量の増加と共に最大点強度は低下するが、フッ素樹脂系高分子電解膜の単位乾燥重量あたりの溶存フッ素量とγ線照射量には明確な相関(直線に近い相関)を有していることを見いだした。よって、溶存フッ素量により、主鎖の劣化度の指標となる最大点強度を予測できることが推察される。   Although the maximum spot strength decreases with increasing γ-ray dose, there is a clear correlation (closer to a straight line) between the amount of dissolved fluorine per unit dry weight of the fluororesin polymer electrolyte membrane and the γ-ray dose. I found out. Therefore, it can be inferred that the maximum point strength that is an index of the deterioration degree of the main chain can be predicted by the amount of dissolved fluorine.

図3に最大点強度と溶存フッ素量の相関関係、及びイオン交換容量と溶存フッ素量の相関関係を示す。イオン交換容量測定の工程は図1に示しているが、詳細は以下となる。
(i) 試料として一定量の膜を切り取り、HCl溶液中に浸し、HCl溶液を何回か取り替えて、樹脂をH型にする。
FIG. 3 shows the correlation between the maximum point intensity and the dissolved fluorine content, and the correlation between the ion exchange capacity and the dissolved fluorine content. The process of measuring the ion exchange capacity is shown in FIG.
(I) A certain amount of film is cut out as a sample, immersed in an HCl solution, the HCl solution is changed several times, and the resin is changed to an H type.

(ii) 試料片を蒸留水中に入れ、HClの浸出が認められなくなるまで十分に洗う。
(iii) 2NのNaCl溶液中に繰り返し浸し、H+とNa+を交換させ、液中に出たH+の全量を標準苛性ソーダ溶液で滴定する。
(Ii) Place the sample piece in distilled water and wash thoroughly until no leaching of HCl is observed.
(Iii) Repeated immersion in 2N NaCl solution to exchange H + and Na + , and titrate the total amount of H + out in the solution with standard caustic soda solution.

図2で推察されたとおり、最大点強度と溶存フッ素量には明確な相関を有していることを見いだした。よって、本相関関係を利用することで溶存フッ素量の測定値から主鎖の劣化度合いを把握することができる。またイオン交換容量値と溶存フッ素量についても明確な相関を有しており、溶存フッ素量の測定値から側鎖の劣化度合いもまた把握することができる。   As inferred in FIG. 2, it was found that there was a clear correlation between the maximum point intensity and the amount of dissolved fluorine. Therefore, by utilizing this correlation, it is possible to grasp the degree of deterioration of the main chain from the measured value of the dissolved fluorine amount. Further, there is a clear correlation between the ion exchange capacity value and the amount of dissolved fluorine, and the degree of deterioration of the side chain can also be grasped from the measured value of the dissolved fluorine amount.

上記のように、加速試験により事前に取得した相関関係(最大点強度と溶存フッ素量、及びイオン交換容量と溶存フッ素量)に基づき、運転中に連続的に測定できる溶存フッ素濃度の値から、フッ素樹脂系高分子電解膜の主鎖及び側鎖の劣化の度合いを常時また多元的に評価することが可能となった。
[発明の効果]
As described above, based on the correlation obtained in advance by the acceleration test (maximum point intensity and dissolved fluorine amount, and ion exchange capacity and dissolved fluorine amount), from the value of the dissolved fluorine concentration that can be continuously measured during operation, The degree of deterioration of the main chain and side chain of the fluororesin-based polymer electrolyte membrane can be constantly and multi-dimensionally evaluated.
[The invention's effect]

本方法は、高分子膜の主鎖および側鎖の性能を示す指標である引っ張り強度(最大点強度)及びイオン交換容量値が、劣化に伴って水中に溶出するフッ素イオン量で把握できることを発見し、連続・遠隔測定が容易なフッ素イオン量を測定することでトリチウム汚染水等放射性元素取り扱い環境下におけるフッ素樹脂系高分子電解膜の劣化度合いに関する従来の評価手法の課題を克服し、電解膜劣化度合いを常時・多元的に評価
することを可能とするものである。
This method discovered that the tensile strength (maximum point strength) and ion exchange capacity values, which are indicators of the performance of the main chain and side chain of the polymer membrane, can be grasped by the amount of fluorine ions eluted into water with deterioration. In addition, by measuring the amount of fluorine ions, which can be continuously and remotely measured, the problem of conventional evaluation methods related to the degree of deterioration of fluororesin polymer electrolyte membranes in the environment where radioactive elements such as tritium-contaminated water are handled can be overcome. This makes it possible to evaluate the degree of deterioration constantly and in a multiple manner.

固体高分子電解膜の構造と従来の劣化度合い評価方法とを示す図である。It is a figure which shows the structure of a solid polymer electrolyte membrane, and the conventional degradation degree evaluation method. 従来法で測定した引っ張り強度とγ線照射線量との関係、及びγ線照射線量と溶存フッ素量との関係を示す図である。It is a figure which shows the relationship between the tensile strength measured by the conventional method, and a gamma ray irradiation dose, and the relationship between a gamma ray irradiation dose and the amount of dissolved fluorine. 最大点強度と熔存フッ素量との相関関係、及びイオン交換容量と溶存フッ素量との相関関係を示す図である。It is a figure which shows the correlation with the maximum point intensity | strength and the amount of dissolved fluorine, and the correlation with an ion exchange capacity | capacitance and the amount of dissolved fluorine.

Claims (1)

放射性を持つトリチウム水を含む水の電気分解用固体高分子型電解槽を構成するプロトン(H+)伝導性のフッ素樹脂系高分子電解膜において、最大点強度と溶存フッ素量、及びイオン交換容量と溶存フッ素量との相関関係を加速試験により求めておき、運転中に循環水中溶存フッ素濃度を連続的に測定して、当該相関関係に当てはめることで当該フッ素樹脂系高分子電解膜の強度及び導電性能の劣化度合いを評価する方法。 In the proton (H + ) conductive fluororesin polymer electrolyte membrane that constitutes the solid polymer electrolytic cell for electrolysis of water containing radioactive tritium water, the maximum point strength, the dissolved fluorine amount, and the ion exchange capacity And the amount of dissolved fluorine by an accelerated test, continuously measuring the dissolved fluorine concentration in the circulating water during operation, and applying this correlation to the strength of the fluororesin polymer electrolyte membrane and A method for evaluating the degree of deterioration of conductive performance .
JP2004352143A 2004-12-06 2004-12-06 Polymer electrolysis cell degradation assessment method Expired - Fee Related JP4803699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352143A JP4803699B2 (en) 2004-12-06 2004-12-06 Polymer electrolysis cell degradation assessment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352143A JP4803699B2 (en) 2004-12-06 2004-12-06 Polymer electrolysis cell degradation assessment method

Publications (2)

Publication Number Publication Date
JP2006161083A JP2006161083A (en) 2006-06-22
JP4803699B2 true JP4803699B2 (en) 2011-10-26

Family

ID=36663433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352143A Expired - Fee Related JP4803699B2 (en) 2004-12-06 2004-12-06 Polymer electrolysis cell degradation assessment method

Country Status (1)

Country Link
JP (1) JP4803699B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3032206B1 (en) * 2015-02-04 2021-09-10 Commissariat Energie Atomique OPERATING PROCEDURE OF A PEM ELECTROLYZER OR OF A PEMFC FUEL CELL TO INCREASE THE LIFETIME
JP7202501B1 (en) 2022-09-29 2023-01-11 旭化成株式会社 Driving support device, driving support method, and driving support program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3406390B2 (en) * 1994-07-08 2003-05-12 ペルメレック電極株式会社 Deuterium enrichment method and apparatus
JP2003178780A (en) * 2001-12-11 2003-06-27 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP4135186B2 (en) * 2003-03-19 2008-08-20 栗田工業株式会社 Ozone gas generator and ozone-dissolved water production device
JP4752181B2 (en) * 2003-03-31 2011-08-17 株式会社Gsユアサ Direct methanol fuel cell and operation method thereof

Also Published As

Publication number Publication date
JP2006161083A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
Genders et al. Electrochemical reduction of nitrates and nitrites in alkaline nuclear waste solutions
US4937038A (en) Solution quantitative analysis apparatus, quantitative analysis methods, and nuclear reactor water quality control system
Chesser et al. Electrochemical behavior of dysprosium and lanthanum in molten LiF-NaF-KF (Flinak) salt
Haraldsted et al. Trace anodic migration of iridium and titanium ions and subsequent cathodic selectivity degradation in acid electrolysis systems
JP4803699B2 (en) Polymer electrolysis cell degradation assessment method
Whitehorne et al. Study of Electrolyzer Materials at High Tritium Concentrations
CN1967209A (en) Method for detecting chemical oxygen demand of water body
Avino et al. Neutron activation analysis for investigating purity grade of copper, nickel and palladium thin films used in cold fusion experiments
US5186798A (en) Solution quantitative analysis apparatus, quantitative analysis methods, and nuclear reactor water quality control system
Rizwan et al. Reliability and sensitivity analysis of membrane biofilm fuel cell
Pujol-Pozo et al. Advanced oxidation process for the decontamination of stainless steels containing uranium
Zlobinski Investigation of Water and Gas Distribution in Proton Exchange Membrane Water Electrolyzer
Bozzini et al. In Situ Soft X‐ray Microscopy Study of Fe Interconnect Corrosion in Ionic Liquid‐Based Nano‐PEMFC Half‐Cells
Ulaganathan et al. Mitigating effect of magnetite buffering on alloy 800 tubing degradation in acidic, sulphate-dominated environments at 300 o C
DE2454659B2 (en) Measuring cell for determining the sulfur dioxide content in gas mixtures
Laoun et al. Electrochemical aided model to study solid polymer electrolyte water electrolysis
LUCAN et al. Romania’s contribution to the development of the knowledge society in the field of nuclear energy research
Burrows et al. Corrosion electrochemistry of fuel element materials in pond storage conditions
Itagaki et al. Diagnosis of quality of fresh water for carbon steel corrosion by Mahalanobis distance
Kobayashi et al. Studies on the behaviour of tritium in components and structure materials of tritium confinement and detritiation systems of ITER
Roth et al. Characterization Methods in Flow Batteries: A General Overview
Iwai et al. Demonstration on endurance of ion exchange membrane immersed in high-concentration tritiated water under the Broader Approach Activities
Yamanishi et al. Overview of R&D activities on tritium processing and handling technology in JAEA
Groenen Serrano et al. Performance of Ti/Pt and Nb/BDD anodes for dechlorination of nitric acid and regeneration of silver (II) in a tubular reactor for the treatment of solid wastes in nuclear industry
Roth et al. Effects of Synchrotron Radiation on Polymer Electrolyte Fuel Cell Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees