JP4798416B2 - Turbine blade parts - Google Patents

Turbine blade parts Download PDF

Info

Publication number
JP4798416B2
JP4798416B2 JP2001241783A JP2001241783A JP4798416B2 JP 4798416 B2 JP4798416 B2 JP 4798416B2 JP 2001241783 A JP2001241783 A JP 2001241783A JP 2001241783 A JP2001241783 A JP 2001241783A JP 4798416 B2 JP4798416 B2 JP 4798416B2
Authority
JP
Japan
Prior art keywords
wall
ventral
rear edge
blade
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001241783A
Other languages
Japanese (ja)
Other versions
JP2003056301A (en
Inventor
千由紀 仲俣
栄道 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001241783A priority Critical patent/JP4798416B2/en
Publication of JP2003056301A publication Critical patent/JP2003056301A/en
Application granted granted Critical
Publication of JP4798416B2 publication Critical patent/JP4798416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービンのタービン翼の後縁の構造に係る。特に後縁の冷却構造に特徴の有るガスタービンのタービン翼の後縁の構造に関する。
【0002】
【従来の技術】
ガスタービンでは、円周方向に配列された複数の静翼と複数の動翼とが軸方向に交互に並び、その翼の隙間に燃焼ガスを流して動力を発生する。
高温の燃焼ガスが静翼や動翼のタービン翼の間を流れるので、タービン翼は高温環境に晒される。タービン翼は、高温環境下で所定の機械性能を発揮するために、内部を空気冷却している。内部冷却通路が、タービン翼の内部に設けられ、空気が内部冷却通路を循環している。ところで、タービン翼の後縁部は、空力翼性能を確保するために翼の厚みが小さく、十分な内部冷却通路を設けにくい構造をしている。内部冷却通路を流れる空気のみによる冷却では、タービン翼の後縁部の冷却が不十分であるので、内部冷却通路を流れる空気の一部または全部を後縁部に設けた長穴(スロットという)から外部へ噴出させる。例えば、タービン翼の腹側の外壁(以下、腹側外壁という)の後端部とタービン翼の背側の外壁(以下、背側外壁という)の後端部との間に僅かの寸法の隙間を設け、その隙間から内部冷却通路を流れる空気を吹き出す。複数の結合部材が、その隙間の長手方向に所定の間隔で配置され、腹側外壁と背側外壁を結合している。
【0003】
【発明が解決しようとする課題】
上述の構造を採用したタービン翼の場合、冷却効果に限界があり、タービン翼の後縁部の温度が翼全体の各所の温度の内で最も高温である。そのため、タービン翼の後縁部の温度が、タービン翼の内部冷却通路を流す空気流量を決定する主要ファクターとなっていた。内部冷却通路を流す空気は、ガスタービンの圧縮機から抽気されるので、空気流量が増加するとガスタービンの圧縮効率が低下する。また、タービン翼の後縁から噴出した空気はガスタービンのガス通路に流れるので、空気流量が増加するとタービン効率が低下する。そのため、空気流量が増加するとガスタービンの全体効率が低下する。従来以上にガスタービンの全体効率を上げるために、少ない空気流量でタービン翼の後縁を冷却できる冷却構造が望まれていた。
【0004】
本発明は以上に述べた問題点に鑑み案出されたもので、従来のタービン翼部品にかわって、より少ない空気流量でタービン翼の後縁を冷却できる冷却構造をもったタービン翼部品を提供しようとする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るガスタービンのタービン翼として使用されるタービン翼部品は、腹側外壁と前縁外壁と背側外壁とが順に連なって翼の外周形状を形成し内部冷却通路を内部に形成し長手方向に延びる翼壁部と、
前記翼壁部の長手方向の一端と結合した翼座部と、
前記翼壁部の長手方向の他端を閉止する先端キャップ部と、
前記腹側外壁の後縁部と前記背側外壁の後縁部との間を仕切って長手方向に延びる後縁隔壁部と、を備え、
前記内部冷却通路は、前縁寄りの部屋と、該前縁寄りの部屋と翼壁部の先端部分で連通する中央の部屋と、該中央の部屋と翼壁部の根元で連通する後縁寄りの部屋とからなり、
前記翼座部に設けられた翼座開口が前記前縁寄りの部屋に連通し、
前記後縁寄りの部屋が前記腹側外壁の後縁部と前記背側外壁の後縁部との隙間に連通し、
前記腹側外壁の後縁部と前記背側外壁の後縁部との前記隙間が前記腹側外壁の後縁部に設けられた腹側開口に連通し、
前記腹側開口が前方腹側開口と後方腹側開口とを有し、
前記隙間として、前記腹側外壁の後縁部と前記後縁隔壁部との間に形成され前記前方腹側開口に連通する隙間と、前記背側外壁の後縁部と前記後縁隔壁部との間に形成され前記後方腹側開口に連通する隙間とが設けられているものとした。
【0006】
上記本発明の構成により、後縁隔壁部が腹側外壁の後縁部と背側外壁の後縁部の間を仕切り、冷却用の空気が、翼座開口から入って、先端キャップ部に遮られ、内部冷却通路を経由して、腹側開口から吹き出すので、腹側外壁の後縁部と背側外壁の後縁部との間で後縁隔壁部に仕切られて多層となって吹き出した空気が、翼壁部の後縁を効率良く冷却する。
【0007】
さらに、上記本発明の構成により、腹側外壁の後縁部と背側外壁の後縁部との間で後縁隔壁部に仕切られて多層となって吹き出した空気が、前方腹側開口と後方腹側開口とから別個に吹き出すので、別個に吹き出した空気が多層の流れとなって腹側外壁の後縁部に流れ、翼壁部の後縁をより効率良く冷却する。
【0008】
さらに、本発明に係るタービン翼部品は、前記腹側外壁と前記後縁隔壁部とを長手方向に所定の間隔で結合する複数の腹側結合部と、前記後縁隔壁部と前記背側外壁とを長手方向に所定の間隔で結合する複数の背側結合部と、を備えたものとした。
上記本発明の構成により、長手方向に並んだ背側結合部が背側外壁と後縁隔壁部とを結合し、長手方向に並んだ腹側結合部が後縁隔壁部と前記腹側外壁とを結合するので、後縁隔壁部が支持される。
【0009】
さらに、本発明に係るタービン翼部品は、背側結合部と腹側結合部とが長手方向に交互に配置されたものとした。
上記本発明の構成により、背側結合部と腹側結合部とが長手方向に交互に配置されるので、背側外壁と後縁隔壁部の隙間から吹き出す空気と後縁隔壁部と腹側外壁の隙間から吹き出す空気が千鳥に重なり合って、均一な空気が翼壁部の後縁に流れ、後縁を均一に冷却する。
【0010】
【発明の実施の形態】
以下、本発明の好ましい実施形態を、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0011】
本発明の実施形態に係るタービン翼部品の構造を説明する。図1は、本発明の実施形態の斜視図である。図2は、本発明の実施形態の側面断面図である。図3は、本発明の実施形態の平面断面図である。実施形態に係るタービン翼部品は、本発明を動翼に適用したものである。
【0012】
タービン翼部品1は、翼壁部10と後縁隔壁部20と腹側結合部21と背側結合部22と翼座部30と先端キャップ部40とを備える。
翼壁部10は、タービン翼部品の主要構造部であって、翼形状をした外周が長手方向に連続した外形を有する。その翼壁部10は、腹側外壁11と前縁外壁12と背側外壁13とが順に連なった壁である。
腹側外壁11と前縁外壁12と背側外壁13とは、明確な境がなく順に繋がり一連の構造をし、その外周が翼の外周形状を構成する。腹側外壁11は、正圧力を受ける翼外面を有する翼壁部であり、凹形状の断面を有する。腹側外壁10の後縁部には、腹側開口が設けられる。腹部開口は、前方腹側開口と後方腹側開口とを有する。前方腹側開口は、後述する複数の前方スロット2が長手方向に並んだ構造を有する。後方腹側開口は、後述する複数の後方スロット3が長手方向に並んだ構造を有する。前方腹側開口と後方腹側開口とは長手方向に直交する向きに並んでおり、後方腹側開口が翼壁部の後端に近い位置に設けられ、前方腹側開口が、その後方腹側開口の横に並んでいる。
前縁外壁12は、円弧形状をし、腹側外壁11と背側外壁13とを繋ぐ。
背側外壁13は、負圧力を受ける翼外面を有する翼壁部であり、凸形状の断面を有する。背側外壁13の後端は、円みを帯びており、翼の後端を構成する。
【0013】
内部冷却通路50が、翼壁部10の内部に形成される。内部冷却通路50は、翼壁部の内部を、前縁寄りの部屋51と中央の部屋52と後縁寄りの部屋53に分割する。前縁寄りの部屋51と中央の部屋52とは、翼壁部10の先端部分で連通する。中央の部屋52と後縁寄りの部屋53とは、翼壁部10の根元で連通する。その内部冷却通路50の後縁寄りの部屋53は、腹側外壁11の後縁部と背側外壁13の後縁部との隙間に連通する。
【0014】
後縁隔壁部20は、腹側外壁11の後縁部と背側外壁13の後縁部との間を仕切って長手方向に延びる壁である。
腹側結合部21は、腹側外壁11と後縁隔壁部20とを長手方向に所定の間隔で結合する複数の壁である。腹側結合部21と腹側外壁11と後縁隔壁部20とで囲まれた穴(以下、前方スロット2という)が、長手方向に連なる。
背側結合部22は、後縁隔壁部20と背側外壁13とを長手方向に所定の間隔で結合する複数の壁である。背側結合部22と後縁隔壁部20と背側外壁13とで囲まれた穴(以下、後方スロット3という)が、長手方向に連なる。
腹側結合部21と背側結合部22とは長手方向に交互に配置される。したがって、前方スロット2と後方スロット3とが長手方向に千鳥に並ぶ。
【0015】
翼座部30は、翼壁部10の長手方向の根元部と結合した座であり、ガスタービンの軸に結合する構造を有する。開口(以下、翼座開口という)31が、その翼座部の翼先縁部分に設けられる。翼座開口31は、前記内部冷却通路50の前縁寄りの部屋51に連通する。
先端キャップ部40は、翼壁部の長手方向の先端部を閉止する壁である。
【0016】
次に、タービン翼部品の空気冷却の作用を説明する。
冷却用の空気が、翼座部30の翼座開口31を通過して、前縁寄りの部屋51に入る。冷却空気は、翼壁部10を冷却しながら長手方向の先端部分でUターンして、前縁寄りの部屋51から中央の部屋52へ入る。冷却空気は、翼壁部10を冷却しながら長手方向の根元部分でUターンして、中央の部屋52から後縁寄りの部屋53へ入る。冷却空気は、後縁寄りの部屋53から腹側外壁11の後縁部と背側外壁13の後縁部との隙間に入る。冷却空気は、後縁隔壁部20で2つの流れに分けられ、前方スロット2と後方スロット3とから翼壁部の外部へ吹き出す。前方スロット2から吹き出した空気が後方スロット3から吹き出した空気を覆って流れるので、タービン翼の周囲を流れる燃焼ガスの熱が後方スロット3から吹き出した空気に伝わるのを抑制する。その後方スロット3から吹き出した空気が、翼壁部10の後縁部(特に後縁外壁14)を効果的に冷却する。
【0017】
次に、参考例を、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0018】
参考例に係るタービン翼部品の構造を説明する。図4は、参考例の斜視図である。図5は、参考例の側面断面図である。図6は、参考例の平面断面図である。
【0019】
タービン翼部品1は、翼壁部10と後縁隔壁部20と腹側結合部21と背側結合部22と翼座部30a、30bと先端キャップ部40とを備える。翼壁部10の構造は、上述の実施例の構造と同じなので、説明を省略する。
【0020】
内部冷却通路50が、翼壁部10の内部に形成される。内部冷却通路50は、翼壁部の内部の一つの部屋で構成される。その内部冷却通路50の部屋は、腹側外壁11の後縁部と背側外壁13の後縁部との隙間に連通する。
【0021】
後縁隔壁部20は、腹側外壁11の後縁部と背側外壁13の後縁部との間を仕切って長手方向に延びる壁である。
腹側結合部21は、腹側外壁11と後縁隔壁部20とを長手方向に所定の間隔で結合する複数の壁である。腹側結合部21と腹側外壁11と後縁隔壁部20とで囲まれた穴(以下、前方スロット2という)が、長手方向に連なる。
背側結合部22は、後縁隔壁部20と背側外壁13とを長手方向に所定の間隔で結合する複数の壁である。背側結合部22と後縁隔壁部20と背側外壁13とで囲まれた穴(以下、後方スロット3という)が、長手方向に連なる。
腹側結合部21と背側結合部22とは長手方向に交互に配置される。したがって、前方スロット3と後方スロット2とが長手方向に千鳥に並ぶ。
【0022】
翼座部30aは、翼壁部10の長手方向の一端と結合した座であり、ガスタービンのハウジング側固定部に結合する構造を有する。開口(以下、翼座開口という)31が、その翼座部30aの翼先縁部分に設けられる。翼座開口は、前記内部冷却通路の部屋に連通する。
翼座部30bは、翼壁部10の長手方向の他端と結合した座であり、ガスタービンの軸側固定部に結合する構造を有する。
先端キャップ部40は、翼壁部の翼座部30b側の端を閉止する壁である。
【0023】
次に、タービン翼部品の空気冷却の作用を説明する。
冷却用の空気が、翼座部30aの翼座開口31を通過して、内部冷却通路50の部屋に入る。冷却空気は、翼壁部10を冷却した後、部屋から腹側外壁11の後縁部と背側外壁13の後縁部との隙間に入る。冷却空気は、後縁隔壁部20で2つの流れに分けられ、前方スロット2と後方スロット3から翼壁部の外部で吹き出す。前方スロット2から吹き出した空気が後方スロット3から吹き出した空気を覆って流れるので、タービン翼の周囲を流れる燃焼ガスの熱が後方スロット3から吹き出した空気に伝わるのを抑制する。その後方スロット3から吹き出した空気が、翼壁部10の後縁部(特に後縁外壁14)を効果的に冷却する。
【0024】
上述の実施形態のタービン翼部品を用いれば、前方スロットから吹き出した空気と後方スロットから吹き出した空気とが、タービン翼の後縁部を2つの重なった空気層となって流れる。前方スロットから吹き出した空気の層が後方スロットから吹き出した空気の層を覆い、周囲の高温の燃焼ガスが後方スロットから吹き出した空気に直接接しない。後方スロットから吹き出した空気がタービン翼の後縁を効率良く冷却するので、後方スロットと前方スロットから吹き出す空気量を少なくすることができ、ガスタービンの圧縮機の効率の低下を防ぐことが出来る。
また、タービンのガス通路に流れ出る空気の量を減らすことができるので、タービンの効率を向上させることが出来る。
また、後方スロットと前方スロットを千鳥に配置することが出来るので、空気の流れを均一化することができ、タービン翼の後縁を均等に冷却することができる。
【0025】
本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。
後縁隔壁部を一枚であるとして説明したがこれに限定されず、例えば、2枚の後縁隔壁部が腹側外壁の後縁部と背側外壁の後縁部との間を仕切ってもよく、この場合は、3行のスロット列が後縁に設けられることとなる。
また、後縁隔壁部は平板であるとして図示したがこれに限定されず、例えば、長手方向に波打った板面をしていても良い。
また、背側結合部と腹側結合部を交互に配置したがこれに限定されず、例えば背側結合部と腹側結合部の数が異なっていても良い。
【0026】
【発明の効果】
以上説明したように本発明のガスタービンのタービン翼として使用されるタービン翼部品は、その構成により、以下の効果を有する。
後縁隔壁部が腹側外壁の後縁部と背側外壁の後縁部の間を仕切り、冷却用の空気が、翼座開口から入って、先端キャップ部に遮られ、内部冷却通路を経由して、腹側開口から吹き出すので、腹側外壁の後縁部と背側外壁の後縁部との間で後縁隔壁部に仕切られて多層となって吹き出した空気が、翼壁部の後縁を効率良く冷却する。
また、腹側外壁の後縁部と背側外壁の後縁部との間で後縁隔壁部に仕切られて多層となって吹き出した空気が、前方腹側開口と後方腹側開口とから別個に吹き出すので、別個に吹き出した空気が多層の流れとなって腹側外壁の後縁部に流れ、翼壁部の後縁をより効率良く冷却する。
また、長手方向に並んだ背側結合部が背側外壁と後縁隔壁部とを結合し、長手方向に並んだ腹側結合部が後縁隔壁部と前記腹側外壁とを結合するので、後縁隔壁部がしっかりと支持される。
また、背側結合部と腹側結合部とが長手方向に交互に配置されるので、背側外壁と後縁隔壁部の隙間から吹き出す空気と後縁隔壁部と腹側外壁の隙間から吹き出す空気が千鳥に重なり合って、均一な空気が翼壁部の後縁に流れ、後縁を均一に冷却する。
従って、より少ない空気流量でタービン翼の後縁を冷却できる冷却構造をもったタービン翼部品を提供できる。
【0027】
【図面の簡単な説明】
【図1】本発明の実施形態の斜視図である。
【図2】本発明の実施形態の側面断面図である。
【図3】本発明の実施形態の平面断面図である。
【図4】参考例の斜視図である。
【図5】参考例の側面断面図である。
【図6】参考例の平面断面図である。
【符号の説明】
1 タービン翼部品(動翼用、静翼用)
2 前方スロット(前方腹側開口)
3 後方スロット(後方腹側開口)
10 翼壁部
11 腹側外壁
12 前縁外壁
13 背側外壁
20 後縁隔壁部
21 腹側結合部
22 背側結合部
30 翼座部(動翼用)
30a 翼座部(静翼用)
30b 翼座部(静翼用)
31 翼座開口
40 先端キャップ部
50 内部冷却通路
51 前縁寄りの部屋
52 中央の部屋
53 後縁寄りの部屋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a trailing edge of a turbine blade of a gas turbine. In particular, the present invention relates to the structure of the trailing edge of a turbine blade of a gas turbine that is characterized by a cooling structure of the trailing edge.
[0002]
[Prior art]
In a gas turbine, a plurality of stationary blades and a plurality of moving blades arranged in the circumferential direction are alternately arranged in the axial direction, and power is generated by flowing a combustion gas through a gap between the blades.
Since the high-temperature combustion gas flows between the turbine blades of the stationary blades and the moving blades, the turbine blades are exposed to a high temperature environment. The turbine blade is air-cooled in order to exhibit predetermined mechanical performance in a high temperature environment. An internal cooling passage is provided inside the turbine blade, and air circulates through the internal cooling passage. By the way, the trailing edge portion of the turbine blade has a structure in which the blade thickness is small in order to ensure aerodynamic blade performance and it is difficult to provide a sufficient internal cooling passage. In cooling with only the air flowing through the internal cooling passage, cooling of the trailing edge of the turbine blade is insufficient, so a long hole (called a slot) in which a part or all of the air flowing through the internal cooling passage is provided at the rear edge From outside. For example, a slight gap between the rear end portion of the outer wall of the turbine blade (hereinafter referred to as the ventral outer wall) and the rear end portion of the rear wall of the turbine blade (hereinafter referred to as the rear outer wall). The air flowing through the internal cooling passage is blown out from the gap. A plurality of connecting members are arranged at predetermined intervals in the longitudinal direction of the gap, and connect the abdominal outer wall and the back outer wall.
[0003]
[Problems to be solved by the invention]
In the case of a turbine blade adopting the above-described structure, the cooling effect is limited, and the temperature of the trailing edge of the turbine blade is the highest among the temperatures at various locations throughout the blade. For this reason, the temperature of the trailing edge of the turbine blade has been a major factor in determining the air flow rate flowing through the internal cooling passage of the turbine blade. Since the air flowing through the internal cooling passage is extracted from the compressor of the gas turbine, the compression efficiency of the gas turbine decreases as the air flow rate increases. Further, since the air ejected from the trailing edge of the turbine blade flows into the gas passage of the gas turbine, the turbine efficiency decreases as the air flow rate increases. Therefore, when the air flow rate increases, the overall efficiency of the gas turbine decreases. In order to increase the overall efficiency of the gas turbine more than before, a cooling structure capable of cooling the trailing edge of the turbine blade with a small air flow rate has been desired.
[0004]
The present invention has been devised in view of the above-described problems, and provides a turbine blade part having a cooling structure capable of cooling the trailing edge of the turbine blade with a smaller air flow, instead of the conventional turbine blade part. try to.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a turbine blade component used as a turbine blade of a gas turbine according to the present invention has a blade outer peripheral wall, a leading edge outer wall, and a back outer wall sequentially connected to form an outer peripheral shape of the blade. A wing wall part which forms a passage inside and extends in the longitudinal direction;
A blade seat coupled to one longitudinal end of the blade wall;
A tip cap portion for closing the other end in the longitudinal direction of the wing wall portion;
A rear edge partition wall that extends in the longitudinal direction by partitioning between the rear edge of the ventral outer wall and the rear edge of the back outer wall; and
The internal cooling passage includes a chamber near the leading edge , a central chamber communicating with the leading edge chamber and the tip of the blade wall , and a trailing edge communicating with the central chamber and the root of the blade wall. The room consists of
A wing seat opening provided in the wing seat portion communicates with the room near the front edge ,
The room near the rear edge communicates with the gap between the rear edge of the ventral outer wall and the rear edge of the back outer wall,
And communicating to the edge and the clearance ventral opening in the trailing edge of the ventral side outer wall of the rear edge of the back side wall after the ventral side wall,
The ventral opening has a front ventral opening and a rear ventral opening;
As the gap, a gap formed between a rear edge portion of the ventral outer wall and the rear edge partition wall portion and communicating with the front ventral side opening, a rear edge portion of the back outer wall and the rear edge partition wall portion, And a gap communicating with the rear ventral side opening .
[0006]
According to the configuration of the present invention, the trailing edge partition wall partitions the rear edge portion of the ventral outer wall and the rear edge portion of the back outer wall, and cooling air enters from the blade seat opening and blocks the tip cap portion. Because it blows out from the ventral side opening via the internal cooling passage, it is partitioned into a trailing edge partition wall portion between the rear edge portion of the ventral outer wall and the rear edge portion of the back outer wall and blown out in a multilayer manner Air efficiently cools the trailing edge of the wing wall.
[0007]
Further, according to the configuration of the present invention, the air blown out in a multi-layered manner divided into the rear edge partition wall between the rear edge portion of the ventral outer wall and the rear edge portion of the back outer wall, Since the air is blown separately from the rear ventral opening, the separately blown air flows in a multi-layered flow to the rear edge of the ventral outer wall, and cools the rear edge of the wing wall more efficiently.
[0008]
Furthermore, the turbine blade component according to the present invention includes a plurality of ventral side coupling portions that couple the ventral outer wall and the trailing edge partition wall portion at predetermined intervals in the longitudinal direction, the trailing edge partition wall portion, and the back side outer wall. And a plurality of back-side coupling portions that are coupled at predetermined intervals in the longitudinal direction.
According to the configuration of the present invention, the dorsal side connecting portion arranged in the longitudinal direction joins the back side outer wall and the trailing edge partition wall portion, and the ventral side joining portion arranged in the longitudinal direction has the trailing edge partition wall portion and the ventral side outer wall. , So that the trailing edge partition wall is supported.
[0009]
Further, in the turbine blade component according to the present invention, the back side coupling portions and the ventral side coupling portions are alternately arranged in the longitudinal direction.
According to the configuration of the present invention, since the back side coupling portion and the ventral side coupling portion are alternately arranged in the longitudinal direction, the air blown from the gap between the back side outer wall and the rear edge partition wall portion and the gap between the rear edge partition wall portion and the ventral side outer wall The air blown out from the air overlaps with the staggered pattern, and the uniform air flows to the trailing edge of the wing wall portion to cool the trailing edge uniformly.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0011]
The structure of turbine blade part according to the embodiment of the present invention will be described. Figure 1 is a perspective view of an embodiment of the present invention. Figure 2 is a side sectional view of an embodiment of the present invention. Figure 3 is a plan sectional view of an embodiment of the present invention. In the turbine blade component according to the embodiment, the present invention is applied to a moving blade.
[0012]
The turbine blade component 1 includes a blade wall portion 10, a trailing edge partition wall portion 20, a ventral side coupling portion 21, a back side coupling portion 22, a blade seat portion 30, and a tip cap portion 40.
The blade wall portion 10 is a main structural portion of a turbine blade component and has an outer shape in which a blade-shaped outer periphery is continuous in the longitudinal direction. The wing wall portion 10 is a wall in which a ventral outer wall 11, a leading edge outer wall 12, and a back outer wall 13 are sequentially connected.
The ventral outer wall 11, the leading edge outer wall 12, and the back outer wall 13 are connected in order without a clear boundary and have a series of structures, and the outer periphery thereof constitutes the outer peripheral shape of the wing. The ventral outer wall 11 is a wing wall portion having a wing outer surface that receives a positive pressure, and has a concave cross section. A ventral opening is provided at the rear edge of the ventral outer wall 10. The abdominal opening has a front ventral opening and a rear ventral opening. The front ventral side opening has a structure in which a plurality of front slots 2 described later are arranged in the longitudinal direction. The rear ventral side opening has a structure in which a plurality of rear slots 3 described later are arranged in the longitudinal direction. The front ventral opening and the rear ventral opening are arranged in a direction orthogonal to the longitudinal direction, the rear ventral opening is provided at a position near the rear end of the wing wall portion, and the front ventral opening is the rear ventral side Lined up next to the opening.
The front edge outer wall 12 has an arc shape and connects the ventral outer wall 11 and the back outer wall 13.
The back-side outer wall 13 is a blade wall portion having a blade outer surface that receives negative pressure, and has a convex cross section. The rear end of the back side outer wall 13 is rounded and constitutes the rear end of the wing.
[0013]
An internal cooling passage 50 is formed inside the blade wall 10. The internal cooling passage 50 divides the inside of the blade wall portion into a room 51 near the front edge, a room 52 in the center, and a room 53 near the rear edge. The room 51 near the front edge and the center room 52 communicate with each other at the tip of the wing wall 10. The central room 52 and the room 53 near the trailing edge communicate with each other at the base of the wing wall 10. The room 53 near the rear edge of the internal cooling passage 50 communicates with the gap between the rear edge of the ventral outer wall 11 and the rear edge of the back outer wall 13.
[0014]
The rear edge partition wall 20 is a wall extending in the longitudinal direction by partitioning between the rear edge of the ventral outer wall 11 and the rear edge of the back outer wall 13.
The ventral-side coupling portion 21 is a plurality of walls that couple the ventral-side outer wall 11 and the trailing edge partition wall portion 20 at predetermined intervals in the longitudinal direction. A hole (hereinafter referred to as the front slot 2) surrounded by the ventral side coupling portion 21, the ventral side outer wall 11, and the trailing edge partition wall portion 20 is continuous in the longitudinal direction.
The back side coupling | bond part 22 is a some wall which couple | bonds the trailing edge partition part 20 and the back side outer wall 13 with a predetermined space | interval in a longitudinal direction. A hole (hereinafter, referred to as a rear slot 3) surrounded by the back side coupling portion 22, the trailing edge partition wall portion 20, and the back side outer wall 13 is continuous in the longitudinal direction.
The ventral side coupling portions 21 and the back side coupling portions 22 are alternately arranged in the longitudinal direction. Therefore, the front slot 2 and the rear slot 3 are staggered in the longitudinal direction.
[0015]
The blade seat portion 30 is a seat coupled to the longitudinal base portion of the blade wall portion 10 and has a structure coupled to the shaft of the gas turbine. An opening 31 (hereinafter referred to as a blade seat opening) is provided in a blade tip edge portion of the blade seat portion. The blade seat opening 31 communicates with a chamber 51 near the front edge of the internal cooling passage 50.
The tip cap portion 40 is a wall that closes the tip portion in the longitudinal direction of the wing wall portion.
[0016]
Next, the action of air cooling of the turbine blade part will be described.
Cooling air passes through the blade seat opening 31 of the blade seat 30 and enters the room 51 near the leading edge. The cooling air makes a U-turn at the front end portion in the longitudinal direction while cooling the blade wall portion 10 and enters the central room 52 from the room 51 near the front edge. The cooling air makes a U-turn at the base portion in the longitudinal direction while cooling the blade wall 10 and enters the room 53 closer to the rear edge from the central room 52. Cooling air enters the gap between the rear edge of the ventral outer wall 11 and the rear edge of the back outer wall 13 from the room 53 near the rear edge. The cooling air is divided into two flows at the trailing edge partition 20 and blows out from the front slot 2 and the rear slot 3 to the outside of the blade wall. Since the air blown out from the front slot 2 flows over the air blown out from the rear slot 3, the heat of the combustion gas flowing around the turbine blade is prevented from being transmitted to the air blown out from the rear slot 3. The air blown out from the rear slot 3 effectively cools the rear edge portion (particularly, the rear edge outer wall 14) of the blade wall portion 10.
[0017]
Next, a reference example will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0018]
The structure of the turbine blade component according to the reference example will be described. FIG. 4 is a perspective view of a reference example . FIG. 5 is a side sectional view of a reference example . FIG. 6 is a plan sectional view of a reference example .
[0019]
The turbine blade component 1 includes a blade wall portion 10, a trailing edge partition wall portion 20, a ventral side coupling portion 21, a back side coupling portion 22, blade seat portions 30 a and 30 b, and a tip cap portion 40. Since the structure of the wing wall 10 is the same as that of the above-described embodiment, the description thereof is omitted.
[0020]
An internal cooling passage 50 is formed inside the blade wall 10. The internal cooling passage 50 is composed of one room inside the blade wall. The room of the internal cooling passage 50 communicates with the gap between the rear edge of the ventral outer wall 11 and the rear edge of the back outer wall 13.
[0021]
The rear edge partition wall 20 is a wall extending in the longitudinal direction by partitioning between the rear edge of the ventral outer wall 11 and the rear edge of the back outer wall 13.
The ventral-side coupling portion 21 is a plurality of walls that couple the ventral-side outer wall 11 and the trailing edge partition wall portion 20 at predetermined intervals in the longitudinal direction. A hole (hereinafter referred to as the front slot 2) surrounded by the ventral side coupling portion 21, the ventral side outer wall 11, and the trailing edge partition wall portion 20 is continuous in the longitudinal direction.
The back side coupling | bond part 22 is a some wall which couple | bonds the trailing edge partition part 20 and the back side outer wall 13 with a predetermined space | interval in a longitudinal direction. A hole (hereinafter, referred to as a rear slot 3) surrounded by the back side coupling portion 22, the trailing edge partition wall portion 20, and the back side outer wall 13 is continuous in the longitudinal direction.
The ventral side coupling portions 21 and the back side coupling portions 22 are alternately arranged in the longitudinal direction. Therefore, the front slot 3 and the rear slot 2 are staggered in the longitudinal direction.
[0022]
The blade seat portion 30a is a seat coupled to one end of the blade wall portion 10 in the longitudinal direction, and has a structure coupled to a housing-side fixed portion of the gas turbine. An opening (hereinafter referred to as a blade seat opening) 31 is provided in a blade tip edge portion of the blade seat portion 30a. The blade seat opening communicates with the chamber of the internal cooling passage.
The blade seat portion 30b is a seat coupled to the other end in the longitudinal direction of the blade wall portion 10, and has a structure coupled to the shaft-side fixed portion of the gas turbine.
The tip cap portion 40 is a wall that closes the end of the blade wall portion on the blade seat portion 30b side.
[0023]
Next, the action of air cooling of the turbine blade part will be described.
Cooling air passes through the blade seat opening 31 of the blade seat portion 30 a and enters the room of the internal cooling passage 50. After cooling the wing wall 10, the cooling air enters the gap between the rear edge of the ventral outer wall 11 and the rear edge of the back outer wall 13 from the room. The cooling air is divided into two flows at the trailing edge partition wall portion 20 and blows out from the front slot 2 and the rear slot 3 outside the blade wall portion. Since the air blown out from the front slot 2 flows over the air blown out from the rear slot 3, the heat of the combustion gas flowing around the turbine blade is prevented from being transmitted to the air blown out from the rear slot 3. The air blown out from the rear slot 3 effectively cools the rear edge portion (particularly, the rear edge outer wall 14) of the blade wall portion 10.
[0024]
If the turbine blade component of the above-described embodiment is used, the air blown out from the front slot and the air blown out from the rear slot flow as two overlapping air layers on the trailing edge of the turbine blade. The layer of air blown out from the front slot covers the layer of air blown out from the rear slot, and the surrounding high-temperature combustion gas does not directly contact the air blown out from the rear slot. Since the air blown out from the rear slot efficiently cools the trailing edge of the turbine blade, the amount of air blown out from the rear slot and the front slot can be reduced, and a reduction in efficiency of the compressor of the gas turbine can be prevented.
Moreover, since the amount of air flowing out to the gas passage of the turbine can be reduced, the efficiency of the turbine can be improved.
Further, since the rear slots and the front slots can be arranged in a staggered manner, the air flow can be made uniform, and the trailing edge of the turbine blade can be cooled uniformly.
[0025]
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention.
Although the rear edge partition wall has been described as one sheet, the present invention is not limited to this. For example, two rear edge partition walls partition the rear edge of the ventral outer wall and the rear edge of the back outer wall. In this case, three rows of slot columns are provided at the trailing edge.
In addition, although the rear edge partition wall portion is illustrated as a flat plate, the present invention is not limited to this, and for example, a plate surface wavy in the longitudinal direction may be used.
Moreover, although the back side coupling | bond part and the abdominal side coupling | bond part were arrange | positioned alternately, it is not limited to this, For example, the number of a back side coupling | bond part and a ventral side coupling | bond part may differ.
[0026]
【The invention's effect】
As described above, the turbine blade component used as the turbine blade of the gas turbine of the present invention has the following effects due to its configuration.
The trailing edge partition partitions the rear edge of the ventral outer wall and the rear edge of the back outer wall, cooling air enters from the wing seat opening, is blocked by the tip cap, and passes through the internal cooling passage Since the air is blown out from the ventral opening, the air blown out in a multi-layered manner is partitioned into the trailing edge partition wall between the rear edge of the ventral outer wall and the rear edge of the back outer wall. Cools the trailing edge efficiently.
Also, the air blown out in multiple layers partitioned by the rear edge partition wall between the rear edge of the ventral outer wall and the rear edge of the back outer wall is separated from the front ventral opening and the rear ventral opening. Therefore, the separately blown air becomes a multi-layered flow and flows to the rear edge of the ventral outer wall, and cools the rear edge of the wing wall more efficiently.
In addition, since the dorsal side joining portion arranged in the longitudinal direction joins the back side outer wall and the trailing edge partition wall portion, and the ventral side joining portion arranged in the longitudinal direction joins the trailing edge partition wall portion and the ventral side outer wall, The trailing edge partition wall is firmly supported.
In addition, since the back side coupling portion and the ventral side coupling portion are alternately arranged in the longitudinal direction, the air blown from the gap between the back side outer wall and the rear edge partition wall portion and the air blown from the gap between the rear edge partition wall portion and the ventral outer wall are staggered. The uniform air flows to the trailing edge of the wing wall and cools the trailing edge uniformly.
Therefore, it is possible to provide a turbine blade component having a cooling structure that can cool the trailing edge of the turbine blade with a smaller air flow rate.
[0027]
[Brief description of the drawings]
1 is a perspective view of an embodiment of the present invention.
2 is a side sectional view of an embodiment of the present invention.
3 is a plan sectional view of an embodiment of the present invention.
FIG. 4 is a perspective view of a reference example .
FIG. 5 is a side sectional view of a reference example .
FIG. 6 is a plan sectional view of a reference example .
[Explanation of symbols]
1 Turbine blade parts (for moving blades and stationary blades)
2 Front slot (front ventral opening)
3 rear slot (rear ventral opening)
DESCRIPTION OF SYMBOLS 10 Wing wall part 11 Abdominal side outer wall 12 Front edge outer wall 13 Back side outer wall 20 Rear edge partition wall part 21 Abdominal side coupling part 22 Back side coupling part 30 Wing seat part (for moving blades)
30a Wing seat (for stationary blades)
30b Wing seat (for stationary blades)
31 Blade seat opening 40 Tip cap 50 Internal cooling passage 51 Front edge room 52 Central room 53 Rear edge room

Claims (3)

ガスタービンのタービン翼として使用されるタービン翼部品であって、
腹側外壁と前縁外壁と背側外壁とが順に連なって翼の外周形状を形成し内部冷却通路を内部に形成し長手方向に延びる翼壁部と、
前記翼壁部の長手方向の一端と結合した翼座部と、
前記翼壁部の長手方向の他端を閉止する先端キャップ部と、
前記腹側外壁の後縁部と前記背側外壁の後縁部との間を仕切って長手方向に延びる後縁隔壁部と、を備え、
前記内部冷却通路は、前縁寄りの部屋と、該前縁寄りの部屋と翼壁部の先端部分で連通する中央の部屋と、該中央の部屋と翼壁部の根元で連通する後縁寄りの部屋とからなり、
前記翼座部に設けられた翼座開口が前記前縁寄りの部屋に連通し、
前記後縁寄りの部屋が前記腹側外壁の後縁部と前記背側外壁の後縁部との隙間に連通し、
前記腹側外壁の後縁部と前記背側外壁の後縁部との前記隙間が前記腹側外壁の後縁部に設けられた腹側開口に連通し、
前記腹側開口が前方腹側開口と後方腹側開口とを有し、
前記隙間として、前記腹側外壁の後縁部と前記後縁隔壁部との間に形成され前記前方腹側開口に連通する隙間と、前記背側外壁の後縁部と前記後縁隔壁部との間に形成され前記後方腹側開口に連通する隙間とが設けられている、ことを特徴とするタービン翼部品。
A turbine blade component used as a turbine blade of a gas turbine,
An abdominal wall, a leading edge outer wall, and a back outer wall are sequentially connected to form an outer peripheral shape of the blade, and an internal cooling passage is formed inside, and a blade wall portion extending in a longitudinal direction;
A blade seat coupled to one longitudinal end of the blade wall;
A tip cap portion for closing the other end in the longitudinal direction of the wing wall portion;
A rear edge partition wall that extends in the longitudinal direction by partitioning between the rear edge of the ventral outer wall and the rear edge of the back outer wall; and
The internal cooling passage includes a chamber near the leading edge , a central chamber communicating with the leading edge chamber and the tip of the blade wall , and a trailing edge communicating with the central chamber and the root of the blade wall. The room consists of
A wing seat opening provided in the wing seat portion communicates with the room near the front edge ,
The room near the rear edge communicates with the gap between the rear edge of the ventral outer wall and the rear edge of the back outer wall,
And communicating to the edge and the clearance ventral opening in the trailing edge of the ventral side outer wall of the rear edge of the back side wall after the ventral side wall,
The ventral opening has a front ventral opening and a rear ventral opening;
As the gap, a gap formed between a rear edge portion of the ventral outer wall and the rear edge partition wall portion and communicating with the front ventral side opening, a rear edge portion of the back outer wall and the rear edge partition wall portion, A turbine blade component characterized by being provided with a gap formed between and communicating with the rear ventral opening .
前記腹側外壁と前記後縁隔壁部とを長手方向に所定の間隔で結合する複数の腹側結合部と、
前記後縁隔壁部と前記背側外壁とを長手方向に所定の間隔で結合する複数の背側結合部と、を備えたことを特徴とする請求項に記載のタービン翼部品。
A plurality of ventral side coupling portions for coupling the ventral outer wall and the trailing edge partition wall portion at predetermined intervals in the longitudinal direction;
2. The turbine blade component according to claim 1 , further comprising a plurality of back side coupling portions that couple the trailing edge partition wall portion and the back outer wall at a predetermined interval in a longitudinal direction.
前記背側結合部と前記腹側結合部とが長手方向に交互に配置されたことを特徴とする請求項に記載のタービン翼部品。The turbine blade component according to claim 2 , wherein the back-side coupling portion and the ventral-side coupling portion are alternately arranged in the longitudinal direction.
JP2001241783A 2001-08-09 2001-08-09 Turbine blade parts Expired - Lifetime JP4798416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001241783A JP4798416B2 (en) 2001-08-09 2001-08-09 Turbine blade parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001241783A JP4798416B2 (en) 2001-08-09 2001-08-09 Turbine blade parts

Publications (2)

Publication Number Publication Date
JP2003056301A JP2003056301A (en) 2003-02-26
JP4798416B2 true JP4798416B2 (en) 2011-10-19

Family

ID=19072160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001241783A Expired - Lifetime JP4798416B2 (en) 2001-08-09 2001-08-09 Turbine blade parts

Country Status (1)

Country Link
JP (1) JP4798416B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0603705D0 (en) * 2006-02-24 2006-04-05 Rolls Royce Plc Aerofoils
US9422816B2 (en) 2009-06-26 2016-08-23 United Technologies Corporation Airfoil with hybrid drilled and cutback trailing edge
JP2012189026A (en) * 2011-03-11 2012-10-04 Ihi Corp Turbine blade
JP6038620B2 (en) * 2012-12-05 2016-12-07 三菱日立パワーシステムズ株式会社 Gas turbine cooling blade and method of repairing gas turbine cooling blade
CN107013255A (en) * 2017-06-01 2017-08-04 西北工业大学 A kind of turbine blade tail flow-disturbing with continuous straight rib partly splits seam cooling structure
FR3099522B1 (en) * 2019-07-30 2021-08-20 Safran Aircraft Engines Cooling circuit turbomachine moving blade having a double row of discharge slots
FR3102794B1 (en) * 2019-10-31 2022-09-09 Safran Aircraft Engines TURBOMACHINE COMPONENT FEATURING ENHANCED COOLING HOLES
CN114776388B (en) * 2022-05-26 2022-09-23 中国航发四川燃气涡轮研究院 Active strengthening cooling structure for trailing edge of turbine blade of aircraft engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192804A (en) * 1984-03-13 1985-10-01 Toshiba Corp Gas turbine blade
US4601638A (en) * 1984-12-21 1986-07-22 United Technologies Corporation Airfoil trailing edge cooling arrangement
US4898514A (en) * 1987-10-27 1990-02-06 United Technologies Corporation Turbine balance arrangement with integral air passage
US5176499A (en) * 1991-06-24 1993-01-05 General Electric Company Photoetched cooling slots for diffusion bonded airfoils
FR2678318B1 (en) * 1991-06-25 1993-09-10 Snecma COOLED VANE OF TURBINE DISTRIBUTOR.
FR2689176B1 (en) * 1992-03-25 1995-07-13 Snecma DAWN REFRIGERATED FROM TURBO-MACHINE.
US6164913A (en) * 1999-07-26 2000-12-26 General Electric Company Dust resistant airfoil cooling

Also Published As

Publication number Publication date
JP2003056301A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US6164914A (en) Cool tip blade
EP1496204B1 (en) Turbine blade
JP4514877B2 (en) Cooling circuit for gas turbine bucket and upper shroud
JP3978143B2 (en) Stator blade cooling structure and gas turbine
JP5185569B2 (en) Meander cooling circuit and method for cooling shroud
US6554563B2 (en) Tangential flow baffle
JP4287795B2 (en) Cooling circuit for gas turbine blades
JP4486216B2 (en) Airfoil isolation leading edge cooling
US7537431B1 (en) Turbine blade tip with mini-serpentine cooling circuit
JP4463362B2 (en) Internal cooling circuit for gas turbine blades.
US8794921B2 (en) Apparatus and methods for cooling platform regions of turbine rotor blades
EP1057970B1 (en) Impingement cooled airfoil tip
US8096772B2 (en) Turbine vane for a gas turbine engine having serpentine cooling channels within the inner endwall
JP6132546B2 (en) Turbine rotor blade platform cooling
RU2403402C2 (en) Gas turbine engine vane cooling circuits
US20100221121A1 (en) Turbine airfoil cooling system with near wall pin fin cooling chambers
RU2563046C2 (en) Modular vane or blade for gas turbine and gas turbine with such vane or blade
US8167559B2 (en) Turbine vane for a gas turbine engine having serpentine cooling channels within the outer wall
JP4100916B2 (en) Nozzle fillet rear cooling
JP2007154893A (en) Zigzag cooled turbine airfoil
JPH11294101A (en) Back flow multi-stage aerofoil cooling circuit
JP2005127314A (en) Converging pin cooled airfoil
JP6908697B2 (en) Turbine blade with cooling circuit
JP4798416B2 (en) Turbine blade parts
JP6963626B2 (en) Turbine rotor blades with aero foil cooling integrated with collision platform cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4798416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term