JP4800814B2 - Earth and sand disaster monitoring system - Google Patents

Earth and sand disaster monitoring system Download PDF

Info

Publication number
JP4800814B2
JP4800814B2 JP2006092941A JP2006092941A JP4800814B2 JP 4800814 B2 JP4800814 B2 JP 4800814B2 JP 2006092941 A JP2006092941 A JP 2006092941A JP 2006092941 A JP2006092941 A JP 2006092941A JP 4800814 B2 JP4800814 B2 JP 4800814B2
Authority
JP
Japan
Prior art keywords
magnetic field
frequency magnetic
low
field signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006092941A
Other languages
Japanese (ja)
Other versions
JP2007262851A (en
Inventor
友康 杉山
修 布川
博治 和田
良一 遠目塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006092941A priority Critical patent/JP4800814B2/en
Publication of JP2007262851A publication Critical patent/JP2007262851A/en
Application granted granted Critical
Publication of JP4800814B2 publication Critical patent/JP4800814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Alarm Devices (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

この発明は、落石、斜面崩壊、がけ崩れなどを検知する土砂災害監視設備に関する。   The present invention relates to a landslide disaster monitoring facility that detects rockfall, slope failure, landslide, and the like.

日本の陸上交通網は、海岸沿いや山間など様々な地形の中を走っている。特に、斜面沿いを走っている地域では、運用上の安全管理を目的として斜面に落石防護ネットや防護柵、法面保護工などの安全対策が施され、検査員による定期的な斜面調査、災害監視設備などにより包括的に監視が実施されている。   Japan's land transportation network runs in various terrain along the coast and mountains. In particular, in areas that run along slopes, safety measures such as rockfall protection nets, fences, and slope protection work have been implemented on slopes for the purpose of operational safety management. Comprehensive monitoring is carried out by monitoring equipment.

従来の災害監視設備は、センサから警報管理機器までの信号のやり取りを有線で実施する災害監視設備(例えば特許文献1参照)のほか、特定小電力無線などを利用した無線災害監視設備であった。   Conventional disaster monitoring facilities are not only disaster monitoring facilities (for example, refer to Patent Document 1) that exchange signals from sensors to alarm management devices, but also wireless disaster monitoring facilities that use specific low-power radio. .

災害監視設備の一例である従来の土砂災害監視設備について図6を参照して説明する。   A conventional earth and sand disaster monitoring facility, which is an example of a disaster monitoring facility, will be described with reference to FIG.

線路等の交通路に隣接している斜面に落石の侵入を防止するための防護柵あるいは防護ネット51が設置される場合、防護柵あるいは防護ネット51に転倒センサ(または振動センサ)52を取り付ける。落石によって防護柵あるいは防護ネット51が傾斜したり、転倒したりすると、転倒センサ52が動作し、落石を検知したことを有線で送信器53に伝送する。送信器53は、落石検知信号を高周波電磁波で検知範囲外に設置されている受信装置54に送信する。あるいはまた、がけ崩れが予想される斜面の地中に水圧計55を設置する。送信器56は水圧計55のデータを高周波電磁波を用いて検知範囲外に設置されている受信装置54に送信する。受信装置54は、受信した信号を有線または高周波電磁波で管理センターあるいは管理事務所に送信する。   When a protective fence or a protective net 51 is installed on a slope adjacent to a traffic road such as a railroad, a fall sensor (or vibration sensor) 52 is attached to the protective fence or protective net 51. When the protective fence or the protective net 51 is tilted or falls due to falling rocks, the falling sensor 52 operates to transmit the detection of falling rocks to the transmitter 53 by wire. The transmitter 53 transmits the falling rock detection signal to the receiving device 54 installed outside the detection range by high frequency electromagnetic waves. Alternatively, the water pressure gauge 55 is installed in the ground of a slope where landslide is expected. The transmitter 56 transmits the data of the water pressure gauge 55 to the receiving device 54 installed outside the detection range using high-frequency electromagnetic waves. The receiving device 54 transmits the received signal to the management center or the management office by wired or high-frequency electromagnetic waves.

上記のような有線型の土砂災害監視設備では大規模な落石が発生すると、センサ52と送信器53を接続しているケーブルが断線し、災害の規模を正確に把握できない恐れがある。一方、高周波電磁波による無線型の土砂災害監視設備では、濃霧や災害の引き金となる豪雨による電磁波の散乱・減衰が起こるため、災害監視システムとしては確実性が高くない。   When a large-scale rockfall occurs in the wired earth and sand disaster monitoring facility as described above, the cable connecting the sensor 52 and the transmitter 53 may be disconnected, and the scale of the disaster may not be accurately grasped. On the other hand, radio-type earth and sand disaster monitoring equipment using high-frequency electromagnetic waves is not reliable as a disaster monitoring system because electromagnetic waves are scattered and attenuated by heavy fog and heavy rain that triggers disasters.

特開平8−13505号公報Japanese Patent Laid-Open No. 8-13505

上記のように、これまでの災害監視設備では、有線型の災害監視設備の場合は斜面崩壊やがけ崩れによりケーブルが断線または損傷する可能性がある。一方、無線型の災害監視設備の場合は高周波電磁波を使用しているため、伝送路中の立木、降雪、濃霧や崩壊土砂による送信器の土中埋没などで、電波が減衰し通信不能となる可能性がある。このように、両者とも災害監視設備としての機能を満足できなくなる恐れがあった。   As described above, in a conventional disaster monitoring facility, in the case of a wired type disaster monitoring facility, there is a possibility that the cable may be disconnected or damaged due to slope collapse or landslide. On the other hand, radio-type disaster monitoring equipment uses high-frequency electromagnetic waves, and radio waves are attenuated due to the trees buried in the transmission line, snowfall, dense fog, or collapsed earth and sand, and communication becomes impossible. there is a possibility. As described above, both of them may not be able to satisfy the function as a disaster monitoring facility.

この発明の目的は上述の課題を解決するために、信号のやり取りに低周波磁界信号を用いることで断線することがなく、自然環境の制約も受けることがない土砂災害監視システムを提供することにある。   An object of the present invention is to provide a landslide disaster monitoring system that does not break by using a low-frequency magnetic field signal for signal exchange and that is not subject to restrictions on the natural environment in order to solve the above-described problems. is there.

本発明によれば、設置姿勢が変化したことを感知してトリガ信号を発生するセンサと、前記センサからのトリガ信号により低周波磁界信号を送出する送信器と、前記送信器から送出された低周波磁界信号を発信する送信アンテナとを備えた検知装置と、前記検知装置からの低周波磁界信号を受信する受信アンテナと、前記受信アンテナの受信信号を受け、警報を発信する受信処理装置とからなり、斜面などに前記検知装置を1個以上設置または埋設することで、斜面の変動や崩壊を感知して警報を発信する土砂災害監視システムが提供される。   According to the present invention, a sensor that detects a change in the installation posture and generates a trigger signal, a transmitter that transmits a low-frequency magnetic field signal using the trigger signal from the sensor, and a low-frequency signal transmitted from the transmitter. A detection device including a transmission antenna that transmits a high frequency magnetic field signal, a reception antenna that receives a low frequency magnetic field signal from the detection device, and a reception processing device that receives a reception signal of the reception antenna and transmits an alarm Thus, a landslide disaster monitoring system is provided in which one or more detection devices are installed or buried on a slope or the like, and a warning is transmitted by detecting a change or collapse of the slope.

したがって、断線がなく、信号伝播媒質の影響を受けない低周波磁界信号を使用していることから、自然環境の制約も受けることがない土砂災害監視システムを提供することが可能となる。   Therefore, since a low-frequency magnetic field signal that is not disconnected and is not affected by the signal propagation medium is used, it is possible to provide a sediment disaster monitoring system that is not restricted by the natural environment.

本発明によればまた、前記検知装置が測定対象範囲内に複数個設置または埋設される一方、前記受信アンテナは前記測定対象範囲外に設置され、各検知装置はさらに、前記送信器からの低周波磁界信号に、当該検知装置に固有のIDを重畳させる変調回路を具備し、前記受信アンテナと前記受信処理装置との間にはさらに、受信した低周波磁界信号を復調してそこに重畳されている前記検知装置のIDを特定する復調回路を具備し、復調された検知装置のIDから斜面の変動や崩壊の位置を特定することを特徴とする土砂災害監視システムが提供される。   According to the present invention, a plurality of the detection devices are installed or embedded in the measurement target range, while the reception antenna is installed outside the measurement target range, and each detection device is further connected to the transmitter from the transmitter. A modulation circuit for superimposing an ID unique to the detection device on the frequency magnetic field signal is provided, and further, the received low frequency magnetic field signal is demodulated and superimposed on the reception antenna and the reception processing device. There is provided a landslide disaster monitoring system comprising a demodulating circuit for identifying an ID of the detecting device, wherein the position of a slope change or collapse is specified from the demodulated ID of the detecting device.

したがって、復調された検知装置のIDから崩壊位置を特定することが可能となる。   Therefore, it is possible to specify the collapse position from the demodulated ID of the detection device.

本発明によればさらに、前記受信処理装置側にはさらに、第1の周期で起動信号を発生する第1のタイマと、該第1のタイマからの起動信号により第1の周期で起動用低周波磁界信号を送出する起動用送信器と、前記第1のタイマからの前記起動信号により測定対象範囲内に設置または埋設されている複数個の検知装置の各IDを第1の周期で切替えて順に送出するID切替え回路と、前記ID切替え回路からのIDを前記起動用低周波磁界信号に重畳させる起動用変調回路と、IDを重畳された前記起動用低周波磁界信号を発信する起動用送信アンテナとを具備し、前記検知装置はさらに、起動用受信アンテナと、第2のタイマと、前記起動用受信アンテナに接続され前記第2のタイマにより定期的に受信状態となる起動用受信回路と、該起動用受信回路で受信した前記起動用低周波磁界信号を復調してそこに重畳されている検知装置のIDが自IDか否かを特定する起動用復調回路とを具備し、前記起動用復調回路は、自IDが重畳された前記起動用低周波磁界信号を受信すると前記送信器及び変調回路を起動させて自IDを重畳させた前記低周波磁界信号を送信させ、前記受信処理装置側では、前記自IDを重畳させた前記低周波磁界信号を受信したか否かの判別を行い、上記動作を前記測定対象範囲内の複数の検知装置のすべてについて行うことにより、前記複数の検知装置の存在及び健全性を定期的に確認できるようにしたことを特徴とする土砂災害監視システムが提供される。   Further according to the present invention, the reception processing device further includes a first timer that generates a start signal in a first cycle, and a start-up signal in the first cycle by a start signal from the first timer. Switching each ID of a plurality of detectors installed or embedded in the measurement target range in a first cycle by the transmitter for starting to transmit a high frequency magnetic field signal and the starting signal from the first timer An ID switching circuit that sequentially transmits, an activation modulation circuit that superimposes the ID from the ID switching circuit on the activation low-frequency magnetic field signal, and an activation transmission that transmits the activation low-frequency magnetic field signal on which the ID is superimposed An activation receiving antenna; a second timer; and an activation receiving circuit connected to the activation receiving antenna and periodically receiving by the second timer. The A startup demodulation circuit that demodulates the startup low-frequency magnetic field signal received by the dynamic reception circuit and identifies whether or not the ID of the detection device superimposed thereon is its own ID, and the startup demodulation circuit Receives the activation low-frequency magnetic field signal superimposed with its own ID, activates the transmitter and modulation circuit to transmit the low-frequency magnetic field signal superimposed with its own ID, and on the reception processing device side, It is determined whether or not the low-frequency magnetic field signal on which the self ID is superimposed is received, and the above operation is performed for all of the plurality of detection devices within the measurement target range, thereby the presence of the plurality of detection devices. And a sediment disaster monitoring system characterized by being able to check the soundness regularly.

したがって、崩壊位置と崩壊の程度を把握するだけでなく、受信処理装置側からの起動による各検知装置からの送信の有無により、測定対象範囲内における検知装置の存在及び健全性を定期的に確認することが可能となる。   Therefore, not only grasping the collapse position and the degree of collapse, but also regularly checking the presence and soundness of the detection device within the measurement target range by the presence or absence of transmission from each detection device by activation from the reception processing device side It becomes possible to do.

本発明の土砂災害監視システムによれば、信号伝播媒質の影響を受けない低周波磁界信号を使用していることから、断線がなく自然環境の制約も受けることなく斜面の変動や崩壊を監視または検知することが可能となる。 According to landslides monitoring system of the present invention, signals from the fact that using the low-frequency magnetic field signal not affected by propagation medium, monitoring the fluctuations and collapse of slope without receiving also constraints without disconnection natural environment Or it becomes possible to detect.

また、発明によれば、復調された検知装置のIDから斜面の変動や崩壊位置を特定することが可能となる。 Further, according to the present invention, it is possible to identify the slope change and collapse position from the demodulated ID of the detection device.

更に、本発明によれば、受信処理装置側からの起動による各検知装置からの送信の有無により、測定対象範囲内における検知装置の存在及び健全性を定期的に確認することが可能となるなど得られる効果は大である。 Furthermore, according to the present invention, it is possible to periodically check the presence and soundness of the detection device within the measurement target range based on the presence / absence of transmission from each detection device upon activation from the reception processing device side. The effect obtained is great.

以下に実施例を挙げ、本発明について図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例の第1の参考例となる土砂災害監視システムの構成を示すブロック図である。 1 is a block diagram showing the configuration of a sediment disaster monitoring system comprising a first reference example of the real施例of the present invention.

土砂災害監視システムは、検知装置10、受信アンテナ20、受信処理装置30を含む。検知装置10は測定対象範囲内の落石防護柵または斜面などに設置または埋設され、受信アンテナ20は災害の恐れの無い測定対象範囲外に設置される。一方、受信処理装置30は、測定対象現場にて警報を発する必要がある場合には受信アンテナ20の近くに設置されても良いが、通常は、受信アンテナ20から離れた場所(管理センター、管理事務所など)に設置される。   The earth and sand disaster monitoring system includes a detection device 10, a reception antenna 20, and a reception processing device 30. The detection device 10 is installed or buried in a rock fall guard fence or a slope or the like within the measurement target range, and the receiving antenna 20 is installed outside the measurement target range where there is no risk of disaster. On the other hand, the reception processing device 30 may be installed near the reception antenna 20 when it is necessary to issue an alarm at the measurement target site, but is usually located away from the reception antenna 20 (management center, management Installed in offices).

検知装置10は、検出対象となる振動レベルまたは転倒角度を超えた場合に低周波磁界信号を送信する。低周波磁界信号というのは、通常、電源、発振器、及びコイルの組合せにより生成される1kHz〜10kHz程度の磁界信号のことである。このために、検知装置10は、動作用電源としてバッテリ(図示せず)を内蔵するほか、転倒センサ11、送信器12、送信アンテナ13を有している。転倒センサ11は、設置姿勢が変化したことを感知してトリガ信号を発生するものであり、ここでは転倒角度が一定値以上の時にトリガ信号を送出する。このような転倒センサは周知であるので、詳しい説明は省略するが、転倒センサに代えて他のセンサ、例えば振動を感知し、この振動レベルが一定レベルを超えるとトリガ信号を発生する、周知の振動センサなどでも良い。送信器12はこのトリガ信号を受けると起動して低周波磁界信号を発生し、送信アンテナ13から送信する。   The detection device 10 transmits a low-frequency magnetic field signal when the vibration level or the falling angle to be detected is exceeded. The low-frequency magnetic field signal is a magnetic field signal of about 1 kHz to 10 kHz that is usually generated by a combination of a power source, an oscillator, and a coil. For this purpose, the detection device 10 includes a fall sensor 11, a transmitter 12, and a transmission antenna 13 in addition to a built-in battery (not shown) as an operation power source. The fall sensor 11 senses that the installation posture has changed and generates a trigger signal. Here, the fall sensor 11 sends a trigger signal when the fall angle is equal to or greater than a certain value. Since such a fall sensor is well known, detailed description will be omitted, but instead of the fall sensor, another sensor such as a vibration is sensed, and a trigger signal is generated when the vibration level exceeds a certain level. A vibration sensor or the like may be used. Upon receiving this trigger signal, the transmitter 12 is activated to generate a low-frequency magnetic field signal, which is transmitted from the transmission antenna 13.

送信された低周波磁界信号は受信アンテナ20で受信され、受信処理装置30に入力される。受信処理装置30では受信信号を受けると、測定対象現場ならびに管理センター、管理事務所などの外部機関へ警報を発信する。   The transmitted low frequency magnetic field signal is received by the receiving antenna 20 and input to the reception processing device 30. When receiving the received signal, the reception processing device 30 issues an alarm to the measurement target site and external organizations such as a management center and a management office.

図2は本発明の実施例の第2の参考例となる土砂災害監視システムの構成を示すブロック図である。 Figure 2 is a block diagram showing the configuration of a sediment disaster monitoring system according to the second reference example of the real施例of the present invention.

参考例は特に、測定対象範囲内に複数の検知装置が設置または埋設される場合に適している。つまり、測定対象範囲内に複数の検知装置が設置または埋設される場合、受信処理装置30が1つであるので、受信した低周波磁界信号がどの検知装置から送信されたものであるか識別する必要がある。このために、本参考例では検知装置毎に固有のIDを与えるようにしている。 This reference example is particularly suitable when a plurality of detection devices are installed or embedded within the measurement target range. That is, when a plurality of detection devices are installed or embedded in the measurement target range, since there is one reception processing device 30, the detection device from which the received low-frequency magnetic field signal is transmitted is identified. There is a need. For this reason, in this reference example, a unique ID is given to each detection device.

図2において、図1に示されたものと同じ構成要素には同一の参照番号を付して詳しい説明は省略する。ここでは、送信器12と送信アンテナ13との間に変調回路14が設けられ、受信アンテナ20と受信処理装置30との間には復調回路24が設けられる。   2, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. Here, a modulation circuit 14 is provided between the transmitter 12 and the transmission antenna 13, and a demodulation circuit 24 is provided between the reception antenna 20 and the reception processing device 30.

変調回路14には予め検知装置毎に固有のIDが登録されており、送信器12から低周波磁界信号を受けると、その低周波磁界信号に登録されているIDを重畳する動作、つまり変調動作を行って、IDを重畳した低周波磁界信号、つまり変調された低周波磁界信号を送信アンテナ13に送出する。   In the modulation circuit 14, a unique ID is registered in advance for each detection device. When a low-frequency magnetic field signal is received from the transmitter 12, an operation of superimposing the registered ID on the low-frequency magnetic field signal, that is, a modulation operation Then, the low frequency magnetic field signal on which the ID is superimposed, that is, the modulated low frequency magnetic field signal is transmitted to the transmission antenna 13.

送信アンテナ13から送信された変調された低周波磁界信号は受信アンテナ20で受信された後に復調回路24にて復調され、低周波磁界信号を発信した検知装置のIDが特定される。特定された検知装置のIDは受信処理装置30に入力される。受信処理装置30は、特定されたIDを警報とあわせて管理センター、管理事務所などの外部機関等へ送出することも可能である。これにより、土砂崩れ等の災害が測定対象範囲内のどの場所で発生したのかを把握することができる。   The modulated low-frequency magnetic field signal transmitted from the transmitting antenna 13 is received by the receiving antenna 20 and then demodulated by the demodulation circuit 24 to identify the ID of the detection device that has transmitted the low-frequency magnetic field signal. The ID of the identified detection device is input to the reception processing device 30. The reception processing device 30 can also send the identified ID together with an alarm to an external organization such as a management center or a management office. Thereby, it can be grasped where the disaster such as landslide occurred in the measurement target range.

図3は上述した第2の参考例の適用例を示す図である。ここでは、線路の路肩や山側斜面の土中や岩石中に複数の検知装置が埋設されている。低周波磁界信号は、地中、水中は勿論のこと岩石中でも伝搬する。複数の検知装置にはそれぞれ、個別にID(代表的にIDA〜IDDを示す)が付与されている。管理センターや管理事務所などの外部機関では予め検知装置の埋設位置をディスプレイ上でマッピングしておく。これにより、外部機関では災害発生時に送信されてきた検知装置のIDをもとにディスプレイ上のマッピングで災害を検知した検知装置を点滅させたり、色を変えて表示させたりすることで災害の範囲や程度を時系列処理することが可能となるだけでなく、事後の対策工の立案・施工までを迅速に行うことも可能となる。 FIG. 3 is a diagram showing an application example of the second reference example described above. Here, a plurality of detection devices are buried in the soil and rocks on the shoulders of the tracks and on the mountainside slopes. Low frequency magnetic field signals propagate in rocks as well as in the ground and water. Each of the plurality of detection devices is individually assigned an ID (typically IDA to IDD). In an external organization such as a management center or a management office, the embedded position of the detection device is mapped in advance on the display. As a result, the scope of the disaster can be displayed by blinking the detection device that detected the disaster by mapping on the display based on the ID of the detection device transmitted when the disaster occurred, or by changing the color to display the external organization. In addition to being able to process the time series in a time series, it is also possible to quickly carry out the planning and construction of countermeasure work after the fact.

図4は上述した第2の参考例の別の適用例を示す図である。ここでは、図3の適用例に加えて、斜面の深さ方向に関して異なる深さに検知装置を埋設するようにしている。例えば地すべり面などへ適用する場合には、同じ埋設地点に深さを変えて複数の検知装置を埋設することで、どの深さの検知装置から低周波磁界信号を発信されたかをIDによって知ることができるので、どの程度の深さで地すべりが発生したのかという地すべり面を特定することなどが可能となる。 FIG. 4 is a diagram showing another application example of the second reference example described above. Here, in addition to the application example of FIG. 3, the detection device is embedded at different depths with respect to the depth direction of the slope. For example, when applied to a landslide surface, etc., by identifying the depth of the detection device from which the low-frequency magnetic field signal is transmitted by burying a plurality of detection devices at different depths at the same burying point Therefore, it is possible to specify the landslide surface such as how deep the landslide has occurred.

図5は、本発明の実施例による土砂災害監視システムの構成を示すブロック図である。実施例による土砂災害監視システムでは、図2に示した第2の参考例による構成に以下の構成を加えている。 Figure 5 is a block diagram showing the configuration of a sediment disaster monitoring system according to the real施例of the present invention. In the sediment disaster monitoring system according to this embodiment, the following configuration is added to the configuration according to the second reference example shown in FIG.

受信処理装置30側には、第1の周期で起動信号を発生する第1のタイマ31と、第1のタイマ31からの起動信号により第1の周期で起動用低周波磁界信号を送出する起動用送信器32と、第1のタイマ31からの起動信号により測定対象範囲内に設置されている複数の検知装置のすべての各IDを第1の周期で切替えて順に送出するID切替え回路33と、ID切替え回路33からのIDを起動用送信器32からの起動用低周波磁界信号に重畳させる起動用変調回路34と、IDを重畳された起動用低周波磁界信号を発信する起動用送信アンテナ35とを備える。   On the reception processing device 30 side, a first timer 31 that generates a start signal in a first cycle, and a start-up that sends a start low-frequency magnetic field signal in a first cycle by a start signal from the first timer 31 Transmitter 32, and an ID switching circuit 33 for switching all IDs of a plurality of detection devices installed in the measurement target range by a start signal from the first timer 31 and transmitting them sequentially in a first cycle The startup modulation circuit 34 for superimposing the ID from the ID switching circuit 33 on the startup low-frequency magnetic field signal from the startup transmitter 32, and the startup transmission antenna for transmitting the startup low-frequency magnetic field signal superimposed with the ID 35.

一方、各検知装置10は、起動用受信アンテナ15と、第2のタイマ16と、起動用受信アンテナ15に接続され第2のタイマ16により定期的に受信状態となる起動用受信回路17と、起動用受信回路17で受信した起動用低周波磁界信号を復調してそこに重畳されている検知装置のIDが自IDか否かを特定する起動用復調回路18を備える。   On the other hand, each detection device 10 includes an activation reception antenna 15, a second timer 16, an activation reception circuit 17 connected to the activation reception antenna 15 and periodically in a reception state by the second timer 16. An activation demodulating circuit 18 is provided for demodulating the activation low frequency magnetic field signal received by the activation receiving circuit 17 and specifying whether or not the ID of the detection device superimposed thereon is the self ID.

起動用復調回路18は、自IDが重畳された起動用低周波磁界信号を受信すると送信器12及び変調回路14を起動させて自IDを重畳させた低周波磁界信号を送信アンテナ13から送信させる。   When the activation demodulating circuit 18 receives the activation low-frequency magnetic field signal on which the own ID is superimposed, the activation demodulation circuit 18 activates the transmitter 12 and the modulation circuit 14 to transmit the low-frequency magnetic field signal on which the own ID is superimposed from the transmission antenna 13. .

受信処理装置30側では、受信アンテナ20で受信された低周波磁界信号を復調回路24で復調し、受信した低周波磁界信号がどの検知装置のIDを重畳させた低周波磁界信号であるかの判別、つまりIDの特定を行う。   On the reception processing device 30 side, the low frequency magnetic field signal received by the receiving antenna 20 is demodulated by the demodulation circuit 24, and the received low frequency magnetic field signal is a low frequency magnetic field signal on which the ID of which detection device is superimposed. Discrimination, that is, identification is performed.

上記のIDの特定動作は、測定対象範囲内の複数の検知装置のすべてについて行われる。受信処理装置30では、復調装置34で特定されたIDを受けると、このIDを持つ検知装置は正常に動作可能であるものと判別する。このようにして、複数の検知装置の存在及び健全性を定期的に確認することができる。   The ID specifying operation is performed for all of the plurality of detection devices within the measurement target range. When receiving the ID specified by the demodulation device 34, the reception processing device 30 determines that the detection device having this ID can operate normally. In this way, the presence and soundness of a plurality of detection devices can be periodically confirmed.

なお、第1のタイマ31からの起動信号の発生周期、つまり第1の周期と、第2のタイマ16からの起動信号の発生周期とは同期していることが好ましい。このためには、本実施例において付加された受信処理装置30側の構成要素のうち少なくとも第1のタイマ31は受信処理装置30に内蔵させることが望ましい。つまり、受信処理装置30は、ID切替え回路33から送出されたIDとその送信タイミング及び受信した低周波磁界信号に重畳されたIDとを比較することで検知装置の識別をより確実に行うことができると共に、災害発生に伴う低周波磁界信号ではなく、定期的な健全性確認のために送られてきた信号であることを判別できる。一方、受信処理装置30側の起動信号に応答して送信器12で発生する低周波磁界信号に、IDとは別に特定の情報を付加することで、検知装置10において災害発生時に発生する低周波磁界信号と区別できるようにしても良い。勿論、この場合の特定の情報は複数の検知装置に共通の情報で良い。   Note that it is preferable that the generation cycle of the activation signal from the first timer 31, that is, the first cycle and the generation cycle of the activation signal from the second timer 16 are synchronized. For this purpose, it is desirable that at least the first timer 31 among the components on the reception processing device 30 side added in the present embodiment is built in the reception processing device 30. That is, the reception processing device 30 can more reliably identify the detection device by comparing the ID transmitted from the ID switching circuit 33 with the transmission timing and the ID superimposed on the received low-frequency magnetic field signal. In addition, it is possible to determine that the signal is not a low-frequency magnetic field signal accompanying the occurrence of a disaster but a signal sent for periodic health check. On the other hand, by adding specific information separately from the ID to the low-frequency magnetic field signal generated by the transmitter 12 in response to the activation signal on the reception processing device 30 side, the detection device 10 generates a low-frequency signal when a disaster occurs. You may make it distinguishable from a magnetic field signal. Of course, the specific information in this case may be information common to a plurality of detection devices.

更に、検知装置10に内蔵されたバッテリの長寿命化の観点から、転倒センサ11がトリガ信号を発生した時、及び図5の実施例では自IDが重畳された起動用低周波磁界信号を受信した時に他の回路へのバッテリ電源供給をオンとする構成とすることが好ましい。   Further, from the viewpoint of extending the life of the battery built in the detection device 10, when the fall sensor 11 generates a trigger signal, and in the embodiment of FIG. 5, a low frequency magnetic field signal for activation with its own ID superimposed is received. In this case, it is preferable that the battery power supply to other circuits is turned on.

以上、本発明をその実施例に基づいて説明したが、本発明は上記の実施例や適用例に限定されるものではない。 As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to said Example and application example.

図1は本発明の第1の参考例による土砂災害監視システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a sediment disaster monitoring system according to a first reference example of the present invention. 図2は本発明の第2の参考例による土砂災害監視システムの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a sediment disaster monitoring system according to a second reference example of the present invention. 図3は本発明の第2の参考例の適用例を示す図である。FIG. 3 is a diagram showing an application example of the second reference example of the present invention. 図4は本発明の第2の参考例の他の適用例を示す図である。FIG. 4 is a diagram showing another application example of the second reference example of the present invention. 図5は本発明の実施例による土砂災害監視システムの構成を示す図である。Figure 5 is a diagram showing a configuration of a sediment disaster monitoring system according to the real施例of the present invention. 図6は従来の土砂災害監視設備の一例の構成を示す図である。FIG. 6 is a diagram showing a configuration of an example of a conventional sediment disaster monitoring facility.

符号の説明Explanation of symbols

10 検知装置
11 転倒センサ
12 送信器
13 送信アンテナ
14 変調回路
20 受信アンテナ
30 受信処理装置
DESCRIPTION OF SYMBOLS 10 Detection apparatus 11 Fall sensor 12 Transmitter 13 Transmission antenna 14 Modulation circuit 20 Reception antenna 30 Reception processing apparatus

Claims (2)

設置姿勢が変化したことを感知してトリガ信号を発生するセンサと、前記センサからのトリガ信号により1〜10kHzの周波数範囲の低周波磁界信号を送出する送信器と、前記送信器から送出された低周波磁界信号を発信する送信アンテナとを備えた検知装置と、
前記検知装置からの低周波磁界信号を受信する受信アンテナと、
前記受信アンテナの受信信号を受け、警報を発信する受信処理装置とからなり、
面に前記検知装置を1個以上設置または埋設することで、斜面の変動や崩壊を感知して警報を発信する土砂災害監視システムにおいて、
前記検知装置が測定対象範囲内に複数個設置または埋設される一方、前記受信アンテナは前記測定対象範囲外に設置され、
各検知装置はさらに、前記送信器からの低周波磁界信号に、当該検知装置に固有のIDを重畳させる変調回路を具備し、
前記受信アンテナと前記受信処理装置との間にはさらに、受信した低周波磁界信号を復調してそこに重畳されている前記検知装置のIDを特定する復調回路を具備し、
復調された検知装置のIDから斜面の変動や崩壊の位置を特定するようにし、
前記受信処理装置側にはさらに、第1の周期で起動信号を発生する第1のタイマと、該第1のタイマからの起動信号により第1の周期で起動用低周波磁界信号を送出する起動用送信器と、前記第1のタイマからの前記起動信号により測定対象範囲内に設置または埋設されている複数個の検知装置の各IDを第1の周期で切替えて順に送出するID切替え回路と、前記ID切替え回路からのIDを前記起動用低周波磁界信号に重畳させる起動用変調回路と、IDを重畳された前記起動用低周波磁界信号を発信する起動用送信アンテナとを具備し、
前記検知装置はさらに、起動用受信アンテナと、第2のタイマと、前記起動用受信アンテナに接続され前記第2のタイマにより定期的に受信状態となる起動用受信回路と、該起動用受信回路で受信した前記起動用低周波磁界信号を復調してそこに重畳されている検知装置のIDが自IDか否かを特定する起動用復調回路とを具備し、
前記起動用復調回路は、自IDが重畳された前記起動用低周波磁界信号を受信すると前記送信器及び変調回路を起動させて自IDを重畳させた前記低周波磁界信号を送信させ、
前記受信処理装置側では、前記自IDを重畳させた前記低周波磁界信号を受信したか否かの判別を行い、
上記動作を前記測定対象範囲内の複数の検知装置のすべてについて行うことにより、前記複数の検知装置の存在及び健全性を定期的に確認できるようにしたことを特徴とする土砂災害監視システム。
A sensor that generates a trigger signal upon sensing that the installation posture has changed, a transmitter that transmits a low-frequency magnetic field signal in a frequency range of 1 to 10 kHz by the trigger signal from the sensor, and a transmitter that is transmitted from the transmitter A detection device including a transmission antenna for transmitting a low-frequency magnetic field signal;
A receiving antenna for receiving a low-frequency magnetic field signal from the detection device;
A reception processing device that receives a reception signal of the reception antenna and issues an alarm;
The sensing device to the swash surface by installing or embedded one or more, in landslides monitoring system transmits an alarm to sense fluctuations and collapse of slope,
A plurality of the detection devices are installed or embedded in the measurement target range, while the receiving antenna is installed outside the measurement target range,
Each detection device further includes a modulation circuit for superimposing an ID unique to the detection device on the low-frequency magnetic field signal from the transmitter,
A demodulation circuit for demodulating the received low-frequency magnetic field signal and identifying the ID of the detection device superimposed thereon, between the reception antenna and the reception processing device;
From the demodulated ID of the detection device, specify the position of the slope change or collapse,
The reception processing device further includes a first timer that generates a start signal in a first cycle, and a start-up that sends a start low-frequency magnetic field signal in a first cycle by the start signal from the first timer. An ID switching circuit for switching each ID of a plurality of detection devices installed or embedded in a measurement target range by a start signal from the first timer in a first cycle and sequentially transmitting the IDs A startup modulation circuit that superimposes the ID from the ID switching circuit on the startup low-frequency magnetic field signal, and a startup transmission antenna that transmits the startup low-frequency magnetic field signal superimposed with an ID,
The detection apparatus further includes an activation reception antenna, a second timer, an activation reception circuit connected to the activation reception antenna and periodically in a reception state by the second timer, and the activation reception circuit A demodulator for activation that demodulates the low frequency magnetic field signal for activation received in step 1 and identifies whether or not the ID of the detection device superimposed thereon is its own ID,
When the activation demodulator circuit receives the activation low-frequency magnetic field signal with its own ID superimposed, it activates the transmitter and the modulation circuit to transmit the low-frequency magnetic field signal with its own ID superimposed,
On the reception processing device side, it is determined whether or not the low frequency magnetic field signal on which the self ID is superimposed is received,
A sediment disaster monitoring system characterized in that the presence and soundness of the plurality of detection devices can be periodically confirmed by performing the above operation for all of the plurality of detection devices within the measurement target range .
請求項に記載の土砂災害監視システムにおいて、
複数の前記検知装置を深さ方向に関して異なる深さで埋設したことを特徴とする土砂災害監視システム。
In the earth and sand disaster monitoring system according to claim 1 ,
A sediment disaster monitoring system characterized in that a plurality of the detection devices are buried at different depths in the depth direction.
JP2006092941A 2006-03-30 2006-03-30 Earth and sand disaster monitoring system Active JP4800814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092941A JP4800814B2 (en) 2006-03-30 2006-03-30 Earth and sand disaster monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092941A JP4800814B2 (en) 2006-03-30 2006-03-30 Earth and sand disaster monitoring system

Publications (2)

Publication Number Publication Date
JP2007262851A JP2007262851A (en) 2007-10-11
JP4800814B2 true JP4800814B2 (en) 2011-10-26

Family

ID=38636095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092941A Active JP4800814B2 (en) 2006-03-30 2006-03-30 Earth and sand disaster monitoring system

Country Status (1)

Country Link
JP (1) JP4800814B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107765B2 (en) * 2008-03-26 2012-12-26 東日本旅客鉄道株式会社 Railway line monitoring system
JP5013279B2 (en) * 2009-08-28 2012-08-29 応用地質株式会社 Falling rock and landslide detection system
JP6450668B2 (en) * 2015-10-02 2019-01-09 公益財団法人鉄道総合技術研究所 Sediment movement observation system
CN111429698A (en) * 2020-03-24 2020-07-17 东华理工大学 Geological disaster early warning system
CN115993600B (en) * 2023-03-22 2023-08-08 湖南华诺星空电子技术股份有限公司 Ultra-wideband slope deformation monitoring radar system and monitoring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813505A (en) * 1994-07-01 1996-01-16 East Japan Railway Co Slope collapse detector
JPH11295111A (en) * 1998-04-13 1999-10-29 Toyo Commun Equip Co Ltd Earth and sand abnormality detecting system
JP3912780B2 (en) * 2002-05-13 2007-05-09 財団法人電力中央研究所 Displacement measurement method such as slope
JP2004234335A (en) * 2003-01-30 2004-08-19 National Institute For Rural Engineering Embedded type measuring instrument and structure measuring system
JP2004326445A (en) * 2003-04-24 2004-11-18 Reideikku:Kk Ground management system

Also Published As

Publication number Publication date
JP2007262851A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4800814B2 (en) Earth and sand disaster monitoring system
KR101173592B1 (en) System of detecting damaged position with protecting damage for underground pipes and operating method thereof
US20100139372A1 (en) Method for detecting leakage from a pipe
JP5396177B2 (en) Scour protection block abnormality detection device and scour protection block abnormality detection system
US20210302268A1 (en) System and method for monitoring hydrogeological risk
CN102292751B (en) Warning system
KR101071067B1 (en) Debris flow sensing system using vibrating sensor
KR101643305B1 (en) Detection system for destroyed underground utilities and method thereof
KR20130039967A (en) Monitoring system and method of the ocean floor cable laying condition
JP4702152B2 (en) Collapse risk assessment system
US20090309724A1 (en) Intrusion detection system for underground/above ground applications using radio frequency identification transponders
JP2002228497A (en) Falling rock guard net warning device
US20150204041A1 (en) Two-tier wireless soil measurement apparatus
KR102365368B1 (en) System for monitoring displacement of slope
JP2007178222A (en) Detector for avalanche of earth and rock, detector for land slide, etc. and alarm using the same
JP5013279B2 (en) Falling rock and landslide detection system
CN203786866U (en) Intelligent sign pile, detection circuit, protection alarm device and warning system
KR20210059270A (en) Sensing System for Collapse of Slope
KR20040087281A (en) Remote and non injurious Mine and Server Systems with there Control Methods
KR102124353B1 (en) Rescue signal generator to respond to safety accidents in underground spaces
JPH11352247A (en) Natural disaster occurrence detecting device and method therefor, and avalanche occurrence detecting device and method therefor
JP5107765B2 (en) Railway line monitoring system
JP2008214896A (en) Information carrier, and suction detection system and suction detection method using the same
JP2008281554A (en) Damage preventive detection system, and inclination detecting apparatus
KR101249063B1 (en) underground pipe line moniroting system using indication nail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250