JP4800898B2 - Wiring board, electronic circuit device and manufacturing method thereof - Google Patents

Wiring board, electronic circuit device and manufacturing method thereof Download PDF

Info

Publication number
JP4800898B2
JP4800898B2 JP2006292216A JP2006292216A JP4800898B2 JP 4800898 B2 JP4800898 B2 JP 4800898B2 JP 2006292216 A JP2006292216 A JP 2006292216A JP 2006292216 A JP2006292216 A JP 2006292216A JP 4800898 B2 JP4800898 B2 JP 4800898B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
signal delay
electrodes
electrode wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006292216A
Other languages
Japanese (ja)
Other versions
JP2008109005A (en
Inventor
昇男 佐藤
仁 石井
浩季 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006292216A priority Critical patent/JP4800898B2/en
Publication of JP2008109005A publication Critical patent/JP2008109005A/en
Application granted granted Critical
Publication of JP4800898B2 publication Critical patent/JP4800898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、電子回路装置の基板を搭載する配線基板、あるいは半導体からなるチップを複数積層して微細加工技術により貫通電極を設けて電気的に接続する半導体装置等の電子回路装置において、高周波信号をチップ間に伝搬させるための貫通電極の形状およびその製造方法に関するものである。   The present invention relates to a high-frequency signal in an electronic circuit device such as a semiconductor device in which a wiring board on which a substrate of an electronic circuit device is mounted or a plurality of semiconductor chips are stacked and through electrodes are provided by microfabrication technology to be electrically connected. The present invention relates to a shape of a through electrode for propagating a metal between chips and a manufacturing method thereof.

メモリやCPUなどの半導体からなるLSIチップを小型・薄型に積層するため、従来のワイヤボンディングに代わり、チップの表面と裏面を貫通する貫通電極を設けて接続する半導体装置の開発が進められている(例えば、非特許文献1参照)。このような半導体装置では、従来法のワイヤボンディングに比べて、配線長を短くすることができるため、クロックなど数GHz級の高速・高周波な信号を伝搬するのに適している。   In order to stack LSI chips made of semiconductors such as memories and CPUs in a small and thin manner, a semiconductor device is being developed to connect by providing through electrodes that penetrate the front and back surfaces of the chip instead of conventional wire bonding. (For example, refer nonpatent literature 1). In such a semiconductor device, the wiring length can be shortened as compared with the conventional wire bonding, and therefore, it is suitable for propagating a high-speed, high-frequency signal of several GHz class such as a clock.

例えば図11のように、複数の貫通電極1001を備えた半導体チップ1002を5層に積層して接続する。図11では、各半導体チップ1002の上部が表面であり、下部が裏面である。貫通電極1001の側面と半導体チップ1002の側面とは絶縁膜により絶縁されており、貫通電極1001の頂部又は底部においてのみ半導体チップ1002表面又は裏面の配線と接続することが可能である。また、貫通電極1001は最下層(下から1層目)の半導体チップ1002の下に形成される入出力端子1003に接続され、この入出力端子1003を経由して外部のボード基板1004との信号の入出力が行われる。   For example, as shown in FIG. 11, semiconductor chips 1002 each having a plurality of through electrodes 1001 are stacked in five layers and connected. In FIG. 11, the upper part of each semiconductor chip 1002 is the front surface, and the lower part is the back surface. The side surface of the through electrode 1001 and the side surface of the semiconductor chip 1002 are insulated by an insulating film, and can be connected to the wiring on the front surface or back surface of the semiconductor chip 1002 only at the top or bottom of the through electrode 1001. Further, the through electrode 1001 is connected to an input / output terminal 1003 formed under the lowermost semiconductor chip 1002 (the first layer from the bottom), and a signal with an external board substrate 1004 is passed through the input / output terminal 1003. I / O is performed.

なお、図11においては、上下方向に隣接する半導体チップ1002の貫通電極1001間の接続部の記載を省略しているが、上下方向に隣接する貫通電極1001間の接続は公知の技術を用いて行えばよい。このような上下方向の接続により、例えば複数の貫通電極1001からなる貫通電極配線1005aおよび1005bが形成される。下から2層目の半導体チップ1002からの信号は貫通電極配線1005aを経由して最下層の半導体チップ1002の裏面まで到津し、最上層(下から5層目)の半導体チップ1002からの信号は貫通電極配線1005bを経由して最下層の半導体チップ1002の裏面まで到達することができる。   In FIG. 11, the description of the connection portion between the through electrodes 1001 of the semiconductor chip 1002 adjacent in the vertical direction is omitted, but connection between the through electrodes 1001 adjacent in the vertical direction is performed using a known technique. Just do it. By such vertical connection, through-electrode wirings 1005a and 1005b including a plurality of through-electrodes 1001 are formed, for example. The signal from the second lowest semiconductor chip 1002 reaches the back surface of the lowermost semiconductor chip 1002 via the through electrode wiring 1005a, and the signal from the uppermost (fifth lowermost) semiconductor chip 1002 Can reach the back surface of the lowermost semiconductor chip 1002 via the through-electrode wiring 1005b.

K.Takahashi et al.,“Current status of research and development for three-dimensional chip stack technology”,Jpn.J.Appl.Phys.,Vol.40,p.3032-3037,2001K. Takahashi et al., “Current status of research and development for three-dimensional chip stack technology”, Jpn.J.Appl.Phys., Vol.40, p.3032-3037, 2001

上述したように半導体チップを積層して形成された半導体装置では、積層された半導体チップ1002の位置によらず、どの層から出力された信号も、最下層の半導体チップ1002の裏面までの到達時刻が同一であることが望ましい。しかしながら、上記の貫通電極1001の形状は、積層する半導体チップ間で全て同じ円柱状あるいは角柱状をしているため、高周波信号の伝搬特性は各半導体チップ1002で全て同等である。すなわち、貫通電極自身の抵抗Rと、周辺部との間で形成される容量Cとにより決定される信号遅延(RC遅延)も各半導体チップ1002で同等である。ここで、抵抗Rは、貫通電極1001を構成する導電体の抵抗率と形状によって決まる。また、容量Cは、貫通電極1001と半導体チップ1002の半導体基板との間の絶縁体の薄膜を誘電体として形成される。この容量Cは、貫通電極1001の側面形状および絶縁体薄膜の誘電率や厚さによって決定される。   As described above, in a semiconductor device formed by stacking semiconductor chips, a signal output from any layer regardless of the position of the stacked semiconductor chips 1002 is the arrival time to the back surface of the lowermost semiconductor chip 1002. Are preferably the same. However, since the through electrode 1001 has the same cylindrical or prismatic shape between the stacked semiconductor chips, the propagation characteristics of high-frequency signals are all the same for each semiconductor chip 1002. In other words, the signal delay (RC delay) determined by the resistance R of the through electrode itself and the capacitance C formed between the peripheral portions is the same for each semiconductor chip 1002. Here, the resistance R is determined by the resistivity and shape of the conductor constituting the through electrode 1001. The capacitor C is formed by using a thin film of an insulator between the through electrode 1001 and the semiconductor substrate of the semiconductor chip 1002 as a dielectric. The capacitance C is determined by the side shape of the through electrode 1001 and the dielectric constant and thickness of the insulating thin film.

このように、図11に示した従来の半導体装置では、各半導体チップ1002を通過する度に信号遅延が同じ時間だけ加算されるので、上層の半導体チップ1002から出力される信号ほど、遅延時間が長くなってしまうという問題点があった。例えば図11において、5層目の半導体チップ1002から出力された信号が貫通電極配線1005bを経由して最下層の半導体チップ1002の裏面まで到達するのに要する時間は、2層目の半導体チップ1002から出力された信号が貫通電極配線1005aを経由して最下層の半導体チップ1002の裏面まで到達するのに要する時間のおよそ25倍となる。
また、以上のような問題点は、複数の半導体チップを積層した半導体装置だけでなく、半導体チップを搭載するインターポーザー等の配線基板においても同様に発生する。
As described above, in the conventional semiconductor device shown in FIG. 11, since the signal delay is added for the same time every time it passes through each semiconductor chip 1002, the delay time increases as the signal is output from the upper semiconductor chip 1002. There was a problem of becoming longer. For example, in FIG. 11, the time required for a signal output from the fifth-layer semiconductor chip 1002 to reach the back surface of the lowermost semiconductor chip 1002 via the through-electrode wiring 1005b is the second-layer semiconductor chip 1002. Is about 25 times as long as the time required for the signal output from the terminal to reach the back surface of the lowermost semiconductor chip 1002 via the through electrode wiring 1005a.
The above-described problems occur not only in a semiconductor device in which a plurality of semiconductor chips are stacked, but also in a wiring board such as an interposer on which semiconductor chips are mounted.

本発明は、上記課題を解決するためになされたもので、各貫通電極配線の信号遅延時間を同等にすることができる配線基板、電子回路装置およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a wiring board, an electronic circuit device, and a method for manufacturing the same that can equalize the signal delay time of each through electrode wiring.

本発明は、積層された複数の基板を有する電子回路装置であって、前記基板の各々は、それぞれ表面から裏面まで貫通する複数の貫通電極を備え、各基板の前記貫通電極が積層方向に沿って連結された貫通電極配線により入出力端子と電気的に接続され、前記複数の貫通電極のうち少なくとも一部は、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて成形された形状の信号遅延調整用貫通電極であり、前記信号遅延調整用貫通電極は、前記基板を貫通する方向と垂直な平面における断面積が、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて同一の基板内部で変化していることを特徴とするものである The present invention is an electronic circuit device having a plurality of stacked substrates, wherein each of the substrates includes a plurality of through electrodes penetrating from the front surface to the back surface, and the through electrodes of each substrate are along the stacking direction. The through electrode wirings are electrically connected to the input / output terminals, and at least a part of the plurality of through electrodes includes a through electrode including the through electrode so that the signal delay time of each through electrode wiring is equal. signal delay adjustment through electrodes der the molded shape according to the length of the electrode wires is, the signal delay adjustment through electrode, the cross-sectional area in a direction perpendicular to a plane passing through the substrate, each of the through electrodes It is characterized in that it changes within the same substrate in accordance with the length of the through electrode wiring including the through electrode so that the signal delay time of the wiring becomes equal .

また、本発明は、積層された複数の基板を有する電子回路装置であって、前記基板の各々は、それぞれ表面から裏面まで貫通する複数の貫通電極を備え、各基板の前記貫通電極が積層方向に沿って連結された貫通電極配線により入出力端子と電気的に接続され、前記複数の貫通電極のうち少なくとも一部は、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて成形された形状の信号遅延調整用貫通電極であり、前記信号遅延調整用貫通電極は、前記基板を貫通する方向と垂直な平面における断面積が、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて基板内部で変化しており、前記積層された基板の数は、n個(nは2以上の整数)であり、前記信号遅延調整用貫通電極の数は、2個以上であり、前記信号遅延調整用貫通電極は、断面積がAで長さがXの細部と断面積がB(B>A)で長さがYの太部とからなる2段構造を有し、前記入出力端子に近い方からp番目(pは1≦p<nを満たす整数)の前記基板と前記入出力端子とを接続する貫通電極配線Pに含まれる前記信号遅延調整用貫通電極と、前記入出力端子に近い方からq番目(qはp<q≦nを満たす整数)の前記基板と前記入出力端子とを接続する貫通電極配線Qに含まれる前記信号遅延調整用貫通電極との間で、前記断面積Aが同一の値かつ前記断面積Bが同一の値であるときに、前記貫通電極配線Pに含まれる前記信号遅延調整用貫通電極の細部の長さXは、前記貫通電極配線Qに含まれる前記信号遅延調整用貫通電極の細部の長さXより長いことを特徴とするものである。
また、本発明の電子回路装置の1構成例は、各貫通電極配線において抵抗と容量の積を同一の値にすることにより、各貫通電極配線の信号遅延時間を等しくするようにしたものである。
Further, the present invention is an electronic circuit device having a plurality of stacked substrates, each of the substrates including a plurality of through electrodes penetrating from the front surface to the back surface, and the through electrodes of each substrate are in the stacking direction Are electrically connected to the input / output terminals by through-electrode wirings connected along the at least one of the plurality of through-electrodes, so that at least some of the through-electrode wirings have the same signal delay time of each through-electrode wiring. A signal delay adjusting through electrode having a shape formed according to the length of the through electrode wiring including the cross section of the signal delay adjusting through electrode in a plane perpendicular to the direction penetrating the substrate. The number of the stacked substrates is n (n is 2 or more), so that the signal delay time of the electrode wiring is made equal in accordance with the length of the through electrode wiring including the through electrode. Integer) The number of through-electrodes for signal delay adjustment is two or more, and the through-electrode for signal delay adjustment is long with a cross-sectional area of A and a length of X and a cross-sectional area of B (B> A). The p-th substrate (p is an integer satisfying 1 ≦ p <n) and the input / output terminal are connected from the side closer to the input / output terminal. The signal delay adjusting through electrode included in the through electrode wiring P is connected to the qth substrate (q is an integer satisfying p <q ≦ n) and the input / output terminal from the side closer to the input / output terminal. When the cross-sectional area A is the same value and the cross-sectional area B is the same value with respect to the signal delay adjusting through-electrode included in the through-electrode wiring Q, the above-mentioned included in the through-electrode wiring P The length X of the detail of the signal delay adjustment through electrode is determined by the signal delay adjustment included in the through electrode wiring Q. It is characterized in longer than the length X of a detail of the through electrode.
Further, in one configuration example of the electronic circuit device of the present invention, the signal delay time of each through electrode wiring is made equal by setting the product of resistance and capacitance to the same value in each through electrode wiring. .

また、本発明は、複数の基板を積層した電子回路装置を製造する製造方法であって、基板表面に凹部を形成する第1の工程と、前記基板表面に前記凹部内の空間を保ったまま前記凹部の口を塞ぐ薄膜を貼り付ける第2の工程と、前記凹部の真上の前記薄膜の一部をパターニングして前記凹部の口よりも小さい開口部を形成し、前記凹部の底の一部を露出させる第3の工程と、前記薄膜をマスクとして、エッチングにより前記凹部の底を加工する第4の工程と、前記第1の工程から前記4の工程を必要に応じて繰り返して前記基板の厚さ方向と垂直な平面における断面積が前記基板内部で変化している多段構造を有する凹部を形成した後に、各凹部の側壁および底部に絶縁膜を形成する第5の工程と、各凹部の内部に導電体パターンを形成する第6の工程と、前記基板の裏面を研削して、前記導電体パターンを裏面に露出させる第7の工程と、この第7の工程後の前記基板を分割して、複数の前記導体パターンを貫通電極としてそれぞれ有する複数の基板を作製する第8の工程と、この第8の工程後の前記複数の基板を積層する第9の工程とを有するものである。 In addition, the present invention is a manufacturing method for manufacturing an electronic circuit device in which a plurality of substrates are stacked, the first step of forming a recess on the substrate surface, and a space in the recess on the substrate surface. a second step of attaching a thin film which closes the mouth of the recess, by patterning a portion of the thin film on the true of the recess to form an opening smaller than the mouth of the recess, the bottom of the recess one a third step of exposing the part, the thin film as a mask, and a fourth step of processing the bottom of the recess by etching, wherein repeated as necessary the fourth step from the first step A fifth step of forming an insulating film on the side wall and the bottom of each concave portion after forming the concave portion having a multistage structure in which a cross-sectional area in a plane perpendicular to the thickness direction of the substrate is changed inside the substrate ; Form a conductor pattern inside each recess A sixth step, a seventh step of grinding the back surface of the substrate to expose the conductor pattern on the back surface, and dividing the substrate after the seventh step to form a plurality of the conductor patterns This includes an eighth step of producing a plurality of substrates each having a through electrode, and a ninth step of laminating the plurality of substrates after the eighth step.

本発明によれば、基材の表面に電子回路装置の基板を搭載し、基材の表面から裏面まで貫通する複数の貫通電極がそれぞれ接続先の基板内の配線と共に貫通電極配線を構成する配線基板において、複数の貫通電極のうち少なくとも一部を、各貫通電極配線の信号遅延時間が等しくなるように成形された形状の信号遅延調整用貫通電極とすることにより、配線基板に電子回路装置の基板が搭載された状態において、各貫通電極配線の信号遅延時間を同等に設定することができ、基板内の各電子回路の動作のタイミングを一致させることが可能となる。   According to the present invention, the substrate of the electronic circuit device is mounted on the surface of the base material, and the plurality of through electrodes penetrating from the front surface to the back surface of the base material together with the wiring in the connection destination substrate constitute the through electrode wiring In the substrate, at least a part of the plurality of through electrodes is formed as a signal delay adjusting through electrode having a shape formed so that the signal delay time of each through electrode wiring is equalized, whereby the electronic circuit device of the electronic circuit device is formed on the wiring substrate. In a state where the substrate is mounted, the signal delay time of each through electrode wiring can be set to be equal, and the operation timing of each electronic circuit in the substrate can be matched.

また、本発明によれば、複数の貫通電極のうち少なくとも一部を、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて成形された形状の信号遅延調整用貫通電極とすることにより、複数の基板(例えば半導体チップ)を積層した半導体装置等の電子回路装置において、積層した基板のいずれに設けられた電子回路についても、電子回路の積層方向の位置によらずに、各貫通電極配線の信号遅延時間を同等に設定することができ、各電子回路の動作のタイミングを一致させることが可能となる。   Further, according to the present invention, at least a part of the plurality of through electrodes is formed according to the length of the through electrode wiring including the through electrode so that the signal delay time of each through electrode wiring is equal. By forming the signal delay adjusting through electrode in the shape, in an electronic circuit device such as a semiconductor device in which a plurality of substrates (for example, semiconductor chips) are stacked, the electronic circuit provided on any of the stacked substrates Regardless of the position in the stacking direction, the signal delay time of each through electrode wiring can be set to be equal, and the operation timing of each electronic circuit can be matched.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る半導体装置(電子回路装置)の構成例を示す斜視図である。なお、図1の正面は、半導体装置の断面を表している。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration example of a semiconductor device (electronic circuit device) according to a first embodiment of the present invention. 1 represents a cross section of the semiconductor device.

半導体装置101は、積層された複数の半導体チップ102(102a又は102b)からなる。各々の半導体チップ102は、その半導体基板部分105を表面から裏面に貫通する複数の貫通電極106(106a又は106b)を備えている。貫通電極106の側面と半導体チップ102の側面とは絶縁膜(不図示)により絶縁されており、貫通電極106の頂部又は底部においてのみ半導体チップ102の表面又は裏面の配線(不図示)と接続することが可能である。貫通電極106により、任意の半導体チップ102内に形成された半導体回路(不図示)と、積層された上下のチップ間を接続する。   The semiconductor device 101 includes a plurality of stacked semiconductor chips 102 (102a or 102b). Each semiconductor chip 102 includes a plurality of through electrodes 106 (106a or 106b) that penetrate the semiconductor substrate portion 105 from the front surface to the back surface. The side surface of the through electrode 106 and the side surface of the semiconductor chip 102 are insulated by an insulating film (not shown), and connected to the wiring (not shown) on the front surface or the back surface of the semiconductor chip 102 only at the top or bottom of the through electrode 106. It is possible. The through electrode 106 connects a semiconductor circuit (not shown) formed in an arbitrary semiconductor chip 102 to the upper and lower chips stacked.

積層方向に隣接する貫通電極106間の接続は公知の技術を用いて行われる。この接続により、複数の貫通電極106が積層方向に接続された貫通電極配線が形成される。そして、最下層の半導体チップ102aに形成された貫通電極106は、この半導体チップ102aの下に形成される入出力端子103に接続され、この入出力端子103を介して例えばインターポーザーなどの基板104に接続されている。基板104は、図示しない外部のボードやパッケージ基板に接続される。   Connection between the through electrodes 106 adjacent to each other in the stacking direction is performed using a known technique. By this connection, a through electrode wiring in which a plurality of through electrodes 106 are connected in the stacking direction is formed. The through electrode 106 formed in the lowermost semiconductor chip 102a is connected to an input / output terminal 103 formed under the semiconductor chip 102a, and a substrate 104 such as an interposer is connected via the input / output terminal 103. It is connected to the. The substrate 104 is connected to an external board or package substrate (not shown).

貫通電極106は、図2(A)、図2(B)に示すように例えば円柱状の導電体からなる。すなわち、積層方向と平行な貫通電極106の軸107に対して垂直な面で切断したときの貫通電極106の断面形状は円である。図1の例では、下層の半導体チップ102aは、広い断面積を有する貫通電極106aと、これよりも狭い断面積を有する貫通電極106bを備えている。一方、上層の半導体チップ102bは、広い断面積を有する貫通電極106aのみを備えている。   As shown in FIGS. 2A and 2B, the through electrode 106 is made of, for example, a cylindrical conductor. That is, the cross-sectional shape of the through electrode 106 when it is cut along a plane perpendicular to the axis 107 of the through electrode 106 parallel to the stacking direction is a circle. In the example of FIG. 1, the lower semiconductor chip 102 a includes a through electrode 106 a having a wide cross-sectional area and a through electrode 106 b having a narrower cross-sectional area. On the other hand, the upper semiconductor chip 102b includes only the through electrode 106a having a wide cross-sectional area.

ここで、下層の半導体チップ102aと入出力端子103とを接続する貫通電極配線を110、上層の半導体チップ102bと入出力端子103とを接続する貫通電極配線を111とする。貫通電極106における信号遅延(RC遅延)は、貫通電極自身の抵抗Rと、周辺部との間で形成される容量Cとの積RCの関数となる。ここで、抵抗Rは、貫通電極106を構成する導電体の抵抗率と形状によって決まる。また、容量Cは、貫通電極106と半導体チップ102の半導体基板との間の絶縁体の薄膜を誘電体として形成される。この容量Cは、貫通電極106の側面形状および絶縁体薄膜の誘電率や厚さによって決定される。   Here, a through electrode wiring connecting the lower semiconductor chip 102a and the input / output terminal 103 is denoted by 110, and a through electrode wiring connecting the upper semiconductor chip 102b and the input / output terminal 103 is denoted by 111. The signal delay (RC delay) in the through electrode 106 is a function of the product RC of the resistance R of the through electrode itself and the capacitance C formed between the peripheral portions. Here, the resistance R is determined by the resistivity and the shape of the conductor constituting the through electrode 106. The capacitor C is formed by using a thin film of an insulator between the through electrode 106 and the semiconductor substrate of the semiconductor chip 102 as a dielectric. The capacitance C is determined by the side surface shape of the through electrode 106 and the dielectric constant and thickness of the insulating thin film.

例えば、底面が半径rの円で、長さがLの円柱状の貫通電極106について考えると、抵抗Rと容量Cは以下のようになる。
R=ρ×L/(πr2) ・・・(1)
C=ε×(L×2πr)/T ・・・(2)
ρは貫通電極106を構成する導電体の抵抗率、εは貫通電極106と半導体チップ102の半導体基板との間の絶縁体の誘電率、Tは絶縁体の厚さである。式(1)、式(2)より、RC=α×L2/r(αは定数)となり、抵抗Rと容量Cの積は貫通電極106の長さLの2乗に比例することが分かる。なお、信号遅延はRCの関数であるが、その関数形は境界条件によって異なってくるため具体的な形は明示していない。
For example, when considering a cylindrical through electrode 106 having a bottom surface with a radius r and a length L, the resistance R and the capacitance C are as follows.
R = ρ × L / (πr 2 ) (1)
C = ε × (L × 2πr) / T (2)
ρ is the resistivity of the conductor constituting the through electrode 106, ε is the dielectric constant of the insulator between the through electrode 106 and the semiconductor substrate of the semiconductor chip 102, and T is the thickness of the insulator. From Equations (1) and (2), RC = α × L 2 / r (α is a constant), and it can be seen that the product of the resistance R and the capacitance C is proportional to the square of the length L of the through electrode 106. . The signal delay is a function of RC, but its form varies depending on the boundary condition, and the specific form is not clearly shown.

抵抗Rと容量Cの積RCで決定される信号遅延を貫通電極配線110と111で等しくするためには、貫通電極配線110,111を構成する各貫通電極106のうち少なくとも一部の貫通電極106の断面積を、貫通電極配線110,111の電気信号伝搬部分の長さに応じて変化させればよい。例えば各半導体チップ102毎の貫通電極106a,106bの長さを100μmとした場合には、貫通電極配線111を構成する貫通電極106aの底面半径を40μm、貫通電極配線110を構成する貫通電極106bの底面半径を10μmとすればよい。   In order to equalize the signal delay determined by the product RC of the resistor R and the capacitance C between the through electrode wirings 110 and 111, at least some of the through electrodes 106 among the through electrodes 106 constituting the through electrode wirings 110 and 111. The cross-sectional area may be changed according to the length of the electrical signal propagation portion of the through-electrode wirings 110 and 111. For example, when the length of the through electrodes 106 a and 106 b for each semiconductor chip 102 is 100 μm, the bottom surface radius of the through electrode 106 a constituting the through electrode wiring 111 is 40 μm and the through electrode 106 b constituting the through electrode wiring 110 is formed. The bottom radius may be 10 μm.

すなわち、積層する半導体チップ102の数をn個としたとき、下からp番目(pは1≦p<nを満たす整数)の半導体チップ102と入出力端子103とを接続する貫通電極配線110に含まれる貫通電極106bの断面積は、下からq番目(qはp<q≦nを満たす整数)の半導体チップ102と入出力端子103とを接続する貫通電極配線111に含まれる貫通電極106aの断面積より小さい。これにより、抵抗Rと容量Cの積RCが、貫通電極配線110(底面半径10μm、長さ100μm)と貫通電極配線111(底面半径40μm、長さ200μm)で同じ値になる。   That is, when the number of semiconductor chips 102 to be stacked is n, the through-electrode wiring 110 connecting the pth semiconductor chip 102 from the bottom (p is an integer satisfying 1 ≦ p <n) and the input / output terminal 103 is provided. The cross-sectional area of the through electrode 106b included is that of the through electrode 106a included in the through electrode wiring 111 that connects the qth semiconductor chip 102 from the bottom (q is an integer satisfying p <q ≦ n) and the input / output terminal 103. It is smaller than the cross-sectional area. As a result, the product RC of the resistance R and the capacitance C becomes the same value for the through electrode wiring 110 (bottom radius 10 μm, length 100 μm) and the through electrode wiring 111 (bottom radius 40 μm, length 200 μm).

よって、下層の半導体チップ102aの表面と上層の半導体チップ102bの表面から同時に出力された信号は、それぞれ出力先の入出力端子103に同時に到達する。
なお、貫通電極配線110の上部の半導体チップ102bの内部に貫通電極106aが形成されているが、この貫通電極106aは製造プロセス上のダミーパターンである。ダミーパターンを形成しておくことで、積層するチップの位置に依らず、貫通電極106の配置などの設計や、後述するドライエッチングやめっきの製造工程の条件を共通化することが可能となる。もちろん、製造工程をチップの積層位置に依存して変更する煩雑さが増えるが、ダミーパターンを形成しなくてもよい。
Therefore, signals simultaneously output from the surface of the lower semiconductor chip 102 a and the surface of the upper semiconductor chip 102 b reach the output destination input / output terminal 103 simultaneously.
A through electrode 106a is formed inside the semiconductor chip 102b above the through electrode wiring 110. The through electrode 106a is a dummy pattern in the manufacturing process. By forming the dummy pattern, it is possible to make common the design of the arrangement of the through electrode 106 and the manufacturing process conditions of dry etching and plating described later, regardless of the position of the stacked chip. Of course, the complexity of changing the manufacturing process depending on the stacking position of the chips increases, but the dummy pattern need not be formed.

図1の例では、半導体チップ102が2層の場合について示したが、3層以上の場合についても同様にすることができる。例えば図3に示すように、5層の半導体チップ102を積層する場合を考える。ここでは、下からn層目(n=1,2,3,4,5)の半導体チップ102の表面から出力される信号を伝搬させるための貫通電極配線を201−nとする。そして、貫通電極配線201−nの最下部を構成する貫通電極、すなわち1層目の半導体チップ102内の貫通電極を106d−nとし、2層目以上の半導体チップ102内の貫通電極を106cとする。   In the example of FIG. 1, the case where the semiconductor chip 102 has two layers is shown, but the same can be applied to the case where there are three or more layers. For example, as shown in FIG. 3, consider a case where five semiconductor chips 102 are stacked. Here, a through electrode wiring for propagating a signal output from the surface of the semiconductor chip 102 in the nth layer (n = 1, 2, 3, 4, 5) from the bottom is 201-n. The through electrode constituting the lowermost portion of the through electrode wiring 201-n, that is, the through electrode in the first semiconductor chip 102 is 106d-n, and the through electrode in the second or higher semiconductor chip 102 is 106c. To do.

図1の例と同様に、信号遅延を各貫通電極配線201−1〜201−5で等しくするためには、少なくとも一部の貫通電極106の断面積を、貫通電極配線201−1〜201−5の電気信号伝搬部分の長さに応じて変化させればよい。例えば各半導体チップ102毎の貫通電極106c,106d−1〜106d−5の長さを100μmとした場合には、貫通電極106d−1,106d−2,106d−3,106d−4,106d−5の半径をそれぞれ4μm、23μm、34μm、49μm、100μmとし、貫通電極106cの半径を100μmとすればよい。   As in the example of FIG. 1, in order to make the signal delay equal in each of the through electrode wirings 201-1 to 201-5, the cross-sectional area of at least some of the through electrodes 106 is changed to the through electrode wirings 201-1 to 201-. What is necessary is just to change according to the length of 5 electric signal propagation | transmission parts. For example, when the length of the through electrodes 106c, 106d-1 to 106d-5 for each semiconductor chip 102 is 100 μm, the through electrodes 106d-1, 106d-2, 106d-3, 106d-4, 106d-5 are used. The radius of each of the through electrodes 106c may be 4 μm, 23 μm, 34 μm, 49 μm, and 100 μm, and the radius of the through electrode 106c may be 100 μm.

これにより、抵抗Rと容量Cの積RCが、貫通電極配線201−1の信号伝搬部分(底面半径4μm、長さ100μm)と、貫通電極配線201−2の信号伝搬部分(底面半径23μm、長さ100μmの細部と底面半径100μm、長さ100μmの太部からなる)と、貫通電極配線201−3の信号伝搬部分(底面半径34μm、長さ100μmの細部と底面半径100μm、長さ200μmの太部からなる)と、貫通電極配線201−4の信号伝搬部分(底面半径49μm、長さ100μmの細部と底面半径100μm、長さ300μmの太部からなる)と、貫通電極配線201−5の信号伝搬部分(底面半径100μm、長さ500μm)で同じ値になる。   As a result, the product RC of the resistor R and the capacitor C has a signal propagation portion (bottom radius 4 μm, length 100 μm) of the through electrode wiring 201-1 and a signal propagation portion (bottom radius 23 μm, long) of the through electrode wiring 201-2. And a signal propagation portion of the through-electrode wiring 201-3 (bottom radius of 34 μm, length of 100 μm, bottom radius of 100 μm, thickness of 200 μm) And a signal propagation portion of the through electrode wiring 201-4 (consisting of details of a bottom surface radius of 49 μm and a length of 100 μm and a bottom surface radius of 100 μm and a thick portion of a length of 300 μm) and a signal of the through electrode wiring 201-5 It becomes the same value in the propagation part (bottom radius 100 μm, length 500 μm).

以上のようにして、本実施の形態では、各貫通電極配線の信号遅延時間を同等に設定することができる。
なお、上記の説明では、最下層のチップは上層と同じ半導体素子からなる機能を備えるものとしたが、貫通電極や配線のみを備えたインターポーザー等の配線基板としての機能を有する場合にも本発明を適用できる。
As described above, in this embodiment, the signal delay time of each through electrode wiring can be set to be equal.
In the above description, the chip in the lowermost layer is assumed to have the function of the same semiconductor element as the upper layer. However, this chip is also used when it has a function as a wiring board such as an interposer having only through electrodes and wiring. The invention can be applied.

つまり、配線基板は、例えばセラミック等からなる基材と、基材の表面から裏面まで貫通する複数の貫通電極とを備え、基材の表面には電子回路装置の基板(半導体チップ)が搭載され、裏面には外部との接続用の複数の入出力端子が設けられており、電子回路装置の基板とマザーボードとの間を電気的に接続する役目を果たしている。各貫通電極は、電子回路装置の基板の電極と配線基板の入出力端子とを電気的に接続する。これにより、各貫通電極は、それぞれ接続先の基板内の配線と共に貫通電極配線を構成することになる。このような配線基板において、本実施の形態で説明したように、複数の貫通電極のうち少なくとも一部を、各貫通電極配線の信号遅延時間が等しくなるように成形した形状の信号遅延調整用貫通電極とすることにより、各貫通電極配線の信号遅延時間を同等に設定することができ、基板内の各回路の動作のタイミングを一致させることが可能となる。   That is, the wiring board includes, for example, a base material made of ceramic or the like and a plurality of through electrodes penetrating from the surface of the base material to the back surface, and a substrate (semiconductor chip) of an electronic circuit device is mounted on the surface of the base material. The back surface is provided with a plurality of input / output terminals for connection to the outside, and serves to electrically connect the substrate of the electronic circuit device and the mother board. Each through electrode electrically connects the electrode of the substrate of the electronic circuit device and the input / output terminal of the wiring substrate. Thereby, each through electrode constitutes a through electrode wiring together with the wiring in the connection destination substrate. In such a wiring board, as described in the present embodiment, at least a part of the plurality of through-electrodes has a signal delay adjustment through shape formed so that the signal delay time of each through-electrode wiring is equal. By using electrodes, the signal delay time of each through electrode wiring can be set to be equal, and the operation timing of each circuit in the substrate can be matched.

次に、本実施の形態の半導体装置の製造方法について図4を用いて説明する。まず、半導体基板301の裏面を研削して、半導体基板301の厚さを例えば120μmとし、半導体基板301の表面にレジストパターン302を公知のフォトリソグラフィ技術により形成する(図4(A))。なお、図示していないが、半導体基板301には半導体素子や多層配線が形成されている。   Next, a method for manufacturing the semiconductor device of the present embodiment will be described with reference to FIG. First, the back surface of the semiconductor substrate 301 is ground so that the thickness of the semiconductor substrate 301 is, for example, 120 μm, and a resist pattern 302 is formed on the surface of the semiconductor substrate 301 by a known photolithography technique (FIG. 4A). Although not shown, the semiconductor substrate 301 is formed with semiconductor elements and multilayer wiring.

続いて、レジストパターン302をマスクとして、ICP−RIE(Inductively Coupled Plasma-Reactive Ion Etching)などにより半導体基板301表面の絶縁膜や半導体基板301をドライエッチングして例えば100μmの深さの凹部303を形成し、凹部303の形成後にレジストパターン302を除去する(図4(B))。
そして、CVD(Chemical Vapor Deposition)法により酸化膜などの絶縁膜304を凹部303の側壁および底部に形成する(図4(C))。
Subsequently, using the resist pattern 302 as a mask, the insulating film on the surface of the semiconductor substrate 301 or the semiconductor substrate 301 is dry-etched by ICP-RIE (Inductively Coupled Plasma-Reactive Ion Etching) or the like to form a recess 303 having a depth of, for example, 100 μm. Then, the resist pattern 302 is removed after the recess 303 is formed (FIG. 4B).
Then, an insulating film 304 such as an oxide film is formed on the sidewall and bottom of the recess 303 by a CVD (Chemical Vapor Deposition) method (FIG. 4C).

次ぎに、無電解めっき法により銅めっきを凹部303の内部に付着させた後、半導体基板301の表面の一部にレジストパターン305等を形成して表面を被覆し、露出している部分にのみ電解めっきを用いて銅パターン306を成長させる(図4(D))。ここで、レジストパターン305で被覆しない箇所は、凹部303、および半導体基板301表面の多層配線(不図示)と銅パターン306との接続部である。したがって、銅パターン306を成長させることにより、銅パターン306が半導体基板301表面の多層配線と電気的に接続される。   Next, after the copper plating is deposited inside the recess 303 by the electroless plating method, a resist pattern 305 or the like is formed on a part of the surface of the semiconductor substrate 301 to cover the surface, and only on the exposed part. A copper pattern 306 is grown using electrolytic plating (FIG. 4D). Here, the portions not covered with the resist pattern 305 are the recesses 303 and the connection portions between the multilayer wiring (not shown) on the surface of the semiconductor substrate 301 and the copper pattern 306. Therefore, by growing the copper pattern 306, the copper pattern 306 is electrically connected to the multilayer wiring on the surface of the semiconductor substrate 301.

銅パターン306の形成後、レジストパターン305を除去し、無電解めっきで付着した不要な銅をエッチング除去する。最後に、半導体基板301の裏面を研削して、銅パターン306を裏面に露出させる。これにより、銅パターン306が半導体基板301の表面から裏面へ貫通した貫通電極106となる(図4(E))。
その後は、半導体基板301の裏面に絶縁膜や接続用の導電体を適宜形成し、半導体基板301をダイシングしてチップに分割し、これらのチップを積層して接続すれば、図1、図2に示した半導体装置を作製することができる。図4(A)〜図4(E)に示した工程においては、所望の半径の貫通電極106ができるようにレジストパターン302を適宜形成すればよい。積層方向に隣接する貫通電極106間を接続する技術としては、例えば非特許文献1に記載された技術を用いることができる。
After the copper pattern 306 is formed, the resist pattern 305 is removed, and unnecessary copper deposited by electroless plating is removed by etching. Finally, the back surface of the semiconductor substrate 301 is ground to expose the copper pattern 306 on the back surface. Thus, the copper pattern 306 becomes the through electrode 106 penetrating from the front surface to the back surface of the semiconductor substrate 301 (FIG. 4E).
Thereafter, an insulating film and a conductor for connection are appropriately formed on the back surface of the semiconductor substrate 301, the semiconductor substrate 301 is diced and divided into chips, and these chips are stacked and connected. The semiconductor device shown in FIG. In the steps shown in FIGS. 4A to 4E, the resist pattern 302 may be appropriately formed so as to form the through electrode 106 having a desired radius. As a technique for connecting between the through electrodes 106 adjacent in the stacking direction, for example, the technique described in Non-Patent Document 1 can be used.

[第2の実施の形態]
図5は本発明の第2の実施の形態に係る半導体装置の構成例を示す断面図である。半導体装置401は、積層された複数の半導体チップ402(402a又は402b)からなる。各々の半導体チップ402は、複数の貫通電極406(406a又は406b)を備えている。積層方向に隣接する貫通電極406を接続することにより、貫通電極配線が形成される。そして、最下層の半導体チップ402aに形成された貫通電極406は、この半導体チップ402aの下に形成される入出力端子103に接続され、この入出力端子103を介して例えばインターポーザーなどの基板104に接続されている。
[Second Embodiment]
FIG. 5 is a cross-sectional view showing a configuration example of a semiconductor device according to the second embodiment of the present invention. The semiconductor device 401 includes a plurality of stacked semiconductor chips 402 (402a or 402b). Each semiconductor chip 402 includes a plurality of through electrodes 406 (406a or 406b). By connecting through electrodes 406 adjacent in the stacking direction, through electrode wiring is formed. The through electrode 406 formed in the lowermost semiconductor chip 402a is connected to the input / output terminal 103 formed under the semiconductor chip 402a, and the substrate 104 such as an interposer is connected via the input / output terminal 103. It is connected to the.

貫通電極406は、図6(A)、図6(B)に示すように例えば円柱状の導電体からなる。すなわち、積層方向と平行な貫通電極406の軸407に対して垂直な面で切断したときの貫通電極406の断面形状は円である。第1の実施の形態と異なる点は、第1の実施の形態では各半導体チップ102内の貫通電極106の断面積が不変であったのに対し、本実施の形態では半導体チップ402内で貫通電極406の断面積が変化する場合があることである。貫通電極406aは、図6(A)に示すように断面積が一定である。これに対して、貫通電極406bは、広い断面積を有する太部408とこれよりも狭い断面積を有する細部409とを備えた2段構造になっており、半導体チップ402内で断面積が変化する。   As shown in FIGS. 6A and 6B, the through electrode 406 is made of, for example, a cylindrical conductor. That is, the cross-sectional shape of the through electrode 406 when it is cut along a plane perpendicular to the axis 407 of the through electrode 406 parallel to the stacking direction is a circle. The difference from the first embodiment is that the cross-sectional area of the through electrode 106 in each semiconductor chip 102 is unchanged in the first embodiment, whereas in this embodiment, the through electrode 106 penetrates in the semiconductor chip 402. That is, the cross-sectional area of the electrode 406 may change. The through electrode 406a has a constant cross-sectional area as shown in FIG. On the other hand, the through electrode 406b has a two-stage structure including a thick portion 408 having a wide cross-sectional area and a detail 409 having a narrower cross-sectional area, and the cross-sectional area changes in the semiconductor chip 402. To do.

図5の下層の半導体チップ402aは、貫通電極406aと406bを備えている。一方、上層の半導体チップ402bは、貫通電極406aのみを備えている。ここで、下層の半導体チップ402aと入出力端子103とを接続する貫通電極配線を410、上層の半導体チップ402bと入出力端子103とを接続する貫通電極配線を411とする。   The lower semiconductor chip 402a in FIG. 5 includes through electrodes 406a and 406b. On the other hand, the upper semiconductor chip 402b includes only the through electrode 406a. Here, 410 is a through electrode wiring that connects the lower semiconductor chip 402 a and the input / output terminal 103, and 411 is a through electrode wiring that connects the upper semiconductor chip 402 b and the input / output terminal 103.

第1の実施の形態と同様に、信号遅延を貫通電極配線410と411で等しくするためには、貫通電極406a,406bの形状を、貫通電極配線410,411の電気信号伝搬部分の長さに応じて設定すればよい。貫通電極配線411では、貫通電極406bの細部409により抵抗が増大して信号が遅延する。したがって、貫通電極406a,406bを適切な形状サイズに設定すれば、抵抗Rと容量Cの積RCで決定される信号遅延量が貫通電極配線410と411で同等となる。よって、下層の半導体チップ402aの表面と上層の半導体チップ402bの表面から同時に出力された信号は、それぞれ出力先の入出力端子103に同時に到達する。   As in the first embodiment, in order to equalize the signal delay between the through-electrode wirings 410 and 411, the shape of the through-electrodes 406a and 406b is set to the length of the electric signal propagation portion of the through-electrode wirings 410 and 411. It may be set accordingly. In the through electrode wiring 411, the resistance increases due to the details 409 of the through electrode 406b, and the signal is delayed. Therefore, if the through electrodes 406a and 406b are set to an appropriate shape size, the signal delay amount determined by the product RC of the resistor R and the capacitor C becomes equal between the through electrode wires 410 and 411. Therefore, signals simultaneously output from the surface of the lower semiconductor chip 402a and the surface of the upper semiconductor chip 402b reach the output destination input / output terminal 103 simultaneously.

図5の例では、半導体チップ402が2層の場合について示したが、3層以上の場合についても同様にすることができる。例えば図7に示すように、5層の半導体チップ402を積層する場合を考える。ここでは、下からn層目(n=1,2,3,4,5)の半導体チップ402の表面から出力される信号を伝搬させるための貫通電極配線を501−nとする。そして、貫通電極配線501−nの最下部を構成する貫通電極、すなわち1層目の半導体チップ402内の貫通電極を406d−nとし、2層目以上の半導体チップ402内の貫通電極を406cとする。貫通電極406cの断面積は一定である。   In the example of FIG. 5, the case where the semiconductor chip 402 has two layers is shown, but the same can be applied to the case of three or more layers. For example, as shown in FIG. 7, consider a case where five layers of semiconductor chips 402 are stacked. Here, it is assumed that the through-electrode wiring for propagating a signal output from the surface of the semiconductor chip 402 in the nth layer (n = 1, 2, 3, 4, 5) from the bottom is 501-n. The through electrode constituting the lowermost part of the through electrode wiring 501-n, that is, the through electrode in the first semiconductor chip 402 is 406d-n, and the through electrode in the second or higher semiconductor chip 402 is 406c. To do. The cross-sectional area of the through electrode 406c is constant.

図5の例と同様に、信号遅延を各貫通電極配線501−1〜501−5で等しくするためには、貫通電極406c,406d−1〜406d−5の形状を、貫通電極配線501−1〜501−5の電気信号伝搬部分の長さに応じて設定すればよい。例えば各半導体チップ402毎の貫通電極406c,406d−1〜406d−5の長さを全て100μmとした場合には、貫通電極406cの底部の半径を100μm、貫通電極406d−1〜406d−5の太部の半径を100μm、細部の半径を10μmとし、貫通電極406d−1,406d−2,406d−3,406d−4,406d−5の細部の長さをそれぞれ37μm、12μm、6μm、3μm、0μmとすればよい。なお、貫通電極406d−5は、細部の長さが0μmなので、断面積は一定である。   As in the example of FIG. 5, in order to make the signal delay equal for each through-electrode wiring 501-1 to 501-5, the shape of the through-electrodes 406c, 406d-1 to 406d-5 is changed to the through-electrode wiring 501-1. What is necessary is just to set according to the length of the electric signal propagation | transmission part of -501-5. For example, when the lengths of the through electrodes 406c, 406d-1 to 406d-5 for each semiconductor chip 402 are all 100 μm, the radius of the bottom of the through electrode 406c is 100 μm, and the through electrodes 406d-1 to 406d-5 The radius of the thick portion is 100 μm, the radius of the details is 10 μm, and the lengths of the details of the through electrodes 406d-1, 406d-2, 406d-3, 406d-4, 406d-5 are 37 μm, 12 μm, 6 μm, 3 μm, It may be 0 μm. Note that the through electrode 406d-5 has a constant cross-sectional area of 0 μm in detail.

このような設定により、抵抗Rと容量Cの積RCが、貫通電極配線501−1の信号伝搬部分(底面半径10μm、長さ37μmの細部と底面半径100μm、長さ63μmの太部からなる)と、貫通電極配線501−2の信号伝搬部分(底面半径10μm、長さ12μmの細部と底面半径100μm、長さ188μmの太部からなる)と、貫通電極配線501−3の信号伝搬部分(底面半径10μm、長さ6μmの細部と底面半径100μm、長さ294μmの太部からなる)と、貫通電極配線501−4の信号伝搬部分(底面半径10μm、長さ3μmの細部と底面半径100μm、長さ397μmの太部からなる)と、貫通電極配線501−5の信号伝搬部分(底面半径100μm、長さ500μm)で同じ値になる。   With this setting, the product RC of the resistor R and the capacitor C is a signal propagation portion of the through-electrode wiring 501-1 (consisting of details of a bottom surface radius of 10 μm, a length of 37 μm, a bottom surface radius of 100 μm, and a length of 63 μm). And a signal propagation portion of the through-electrode wiring 501-2 (consisting of details of a bottom surface radius of 10 μm and a length of 12 μm and a thick portion of a bottom surface radius of 100 μm and a length of 188 μm), and a signal propagation portion of the through-electrode wiring 501-3 (bottom surface) Details of radius 10 μm, length 6 μm and bottom radius 100 μm, thick part 294 μm long, and signal propagation part of through electrode wiring 501-4 (bottom radius 10 μm, length 3 μm detail and bottom radius 100 μm, length) And a signal propagation portion (bottom radius of 100 μm, length of 500 μm) of the through-electrode wiring 501-5.

すなわち、積層する半導体チップ402の数をn個としたとき、貫通電極406d−1〜406d−5は、断面積がAで長さがXの細部と断面積がB(B>A)で長さがYの太部とからなる2段構造を有し、下からp番目(pは1≦p<nを満たす整数)の半導体チップ402と入出力端子103とを接続する貫通電極配線Pに含まれる貫通電極406dと、下からq番目(qはp<q≦nを満たす整数)の半導体チップ402と入出力端子103とを接続する貫通電極配線Qに含まれる貫通電極406dで、断面積Aが同一の値かつ断面積Bが同一の値であるときに、貫通電極配線Pに含まれる貫通電極406dの細部の長さXは、貫通電極配線Qに含まれる貫通電極406dの細部の長さXより長い。   That is, when the number of stacked semiconductor chips 402 is n, the through electrodes 406d-1 to 406d-5 are long with a cross-sectional area of A and a length of X and a cross-sectional area of B (B> A). A through electrode wiring P having a two-stage structure consisting of a thick portion of Y and connecting the input / output terminal 103 and the p-th (p is an integer satisfying 1 ≦ p <n) semiconductor chip 402 from the bottom. The through-electrode 406d included and the through-electrode 406d included in the through-electrode wiring Q connecting the qth semiconductor chip 402 from the bottom (q is an integer satisfying p <q ≦ n) and the input / output terminal 103, When A is the same value and the cross-sectional area B is the same value, the length X of the details of the through electrode 406d included in the through electrode wiring P is the length of the details of the through electrode 406d included in the through electrode wiring Q. Longer than X.

図5の例によれば、最下層の半導体チップ402において、貫通電極406d−1〜406d−5の頂部の形状サイズ(半径100μmの円形)をチップ面内で同一にすると共に、底部の形状サイズ(半径10μmの円形)をチップ面内で同一にし、また2層目以上の半導体チップ402において、貫通電極406cの頂部および底部の形状サイズ(半径100μmの円形)をチップ面内で同一にしたので、設計や製造工程が簡易になるという利点がある。   According to the example of FIG. 5, in the lowermost semiconductor chip 402, the top shape size (circular with a radius of 100 μm) of the through electrodes 406 d-1 to 406 d-5 is made the same in the chip surface, and the bottom shape size. (Circle with a radius of 10 μm) is made the same in the chip surface, and in the semiconductor chip 402 of the second or higher layer, the top and bottom shape sizes (circular with a radius of 100 μm) of the through electrode 406 c are made the same in the chip surface. There is an advantage that the design and manufacturing process are simplified.

なお、貫通電極の長さは、半導体チップの厚さと略同じ値であるが、正確には半導体チップの厚さよりも僅かに大きな値となる。これは、半導体チップ表面の多層配線との接続等のために半導体チップ表面から突出する部分があるからである。   Note that the length of the through electrode is substantially the same value as the thickness of the semiconductor chip, but is precisely a value slightly larger than the thickness of the semiconductor chip. This is because there is a portion protruding from the surface of the semiconductor chip for connection with the multilayer wiring on the surface of the semiconductor chip.

次に、本実施の形態の半導体装置の製造方法について図8、図9を用いて説明する。まず、半導体基板601の裏面を研削して、半導体基板601の厚さを例えば120μmとし、半導体基板601の表面にレジストパターン602をフォトリソグラフィ技術により形成する。続いて、レジストパターン602をマスクとして、ICP−RIEなどにより半導体基板601表面の絶縁膜や半導体基板601をドライエッチングして例えば100μmの深さの凹部603を形成する(図8(A))。   Next, a method for manufacturing the semiconductor device of the present embodiment will be described with reference to FIGS. First, the back surface of the semiconductor substrate 601 is ground so that the thickness of the semiconductor substrate 601 is 120 μm, for example, and a resist pattern 602 is formed on the surface of the semiconductor substrate 601 by photolithography. Subsequently, using the resist pattern 602 as a mask, the insulating film on the surface of the semiconductor substrate 601 or the semiconductor substrate 601 is dry-etched by ICP-RIE or the like to form a recess 603 having a depth of, for example, 100 μm (FIG. 8A).

次に、レジストパターン602を除去した後に、半導体基板601の表面に凹部603の口を塞ぐレジスト膜を形成する。この工程では、例えばSTP法(Spin-coating film Transfer and hot-Pressing法)などを用いてレジスト膜を貼り付ければよい。そして、フォトリソグラフィ技術を用いてレジスト膜を加工し、レジストパターン604を形成する。レジストパターン604は、半径100μmの開口部604aを備える。このレジストパターン604をマスクとして、ICP−RIEなどにより半導体基板601表面の絶縁膜や半導体基板601をドライエッチングして例えば97μmの深さの凹部605を形成する(図8(B))。   Next, after removing the resist pattern 602, a resist film is formed on the surface of the semiconductor substrate 601 so as to close the mouth of the recess 603. In this step, for example, a resist film may be attached using an STP method (Spin-coating film transfer and hot-pressing method) or the like. Then, the resist film is processed using a photolithography technique to form a resist pattern 604. The resist pattern 604 includes an opening 604a having a radius of 100 μm. Using this resist pattern 604 as a mask, the insulating film on the surface of the semiconductor substrate 601 and the semiconductor substrate 601 are dry-etched by ICP-RIE or the like to form a recess 605 having a depth of 97 μm, for example (FIG. 8B).

次に、レジストパターン604を除去した後に、再度STP法などを用いて半導体基板601の表面に凹部603,605の口を塞ぐレジスト膜を形成する。このレジスト膜をフォトリソグラフィ技術を用いて加工し、レジストパターン606を形成する。レジストパターン606は、凹部605の真上に半径10μmの開口部606aを備える。このレジストパターン606をマスクとして、ICP−RIEなどにより凹部605の底部をドライエッチングして例えば3μmの深さの凹部605aを形成する(図9(A))。   Next, after removing the resist pattern 604, a resist film is formed on the surface of the semiconductor substrate 601 to close the mouths of the recesses 603 and 605 using the STP method or the like again. This resist film is processed using a photolithography technique to form a resist pattern 606. The resist pattern 606 includes an opening 606a having a radius of 10 μm immediately above the recess 605. Using this resist pattern 606 as a mask, the bottom of the recess 605 is dry-etched by ICP-RIE or the like to form a recess 605a having a depth of 3 μm, for example (FIG. 9A).

図8(B)、図9(A)と同様の工程を2回繰り返すことにより、所望の半径と深さの2段構造を有する凹部607,608を形成する。さらに、凹部608を形成する際にマスクとして用いたレジストパターンを除去した後に、半導体基板601の表面に凹部603,605,607,608の口を塞ぐレジスト膜を形成し、このレジスト膜を加工して、レジストパターン609を形成する。レジストパターン609は、半径100μmの開口部609aを備える。このレジストパターン609をマスクとして、半導体基板601表面の絶縁膜や半導体基板601をドライエッチングして例えば63μmの深さの凹部610を形成する(図9(B))。   The steps similar to those shown in FIGS. 8B and 9A are repeated twice to form the recesses 607 and 608 having a two-stage structure with a desired radius and depth. Further, after removing the resist pattern used as a mask when forming the recess 608, a resist film is formed on the surface of the semiconductor substrate 601 to close the mouths of the recesses 603, 605, 607, and 608, and this resist film is processed. Thus, a resist pattern 609 is formed. The resist pattern 609 includes an opening 609a having a radius of 100 μm. Using the resist pattern 609 as a mask, the insulating film on the surface of the semiconductor substrate 601 and the semiconductor substrate 601 are dry-etched to form a recess 610 having a depth of, for example, 63 μm (FIG. 9B).

続いて、レジストパターン609を除去した後に、半導体基板601の表面に凹部603,605,607,608,610の口を塞ぐレジスト膜を形成し、このレジスト膜を加工して、レジストパターン611を形成する。レジストパターン611は、凹部610の真上に半径10μmの開口部611aを備える。このレジストパターン611をマスクとして、凹部610の底部をドライエッチングして例えば37μmの深さの凹部610aを形成する(図9(C))。そして、レジストパターン611を除去すると、各種の凹部が形成された半導体基板601aが完成する(図9(D))。   Subsequently, after removing the resist pattern 609, a resist film is formed on the surface of the semiconductor substrate 601 to block the openings of the recesses 603, 605, 607, 608, 610, and the resist film is processed to form a resist pattern 611. To do. The resist pattern 611 includes an opening 611 a having a radius of 10 μm immediately above the recess 610. Using the resist pattern 611 as a mask, the bottom of the recess 610 is dry-etched to form a recess 610a having a depth of 37 μm, for example (FIG. 9C). Then, when the resist pattern 611 is removed, the semiconductor substrate 601a in which various concave portions are formed is completed (FIG. 9D).

次に、半導体基板601aの凹部の側壁および底部に酸化膜などの絶縁膜612を形成し、銅めっきを凹部の内部に付着させた後、半導体基板601aの表面の一部にレジストパターン613等を形成して表面を被覆し、露出している部分にのみ銅パターン614を成長させる(図9(E))。成長した銅パターン614は、半導体基板601a表面の多層配線と電気的に接続される。   Next, an insulating film 612 such as an oxide film is formed on the sidewall and bottom of the recess of the semiconductor substrate 601a, and after copper plating is deposited inside the recess, a resist pattern 613 or the like is formed on a part of the surface of the semiconductor substrate 601a. A copper pattern 614 is grown only on the exposed portion by forming and covering the surface (FIG. 9E). The grown copper pattern 614 is electrically connected to the multilayer wiring on the surface of the semiconductor substrate 601a.

銅パターン614の形成後、レジストパターン613を除去する。最後に、半導体基板601aの裏面を研削して、銅パターン614を裏面に露出させる。これにより、銅パターン614が半導体基板601aの表面から裏面へ貫通した貫通電極406となる(図9(F))。
その後は、第1の実施の形態と同様であり、半導体基板601aの裏面に絶縁膜や接続用の導電体を適宜形成し、半導体基板601aをダイシングしてチップに分割し、これらのチップを積層して接続すれば、図7に示した半導体装置を作製することができる。
After the copper pattern 614 is formed, the resist pattern 613 is removed. Finally, the back surface of the semiconductor substrate 601a is ground to expose the copper pattern 614 on the back surface. As a result, the copper pattern 614 becomes a through electrode 406 penetrating from the front surface to the back surface of the semiconductor substrate 601a (FIG. 9F).
Thereafter, as in the first embodiment, an insulating film and a conductor for connection are appropriately formed on the back surface of the semiconductor substrate 601a, the semiconductor substrate 601a is diced and divided into chips, and these chips are stacked. Thus, the semiconductor device shown in FIG. 7 can be manufactured.

なお、本実施の形態では、一部の貫通電極を2段構造としたが、より多段の構造を有するものとしてもよいことは言うまでもない。例えば、図10(A)に示す貫通電極901のように3段構造を採用してもよい。
また、多段構造の貫通電極を用いる場合、太部から細部へ信号が伝搬する際に、その断面形状が直角であるために高周波信号の周波数や配線長に応じて信号が反射してしまう場合がある。その場合は、図10(B)のように等方性エッチングなどを用いて、貫通電極902の太部から細部への段差部にテーパー902aを設けるようにしてもよい。テーパー902aを形成するエッチングには、例えばSF6とO2からなるプラズマを用いればよい。
また、本実施の形態の貫通電極の構造を第1の実施の形態で説明したインターポーザー等の配線基板に適用してもよい。
In the present embodiment, some of the through electrodes have a two-stage structure, but it goes without saying that it may have a multi-stage structure. For example, a three-stage structure such as a through electrode 901 illustrated in FIG.
In addition, when a multi-stage through electrode is used, when a signal propagates from a thick part to a detail, the signal may be reflected depending on the frequency of the high frequency signal or the wiring length because the cross-sectional shape is a right angle. is there. In that case, a taper 902a may be provided in a step portion from the thick portion to the detail of the through electrode 902 by using isotropic etching or the like as shown in FIG. For the etching for forming the taper 902a, for example, plasma composed of SF 6 and O 2 may be used.
Further, the structure of the through electrode according to the present embodiment may be applied to a wiring substrate such as the interposer described in the first embodiment.

また、第1、第2の実施の形態では、複数の基板を積層した電子回路装置の1例として、複数の半導体チップを積層した半導体装置を例に挙げて説明したが、他の電子回路装置に本発明を適用してもよい。また、第1、第2の実施の形態では、最下層の半導体チップにおいて異なる形状やサイズの貫通電極が共存するようにしたが、このような共存は最下層の半導体チップに限るものではない。また、第1、第2の実施の形態において、複数のチップ間の信号伝搬経路や貫通電極配線に応じて各層のチップ内の貫通電極形状を変えてもよい。また、基板としては半導体を用いたが、100μm程度の薄層化が可能な他の材料を用いてもよいことは言うまでもない。   In the first and second embodiments, a semiconductor device in which a plurality of semiconductor chips are stacked is described as an example of an electronic circuit device in which a plurality of substrates are stacked. However, other electronic circuit devices are described. The present invention may be applied to. In the first and second embodiments, through electrodes having different shapes and sizes coexist in the lowermost semiconductor chip, such coexistence is not limited to the lowermost semiconductor chip. In the first and second embodiments, the shape of the through electrode in the chip of each layer may be changed according to the signal propagation path between the plurality of chips and the through electrode wiring. Further, although a semiconductor is used as the substrate, it goes without saying that other materials capable of being thinned to about 100 μm may be used.

本発明は、複数の基板が積層された電子回路装置に適用することができる。   The present invention can be applied to an electronic circuit device in which a plurality of substrates are stacked.

本発明の第1の実施の形態に係る半導体装置の構成例(2層の場合)を示す斜視図である。It is a perspective view which shows the structural example (in the case of 2 layers) of the semiconductor device which concerns on the 1st Embodiment of this invention. 図1の半導体装置における貫通電極の形状を示す斜視図である。FIG. 2 is a perspective view illustrating a shape of a through electrode in the semiconductor device of FIG. 1. 本発明の第1の実施の形態に係る半導体装置の構成例(5層の場合)を示す断面図である。It is sectional drawing which shows the structural example (in the case of 5 layers) of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る半導体装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る半導体装置の構成例(2層の場合)を示す断面図である。It is sectional drawing which shows the structural example (in the case of 2 layers) of the semiconductor device which concerns on the 2nd Embodiment of this invention. 図5の半導体装置における貫通電極の形状を示す斜視図である。FIG. 6 is a perspective view illustrating a shape of a through electrode in the semiconductor device of FIG. 5. 本発明の第2の実施の形態に係る半導体装置の構成例(5層の場合)を示す断面図である。It is sectional drawing which shows the structural example (in the case of 5 layers) of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る半導体装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る半導体装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る半導体装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the semiconductor device which concerns on the 2nd Embodiment of this invention. 従来の半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional semiconductor device.

符号の説明Explanation of symbols

101,401…半導体装置、102,402…半導体チップ、103…入出力端子、104…基板、105…半導体基板部分、106,406…貫通電極、110,111,201,410,411,501…貫通電極配線。   DESCRIPTION OF SYMBOLS 101,401 ... Semiconductor device, 102, 402 ... Semiconductor chip, 103 ... Input / output terminal, 104 ... Substrate, 105 ... Semiconductor substrate part, 106, 406 ... Through electrode, 110, 111, 201, 410, 411, 501 ... Through Electrode wiring.

Claims (4)

積層された複数の基板を有する電子回路装置において、
前記基板の各々は、それぞれ表面から裏面まで貫通する複数の貫通電極を備え、各基板の前記貫通電極が積層方向に沿って連結された貫通電極配線により入出力端子と電気的に接続され、
前記複数の貫通電極のうち少なくとも一部は、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて成形された形状の信号遅延調整用貫通電極であり、
前記信号遅延調整用貫通電極は、前記基板を貫通する方向と垂直な平面における断面積が、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて同一の基板内部で変化していることを特徴とする電子回路装置。
In an electronic circuit device having a plurality of stacked substrates,
Each of the substrates includes a plurality of through electrodes penetrating from the front surface to the back surface, and the through electrodes of each substrate are electrically connected to the input / output terminals by through electrode wirings connected along the stacking direction,
At least a part of the plurality of through-electrodes has a signal delay adjusting through-hole shaped according to the length of the through-electrode wiring including the through-electrode so that the signal delay time of each through-electrode wiring is equal. electrode der is,
The signal delay adjusting through-electrode has a cross-sectional area in a plane perpendicular to the direction penetrating the substrate so that the signal delay time of each through-electrode wiring is equal to the length of the through-electrode wiring including the through-electrode. The electronic circuit device is characterized in that it changes within the same substrate .
積層された複数の基板を有する電子回路装置において、
前記基板の各々は、それぞれ表面から裏面まで貫通する複数の貫通電極を備え、各基板の前記貫通電極が積層方向に沿って連結された貫通電極配線により入出力端子と電気的に接続され、
前記複数の貫通電極のうち少なくとも一部は、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて成形された形状の信号遅延調整用貫通電極であり、
前記信号遅延調整用貫通電極は、前記基板を貫通する方向と垂直な平面における断面積が、各貫通電極配線の信号遅延時間が等しくなるように、当該貫通電極を含む貫通電極配線の長さに応じて基板内部で変化しており、
前記積層された基板の数は、n個(nは2以上の整数)であり、
前記信号遅延調整用貫通電極の数は、2個以上であり、
前記信号遅延調整用貫通電極は、断面積がAで長さがXの細部と断面積がB(B>A)で長さがYの太部とからなる2段構造を有し、
前記入出力端子に近い方からp番目(pは1≦p<nを満たす整数)の前記基板と前記入出力端子とを接続する貫通電極配線Pに含まれる前記信号遅延調整用貫通電極と、前記入出力端子に近い方からq番目(qはp<q≦nを満たす整数)の前記基板と前記入出力端子とを接続する貫通電極配線Qに含まれる前記信号遅延調整用貫通電極との間で、前記断面積Aが同一の値かつ前記断面積Bが同一の値であるときに、
前記貫通電極配線Pに含まれる前記信号遅延調整用貫通電極の細部の長さXは、前記貫通電極配線Qに含まれる前記信号遅延調整用貫通電極の細部の長さXより長いことを特徴とする電子回路装置。
In an electronic circuit device having a plurality of stacked substrates,
Each of the substrates includes a plurality of through electrodes penetrating from the front surface to the back surface, and the through electrodes of each substrate are electrically connected to the input / output terminals by through electrode wirings connected along the stacking direction,
At least a part of the plurality of through-electrodes has a signal delay adjusting through-hole shaped according to the length of the through-electrode wiring including the through-electrode so that the signal delay time of each through-electrode wiring is equal. Electrodes,
The signal delay adjusting through-electrode has a cross-sectional area in a plane perpendicular to the direction penetrating the substrate so that the signal delay time of each through-electrode wiring is equal to the length of the through-electrode wiring including the through-electrode. In response to changes inside the board,
The number of the laminated substrates is n (n is an integer of 2 or more),
The number of through-electrodes for signal delay adjustment is two or more,
The signal delay adjusting through electrode has a two-stage structure including a detail having a cross-sectional area of A and a length of X and a thick section having a cross-sectional area of B (B> A) and a length of Y.
The signal delay adjusting through-electrode included in the through-electrode wiring P connecting the p-th substrate (p is an integer satisfying 1 ≦ p <n) and the input / output terminal from the side closer to the input / output terminal; The signal delay adjusting through-electrode included in the through-electrode wiring Q connecting the q-th substrate (q is an integer satisfying p <q ≦ n) and the input / output terminal from the side closer to the input / output terminal. When the cross-sectional area A is the same value and the cross-sectional area B is the same value,
A detail length X of the signal delay adjustment through electrode included in the through electrode wiring P is longer than a detail length X of the signal delay adjustment through electrode included in the through electrode wiring Q. Electronic circuit device to do.
請求項1または2に記載の電子回路装置において、
各貫通電極配線において抵抗と容量の積を同一の値にすることにより、各貫通電極配線の信号遅延時間を等しくすることを特徴とする電子回路装置。
The electronic circuit device according to claim 1 or 2 ,
An electronic circuit device characterized in that the signal delay time of each through electrode wiring is made equal by setting the product of resistance and capacitance to the same value in each through electrode wiring.
請求項1乃至3のいずれかに記載の電子回路装置を製造する製造方法において、
基板表面に凹部を形成する第1の工程と、
前記基板表面に前記凹部内の空間を保ったまま前記凹部の口を塞ぐ薄膜を貼り付ける第2の工程と、
前記凹部の真上の前記薄膜の一部をパターニングして前記凹部の口よりも小さい開口部を形成し、前記凹部の底の一部を露出させる第3の工程と、
前記薄膜をマスクとして、エッチングにより前記凹部の底を加工する第4の工程と、
前記第1の工程から前記第4の工程を必要に応じて繰り返して前記基板の厚さ方向と垂直な平面における断面積が前記基板内部で変化している多段構造を有する凹部を形成した後に、各凹部の側壁および底部に絶縁膜を形成する第5の工程と、
各凹部の内部に導電体パターンを形成する第6の工程と、
前記基板の裏面を研削して、前記導電体パターンを裏面に露出させる第7の工程と、
この第7の工程後の前記基板を分割して、複数の前記導体パターンを貫通電極としてそれぞれ有する複数の基板を作製する第8の工程と、
この第8の工程後の前記複数の基板を積層する第9の工程とを有することを特徴とする電子回路装置の製造方法。
In the manufacturing method which manufactures the electronic circuit device in any one of Claims 1 thru | or 3 ,
A first step of forming a recess in the substrate surface;
A second step of attaching a thin film that closes the mouth of the recess while keeping the space in the recess on the substrate surface;
And patterning a portion of the thin film on the true of the recess to form an opening smaller than the mouth of the recess, a third step of exposing a part of the bottom of the recess,
A fourth step of processing the bottom of the recess by etching using the thin film as a mask;
After the first step to the fourth step are repeated as necessary to form a recess having a multistage structure in which a cross-sectional area in a plane perpendicular to the thickness direction of the substrate is changed inside the substrate A fifth step of forming an insulating film on the side wall and bottom of each recess;
A sixth step of forming a conductor pattern inside each recess;
A seventh step of grinding the back surface of the substrate to expose the conductor pattern on the back surface;
An eighth step of dividing the substrate after the seventh step to produce a plurality of substrates each having a plurality of the conductor patterns as through electrodes;
And a ninth step of laminating the plurality of substrates after the eighth step.
JP2006292216A 2006-10-27 2006-10-27 Wiring board, electronic circuit device and manufacturing method thereof Expired - Fee Related JP4800898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292216A JP4800898B2 (en) 2006-10-27 2006-10-27 Wiring board, electronic circuit device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292216A JP4800898B2 (en) 2006-10-27 2006-10-27 Wiring board, electronic circuit device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008109005A JP2008109005A (en) 2008-05-08
JP4800898B2 true JP4800898B2 (en) 2011-10-26

Family

ID=39442093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292216A Expired - Fee Related JP4800898B2 (en) 2006-10-27 2006-10-27 Wiring board, electronic circuit device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4800898B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945545B2 (en) * 2008-11-10 2012-06-06 株式会社日立製作所 Manufacturing method of semiconductor device
KR101255912B1 (en) * 2010-12-31 2013-04-17 삼성전기주식회사 Multi Chip Package
JP6965928B2 (en) * 2017-06-29 2021-11-10 株式会社村田製作所 High frequency module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332457A (en) * 1994-09-16 2003-11-21 Toshiba Corp Semiconductor device
JP2001044357A (en) * 1999-07-26 2001-02-16 Seiko Epson Corp Semiconductor device and manufacture thereof
JP3908148B2 (en) * 2002-10-28 2007-04-25 シャープ株式会社 Multilayer semiconductor device
JP3908146B2 (en) * 2002-10-28 2007-04-25 シャープ株式会社 Semiconductor device and stacked semiconductor device
JP4303563B2 (en) * 2003-11-12 2009-07-29 大日本印刷株式会社 Electronic device and method for manufacturing electronic device
JP3896112B2 (en) * 2003-12-25 2007-03-22 エルピーダメモリ株式会社 Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2008109005A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
US7924131B2 (en) Electrical component having an inductor and a method of formation
US7906404B2 (en) Power distribution for CMOS circuits using in-substrate decoupling capacitors and back side metal layers
US7915710B2 (en) Method of fabricating a semiconductor device, and semiconductor device with a conductive member extending through a substrate and connected to a metal pattern bonded to the substrate
US8937389B2 (en) Semiconductor devices comprising GSG interconnect structures
US6297460B1 (en) Multichip module and method of forming same
US7498260B2 (en) Pass through via technology for use during the manufacture of a semiconductor device
TWI527179B (en) Process for the vertical interconnection of 3d electronic modules by vias
US8088667B2 (en) Method of fabricating vertical capacitors in through-substrate vias
KR101680593B1 (en) Embedded chips package structure
JP2002305283A (en) Three-dimensional multichip package and method of manufacturing the same
JP2004536449A (en) System on package manufactured on semiconductor or dielectric wafer
JP2001223324A (en) Semiconductor device
JP2005285997A (en) Semiconductor device
EP2535925B1 (en) Back-side contact formation
JP5732357B2 (en) Wiring board and semiconductor package
JP4800898B2 (en) Wiring board, electronic circuit device and manufacturing method thereof
TW201308550A (en) Interconnecting mechanism for 3D integrated circuit
CN110335859A (en) A kind of encapsulating structure of multi-chip and preparation method thereof based on TSV
JP3899059B2 (en) Electronic package having low resistance and high density signal line and method of manufacturing the same
JP6205496B2 (en) Semiconductor package having improved structure through-hole structure, method for manufacturing semiconductor package, and system including semiconductor package
US9330823B1 (en) Integrated circuit structure with inductor in silicon interposer
CN107644839B (en) Wafer three-dimensional integration lead technique and its structure for three-dimensional storage
TWI567923B (en) Metal fuse by topology
US20080296776A1 (en) Method of Manufacturing Electrical Conductors for a Semiconductor Device
TWI467722B (en) Through silicon via structure for impedance matching and electrical interconnection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees