JP4797206B2 - Acid milk beverage stabilizer and acid milk beverage - Google Patents

Acid milk beverage stabilizer and acid milk beverage Download PDF

Info

Publication number
JP4797206B2
JP4797206B2 JP2007120821A JP2007120821A JP4797206B2 JP 4797206 B2 JP4797206 B2 JP 4797206B2 JP 2007120821 A JP2007120821 A JP 2007120821A JP 2007120821 A JP2007120821 A JP 2007120821A JP 4797206 B2 JP4797206 B2 JP 4797206B2
Authority
JP
Japan
Prior art keywords
mass
phosphate
stabilizer
starch
prototype
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007120821A
Other languages
Japanese (ja)
Other versions
JP2008271897A (en
Inventor
英樹 藤原
敬司 市原
俊一 武田
誠也 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsutani Chemical Industries Co Ltd
Original Assignee
Matsutani Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsutani Chemical Industries Co Ltd filed Critical Matsutani Chemical Industries Co Ltd
Priority to JP2007120821A priority Critical patent/JP4797206B2/en
Publication of JP2008271897A publication Critical patent/JP2008271897A/en
Application granted granted Critical
Publication of JP4797206B2 publication Critical patent/JP4797206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dairy Products (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

本発明は、モノエステル型リン酸澱粉加水分解物を含んでなる、酸性乳飲料用安定化剤及び該安定化剤を含む酸性乳飲料に関する。   The present invention relates to a stabilizer for acidic milk beverages comprising a monoester-type phosphate starch hydrolyzate and an acidic milk beverage containing the stabilizer.

酸性乳飲料の乳たんぱく質の沈殿を予防するため、ペクチン、カルボキシメチルセルロース、大豆多糖類などの非澱粉多糖類(ガム)が安定化剤として従来使用されてきた(特許文献1〜3)。
乳たんぱく質(カゼイン)は、疎水性結合及び塩架橋により保持されている、おおよそ球状のサブミセル集合体構造をもつ。立体構造的に安定化されているこれらのサブミセルは、約5.2未満のpHで不安定化され、凝固し始める。不安定化は、ドリンクヨーグルトを含めた発酵乳飲料の標準的pHであるカゼインの等電点、約4.6のpHで最大となる。
Non-starch polysaccharides (gum) such as pectin, carboxymethylcellulose, and soybean polysaccharide have been conventionally used as stabilizers to prevent precipitation of milk proteins in acidic milk beverages (Patent Documents 1 to 3).
Milk protein (casein) has an approximately spherical submicelle assembly structure that is retained by hydrophobic bonds and salt bridges. These submicelles that are conformally stabilized become destabilized at a pH below about 5.2 and begin to solidify. Destabilization is maximal at the isoelectric point of casein, which is the standard pH of fermented milk beverages including drink yogurt, at a pH of about 4.6.

従来、たんぱく質の沈殿を防止して飲料を安定化するために、高メトキシペクチンなどのガムが、かかる飲料に添加されている。ペクチンは、おそらくは静電引力によりカゼイン集合体の表面に吸着し、分散剤として作用し、吸着されたカゼイン/ペクチン粒子の電子及び/又は立体構造特性により凝集を防止すると考えられている。また、大豆多糖類が同様の目的で酸性乳飲料の安定化剤として用いられている。
かかるガムは、特に澱粉と比べて高価な配合成分である。従って、酸性乳飲料のコストを低減させるためには、ガムの代替品が望まれる。しかしながら、ガムを除去又は削減すると、飲料の安定性ならびにその他の官能的及び構造的特性にマイナスの影響が及ぼされる。
Traditionally, gums such as high methoxy pectin have been added to such beverages in order to stabilize the beverage by preventing protein precipitation. Pectin is believed to adsorb to the surface of the casein assembly, presumably by electrostatic attraction, to act as a dispersant and to prevent aggregation due to the electronic and / or conformational properties of the adsorbed casein / pectin particles. In addition, soybean polysaccharide is used as a stabilizer for acidic milk beverages for the same purpose.
Such gums are expensive ingredients, especially compared to starch. Therefore, gum replacements are desired to reduce the cost of acidic milk beverages. However, removing or reducing gums has a negative impact on beverage stability and other sensory and structural properties.

これらの問題点を解消するため、リン酸澱粉を含む非分解、非架橋、又は低温溶解性澱粉を酸性乳飲料の安定化剤として用いることが提案されている(特許文献4)。
これらの澱粉は、ドリンクヨーグルトなどの高粘度の酸性乳飲料の安定化には使用できるが、無脂固形分の少ない酸性乳飲料の安定化剤として用いた場合、それ自身の粘度が高いために十分な効果を発揮することができない。
一方、リン酸澱粉を加水分解して得られるリン酸化糖組成物の製造方法及びその用途に関する技術がいくつか開示されているが、その酸性乳飲料への使用に関しては開示されていない(特許文献5〜6)。
従って、ガムなどの高価な成分を代替し、かつ受入れられる官能的及び構造的特性を維持する一方で、酸性乳飲料に安定性を付与できる安定化剤に対する必要性がひき続き存在している。
In order to solve these problems, it has been proposed to use non-degradable, non-crosslinked or low-temperature-soluble starch containing phosphate starch as a stabilizer for acidic milk beverages (Patent Document 4).
These starches can be used to stabilize high-viscosity acidic milk beverages such as drink yogurt, but when used as stabilizers for acidic milk beverages with low non-fat solids, their own viscosity is high. Insufficient effect.
On the other hand, although several techniques relating to a method for producing a phosphorylated saccharide composition obtained by hydrolysis of phosphate starch and its use have been disclosed, their use in acidic milk beverages has not been disclosed (patent document) 5-6).
Accordingly, there continues to be a need for stabilizers that can replace expensive components such as gums and maintain acceptable sensory and structural properties while imparting stability to acidic milk beverages.

特開平11−225669JP-A-11-225669 特開2001−314152JP 2001-314152 A 特開2005−245217JP-A-2005-245217 特開2004−33208JP 2004-33208 A 特開2006−249316JP 2006-249316 A 特開2007−20567JP2007-20567

本発明の目的は、酸性乳飲料の安定化剤を提供することである。
本発明の他の目的は、無脂固形分が比較的少ない酸性乳飲料の安価な安定化剤を提供することである。
本発明のさらに他の目的は、上記安定化剤を含む酸性乳飲料を提供することである。
The object of the present invention is to provide a stabilizer for acidic milk beverages.
Another object of the present invention is to provide an inexpensive stabilizer for acidic milk beverages having a relatively low non-fat solid content.
Still another object of the present invention is to provide an acidic milk drink containing the stabilizer.

本発明者らは、前記課題を解決するために検討を重ねた結果、特定のモノエステル型リン酸澱粉加水分解物がこの目的に適うことを見出し、本発明に到達した。
すなわち、本発明は、下記の酸性乳飲料の安定化剤及びこれにより安定化された酸性乳飲料を提供するものである。
1.20質量%水溶液の粘度が2000mPa・s以下であるモノエステル型リン酸澱粉加水分解物を有効成分とする酸性乳飲料用安定化剤。
2.モノエステル型リン酸澱粉加水分解物の結合リン含量が、0.20質量%以上である、上記1に記載の安定化剤。
3.モノエステル型リン酸澱粉加水分解物が、澱粉のリン酸エステル化時に酸分解し、次いで酵素分解する工程によって得られる、モノエステル型リン酸澱粉の酸、熱及び/又は酵素による分解物である、上記1または2に記載の安定化剤。
4.上記1〜3のいずれか1項に記載の安定化剤を含む酸性乳飲料。
5.酸性乳飲料の無脂固形分が3質量%以下である、上記4に記載の酸性乳飲料。
As a result of repeated studies to solve the above problems, the present inventors have found that a specific monoester-type phosphate starch hydrolyzate is suitable for this purpose, and have reached the present invention.
That is, this invention provides the stabilizer of the following acidic milk drink, and the acidic milk drink stabilized by this.
1. A stabilizer for acidic milk beverages containing, as an active ingredient, a monoester-type phosphate starch hydrolyzate whose viscosity of a 20% by mass aqueous solution is 2000 mPa · s or less.
2. The stabilizer according to 1 above, wherein the monophosphorus phosphate hydrolyzate has a bound phosphorus content of 0.20% by mass or more.
3. The monoester phosphate phosphate hydrolyzate is a product of acid, heat and / or enzyme degradation of monoester phosphate starch obtained by a process of acid degradation at the time of phosphate esterification of starch and then enzymatic degradation. The stabilizer according to 1 or 2 above.
4). The acidic milk drink containing the stabilizer of any one of said 1-3.
5. 5. The acidic milk beverage according to 4 above, wherein the non-fat solid content of the acidic milk beverage is 3% by mass or less.

本発明の安定化剤は、酸性乳飲料の官能的及び構造的特性を維持しながら、酸性乳飲料に安定性を付与でき、しかも安価である。本発明の安定化剤は、無脂固形分含量が低い酸性乳飲料の安定化剤としても有効に安定化効果を発揮する。   The stabilizer of the present invention can impart stability to an acidic milk beverage while maintaining the sensory and structural characteristics of the acidic milk beverage, and is inexpensive. The stabilizer of the present invention effectively exhibits a stabilizing effect as a stabilizer for an acidic milk beverage having a low nonfat solid content.

本発明において、酸性乳飲料とは、乳製品乳酸菌飲料(生菌および殺菌タイプを含む)、乳酸菌飲料(生菌および殺菌タイプを含む)等の乳酸菌により発酵させる工程を含む方法により製造される乳飲料、乳酸発酵工程を含まない方法により製造される酸性乳飲料、およびそれらの飲料を含む食品等をいう。ここで、原材料は、牛乳に限らず加工乳等の液状乳、脱脂粉乳や全粉乳、豆乳等を用いたものも含まれる。また、スターターとして使用できる乳酸菌としては、特に限定はなく、一般に食品工業で乳酸菌発酵に用いられている菌を使用することができる。
本発明の安定化剤は、無脂固形分含量が低い、例えば、0.2〜1.0質量%程度の酸性乳飲料、例えば、商品名でいえばカルピスウオーター等の安定化剤としても有効に安定化効果を発揮する。
In the present invention, the acidic milk drink is milk produced by a method including a step of fermenting with lactic acid bacteria such as dairy lactic acid bacteria drink (including live bacteria and sterilized types), lactic acid bacteria drink (including live bacteria and sterilized types) It refers to beverages, acidic milk beverages produced by a method that does not include a lactic acid fermentation step, and foods containing those beverages. Here, the raw material is not limited to milk, but also includes liquid milk such as processed milk, skim milk powder, whole milk powder, soy milk, and the like. Moreover, there is no limitation in particular as lactic acid bacteria which can be used as a starter, The bacteria generally used for lactic acid bacteria fermentation in the food industry can be used.
The stabilizer of the present invention has a low non-fat solid content, for example, an acidic milk beverage of about 0.2 to 1.0% by mass, for example, effective as a stabilizer for calpis water in the trade name. Provides a stabilizing effect.

本発明に使用するモノエステル型リン酸澱粉加水分解物は、モノエステル型リン酸澱粉の糖鎖が部分的に加水分解されており、B型粘度計で測定された、20質量%水溶液の30℃における粘度が2000mPa・s以下であるものをいう。本発明に使用するモノエステル型リン酸澱粉加水分解物はモノエステル型リン酸澱粉の製造工程において、リン酸化後に分解を受けて生成した低分子化リン酸澱粉及び/又は加水分解後にリン酸化されて生成した低分子化リン酸澱粉のいずれでも良い。以下、本明細書において、本発明に使用するモノエステル型リン酸澱粉加水分解物を、単に「リン酸澱粉加水分解物」ともいう。   The monoester-type phosphate starch hydrolyzate used in the present invention has a sugar chain of the monoester-type phosphate starch partially hydrolyzed, and 30% of a 20% by mass aqueous solution measured with a B-type viscometer. The viscosity at 2000 ° C. is 2000 mPa · s or less. The monoester-type phosphate starch hydrolyzate used in the present invention is phosphorylated after the hydrolysis and / or the low molecular weight phosphate starch produced by degradation after phosphorylation in the production process of monoester-type phosphate starch. Any of the low molecular phosphate phosphates produced by Hereinafter, in the present specification, the monoester-type phosphate starch hydrolyzate used in the present invention is also simply referred to as “phosphate starch hydrolyzate”.

本発明に使用するリン酸澱粉加水分解物の結合リン含量は、多いほど酸性乳飲料を安定化する効果が高く、具体的には0.20質量%以上であることが好ましいが、製造の難易度と得られる安定化効果とのバランスから、結合リン含量は1質量%程度までが適当である。結合リン含量が0.20質量%未満であると酸性乳飲料を安定化する効果を十分に発揮することができない傾向がある。
また、酸性乳飲料を安定化する効果はリン酸澱粉加水分解物の粘度によって影響を受けるため、その20質量%の水溶液における粘度は2000mPa・s以下であることが必要であり、好ましくは5〜100mPa・s、さらに好ましくは10〜30mPa・sである。粘度がこの範囲外では酸性乳飲料を安定化することが困難になる場合が多い。しかし、粘度はリン酸澱粉加水分解物の結合リン含量及び分解度の影響を受け、結合リン含量が同じであれば粘度は分解度に依存して低下し、逆に分解度が同じであれば、粘度は結合リン含量に依存して上昇する。
The higher the bound phosphorus content of the phosphate starch hydrolyzate used in the present invention, the higher the effect of stabilizing the acidic milk beverage. Specifically, it is preferably 0.20% by mass or more. In view of the balance between the degree of stabilization and the resulting stabilizing effect, the bound phosphorus content is suitably up to about 1% by mass. If the bound phosphorus content is less than 0.20% by mass, the effect of stabilizing the acidic milk beverage tends to be insufficient.
Moreover, since the effect of stabilizing an acidic milk beverage is affected by the viscosity of the phosphate starch hydrolyzate, the viscosity in a 20% by mass aqueous solution must be 2000 mPa · s or less, preferably 5 to 5 mPa · s. 100 mPa · s, more preferably 10 to 30 mPa · s. If the viscosity is outside this range, it is often difficult to stabilize the acidic milk beverage. However, the viscosity is affected by the bound phosphorus content and degree of degradation of the starch phosphate hydrolyzate. If the bound phosphorus content is the same, the viscosity decreases depending on the degree of degradation, and conversely if the degree of degradation is the same. The viscosity increases depending on the bound phosphorus content.

本発明に使用するリン酸澱粉加水分解物は、従来知られている一般的な方法を用いて製造することができる。例えば、モノエステル型リン酸澱粉にα−アミラーゼ、β−アミラーゼ又はそれらの組み合わせを作用させて加水分解すればよい。モノエステル型リン酸澱粉には、モノリン酸エステルを含む天然型リン酸澱粉を用いることも可能であるが、一般的な澱粉にリン酸化剤を作用させて得られるモノエステル型リン酸澱粉を用いることもできる(特許文献4〜6)。
例えば、澱粉にリン酸一ナトリウムなどのリン酸塩の水溶液を噴霧したものや、澱粉をリン酸塩の水溶液に浸漬後、ろ過乾燥したものを、水分が5質量%未満になるまで90〜100℃で予備加熱し、次いで150℃で10〜120分焙焼する。冷却後、50質量%メタノール、次いで95質量%エタノールで洗浄し、乾燥することにより、モノエステル型リン酸澱粉加水分解物を得ることができる。
The phosphate starch hydrolyzate used in the present invention can be produced by using a conventionally known general method. For example, α-amylase, β-amylase, or a combination thereof may be allowed to act on monoester phosphate phosphate to cause hydrolysis. As the monoester phosphate starch, it is possible to use a natural phosphate starch containing a monophosphate ester, but use a monoester phosphate starch obtained by reacting a general starch with a phosphorylating agent. (Patent Documents 4 to 6).
For example, when starch is sprayed with an aqueous solution of phosphate such as monosodium phosphate, or after starch is immersed in an aqueous solution of phosphate and filtered and dried, it is 90-100 until the water content becomes less than 5% by mass. Preheat at <RTIgt; C </ RTI> and then roast at 150 <0> C for 10 to 120 minutes. After cooling, a monoester-type phosphate starch hydrolyzate can be obtained by washing with 50% by mass methanol and then 95% by mass ethanol and drying.

モノエステル型リン酸澱粉の製造に使用する原料澱粉は、特に限定されないが、好ましくは米又はコーン由来のワキシー澱粉である。ワキシー澱粉を原料として使用した場合、得られるリン酸化糖組成物の酸性乳飲料に対する安定化効果がさらに高まる。
なお、一般的な澱粉にリン酸化剤を作用させてモノエステル型リン酸澱粉を製造する際に、リン酸化剤のpHを下げて加熱すると生成したモノエステル型リン酸澱粉が加水分解を受けて低分子化したり、低分子化した澱粉がリン酸化されて低分子化リン酸澱粉が生成したりすることがあるが、このような低分子化リン酸澱粉も本発明のリン酸澱粉加水分解物に含まれる。また、天然に存在するリン酸澱粉としての馬鈴薯澱粉を酸や酵素で分解し、リン酸含有成分を分離してリン酸含量を高めた澱粉分解物も本発明のリン酸澱粉加水分解物に含まれる。
リン酸澱粉加水分解物の分解度はその20質量%水溶液の30℃における粘度で相対的に評価することができる。
Although the raw material starch used for manufacture of a monoester type | mold phosphate starch is not specifically limited, Preferably it is a waxy starch derived from a rice or corn. When waxy starch is used as a raw material, the stabilizing effect on the acidic milk beverage of the resulting phosphorylated saccharide composition is further enhanced.
In addition, when producing a monoester phosphate starch by reacting a general starch with a phosphorylating agent, the monoester phosphate starch generated when the pH of the phosphorylating agent is lowered and heated is subject to hydrolysis. The low molecular weight starch or the low molecular weight starch may be phosphorylated to produce a low molecular weight phosphate starch. Such a low molecular weight phosphate starch is also a phosphate starch hydrolyzate of the present invention. include. Also included in the phosphate starch hydrolyzate of the present invention is a starch degradation product in which potato starch as a naturally occurring phosphate starch is decomposed with an acid or enzyme and the phosphoric acid-containing component is separated to increase the phosphoric acid content. It is.
The degree of degradation of the phosphate starch hydrolyzate can be relatively evaluated by the viscosity at 30 ° C. of the 20 mass% aqueous solution.

試料中の全リン含量は試料を湿式灰化して無機リンとして測定する。具体的には試料1gを容器にとり、これに60質量%過塩素酸5ml及び60%硝酸10mlを加え、ドラフト中で加熱灰化する。一方、灰化前の試料中の遊離の無機リン含量は、Fiske−Subbarow法により測定する。測定値は乾燥質量に対する質量%で表示する。次式により結合リン含量を算出する。
結合リン含量(質量%)=全リン含量(質量%)−無機リン含量(質量%)
本発明に使用するリン酸澱粉加水分解物の結合リン含量は高い方が良いので、その原料となるモノエステル型リン酸澱粉の結合リン含量も高いことが望ましく、具体的には0.20質量%以上、さらに好ましくは0.5〜1.5質量%であることが好ましい。
このようにして調製されるリン酸澱粉加水分解物は、酸性乳飲料の安価な安定化剤として使用することができる。一般的な添加量は、酸性乳飲料の種類にもよるが、0.5〜2.0%(w/v)である。
The total phosphorus content in the sample is measured as inorganic phosphorus by wet ashing the sample. Specifically, 1 g of a sample is placed in a container, and 5 ml of 60% by mass perchloric acid and 10 ml of 60% nitric acid are added thereto, and the mixture is incinerated by heating in a draft. On the other hand, the free inorganic phosphorus content in the sample before ashing is measured by the Fiske-Subbarow method. The measured value is displayed in mass% with respect to the dry mass. The bound phosphorus content is calculated by the following formula.
Bound phosphorus content (mass%) = total phosphorus content (mass%) − inorganic phosphorus content (mass%)
Since the higher the bound phosphorus content of the phosphate starch hydrolyzate used in the present invention, the higher the bound phosphorus content of the monoester phosphate starch used as the raw material is desirable, specifically 0.20 mass. % Or more, more preferably 0.5 to 1.5% by mass.
The phosphate starch hydrolyzate thus prepared can be used as an inexpensive stabilizer for acidic milk beverages. A general addition amount is 0.5 to 2.0% (w / v) although it depends on the type of the acidic milk beverage.

本発明の安定化剤を用いて酸性乳飲料を製造する場合、その添加方法は、大豆多糖類やペクチンなどの従来使用されている安定化剤と同様であり、安定化剤と乳たんぱく質を水溶液中で混合した後にpHを3.3〜4.2程度に調整し、85〜95℃で1〜30分間加熱殺菌する方法を例示することが出来る。
本発明の酸性乳飲料に対する安定化剤の効果は、例えば以下の方法によって評価することができる。すなわち、脱脂粉乳を2質量%となるように水に懸濁し、5000rpmで5分間均質化する。一方、試料の1〜2質量%水溶液を調製する。マグネチックスターラーで攪拌しながら両者を等量混合し、5質量%クエン酸でpH3.7に調整する。このけん濁液の平均粒径を、島津製作所製の粒度分布測定装置(SALD−1000型)を用いて測定する。平均粒径が5.0μm以下であれば安定化剤候補として選択し、さらに85℃、30分加熱し、再度平均粒径を測定して、平均粒径が1.0μm以下であれば安定化効果があると評価する。
When producing an acidic milk beverage using the stabilizer of the present invention, the method of addition is the same as that of conventionally used stabilizers such as soybean polysaccharides and pectin, and the stabilizer and milk protein are dissolved in an aqueous solution. An example is a method in which the pH is adjusted to about 3.3 to 4.2 after mixing in the mixture and sterilized by heating at 85 to 95 ° C. for 1 to 30 minutes.
The effect of the stabilizer on the acidic milk beverage of the present invention can be evaluated, for example, by the following method. That is, skim milk powder is suspended in water to 2% by mass and homogenized at 5000 rpm for 5 minutes. On the other hand, a 1-2% by mass aqueous solution of the sample is prepared. While stirring with a magnetic stirrer, both are mixed in equal amounts and adjusted to pH 3.7 with 5% by mass citric acid. The average particle size of the suspension is measured using a particle size distribution measuring device (SALD-1000 type) manufactured by Shimadzu Corporation. If the average particle size is 5.0 μm or less, it is selected as a stabilizer candidate, further heated at 85 ° C. for 30 minutes, measured again, and if the average particle size is 1.0 μm or less, it is stabilized. Evaluate it as effective.

以下、参考例及び実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1(リン酸澱粉加水分解物の調製)
試作品1
ワキシーコーンスターチ5.26kgをリン酸1ナトリウム300g、リン酸2ナトリウム600gを溶解した水7.2kgに25℃で浸漬し、30分間攪拌した。その後、遠心分離し脱水したものを棚式乾燥機で45℃で20時間乾燥した。これを焙焼機にて水分が5質量%以下になるまで45℃で2時間予備乾燥させた後、150℃で60分焙焼し、10倍量の50質量%メタノールにより洗浄し、さらに95質量%エタノールにて洗浄した後乾燥し、未分解リン酸澱粉(試作品1)を得た。
Hereinafter, although a reference example and an example explain the present invention still in detail, the present invention is not limited to these examples.
Example 1 (Preparation of phosphate starch hydrolyzate)
Prototype 1
Waxy corn starch (5.26 kg) was immersed in 7.2 kg of water in which 300 g of monosodium phosphate and 600 g of disodium phosphate were dissolved, and stirred for 30 minutes. Thereafter, the product after centrifugation and dehydration was dried with a shelf dryer at 45 ° C. for 20 hours. This was preliminarily dried at 45 ° C. for 2 hours until the water content became 5% by mass or less in a roasting machine, then roasted at 150 ° C. for 60 minutes, washed with 10 times the amount of 50% by mass methanol, and further 95 It was washed with mass% ethanol and dried to obtain undegraded phosphate starch (Prototype 1).

試作品2
ワキシーコンスターチ5.84kgを焙焼機に入れ、45℃で加熱攪拌しながら、リン酸1ナトリウム500gを水600gに溶解させた水溶液を噴霧し、水分が5質量%以下になるまで95℃で2時間予備乾燥させた。次いで、150℃で10分焙焼し、10倍量の50質量%メタノールにより洗浄し、さらに95質量%エタノールにて洗浄した後乾燥し、リン酸澱粉加水分解物(試作品2)を得た。
Prototype 2
5.84 kg of waxy corn starch was put in a roaster, and an aqueous solution in which 500 g of monosodium phosphate was dissolved in 600 g of water was sprayed while heating and stirring at 45 ° C. Pre-dried for hours. Next, it was roasted at 150 ° C. for 10 minutes, washed with 10 times 50% by mass of methanol, further washed with 95% by mass of ethanol and then dried to obtain a phosphate starch hydrolyzate (prototype 2). .

試作品3
焙焼時間を80分とする以外は試作品2と同様の方法で、リン酸澱粉加水分解物(試作品3)を得た。
試作品4
1kgの試作品3を2kgの水に分散させたものにβ−アミラーゼ(ビオザイムM5、天野エンザイム株式会社製)0.05質量%(試作品3に対する質量%)を65℃で2時間反応させた後、85℃で10分間保持して反応を停止した。これを珪藻土をろ過助剤として用いろ過したものを噴霧乾燥させリン酸澱粉加水分解物(試作品4)を得た。
Prototype 3
A phosphate starch hydrolyzate (prototype 3) was obtained in the same manner as in prototype 2, except that the baking time was 80 minutes.
Prototype 4
Β-Amylase (Biozyme M5, Amano Enzyme Co., Ltd.) 0.05 mass% (mass% relative to prototype 3) was reacted at 65 ° C. for 2 hours to 1 kg of prototype 3 dispersed in 2 kg of water. Thereafter, the reaction was stopped by holding at 85 ° C. for 10 minutes. What filtered this using diatomaceous earth as a filter aid was spray-dried, and the phosphate starch hydrolyzate (prototype 4) was obtained.

試作品5
1kgの試作品3を2kgの水に分散させたものにα−アミラーゼ(クライスターゼL1、天野エンザイム株式会社製)0.02質量%(試作品3に対する質量%)を85℃で15分反応させた後、95℃で10分間保持して反応を停止し、さらにβ−アミラーゼ(ビオザイムM5、天野エンザイム株式会社製)0.05質量%(試作品3に対する質量%)を65℃で2時間反応させた後、85℃で10分間保持して反応を停止した。これを珪藻土をろ過助剤として用いろ過したものを噴霧乾燥させ、リン酸澱粉加水分解物(試作品5)を得た。
試作品6
1kgの試作品3を2kgの水に分散させたものにα−アミラーゼ(クライスターゼL1、天野エンザイム株式会社製)0.02質量%(試作品3に対する質量%)を85℃で一時間反応させた後、95℃で10分間保持して反応を停止した。これを珪藻土をろ過助剤として用いろ過したものを噴霧乾燥させリン酸澱粉加水分解物(試作品6)を得た。
試作品7
1kgの試作品2を2kgの水に分散させたものにα−アミラーゼ(クライスターゼL1、天野エンザイム株式会社製)0.04質量%(試作品2に対する質量%)を85℃で15分反応させた後、95℃で10分間保持して反応を停止し、さらにβ−アミラーゼ(ビオザイムM5、天野エンザイム株式会社製)0.05質量%(試作品2に対する質量%)を65℃で2時間反応させた後、85℃で10分間保持して反応を停止した。これを珪藻土をろ過助剤として用いろ過したものを噴霧乾燥させリン酸澱粉加水分解物(試作品7)を得た。
Prototype 5
1 kg of Prototype 3 dispersed in 2 kg of water was reacted with α-amylase (Chrytase L1, Amano Enzyme Co., Ltd.) 0.02% by mass (mass% with respect to Prototype 3) at 85 ° C. for 15 minutes. After that, the reaction was stopped by holding at 95 ° C. for 10 minutes, and further 0.05% by mass of β-amylase (Biozyme M5, manufactured by Amano Enzyme Co., Ltd.) (mass% with respect to prototype 3) was reacted at 65 ° C. for 2 hours. Then, the reaction was stopped by holding at 85 ° C. for 10 minutes. What filtered this using diatomaceous earth as a filter aid was spray-dried, and the phosphate starch hydrolyzate (prototype 5) was obtained.
Prototype 6
1 kg of Prototype 3 dispersed in 2 kg of water was reacted with α-amylase (Chrytase L1, Amano Enzyme Co., Ltd.) 0.02% by mass (mass% with respect to Prototype 3) at 85 ° C. for 1 hour. Thereafter, the reaction was stopped by holding at 95 ° C. for 10 minutes. What filtered this using diatomaceous earth as a filter aid was spray-dried, and the phosphate starch hydrolyzate (prototype 6) was obtained.
Prototype 7
1 kg of Prototype 2 dispersed in 2 kg of water was reacted with α-amylase (Chrytase L1, Amano Enzyme Co., Ltd.) 0.04% by mass (mass% with respect to Prototype 2) at 85 ° C. for 15 minutes. After that, the reaction was stopped by holding at 95 ° C. for 10 minutes, and further 0.05% by mass of β-amylase (Biozyme M5, Amano Enzyme Co., Ltd.) (mass% with respect to prototype 2) was reacted at 65 ° C. for 2 hours. Then, the reaction was stopped by holding at 85 ° C. for 10 minutes. What filtered this using diatomaceous earth as a filter aid was spray-dried, and the phosphate starch hydrolyzate (prototype 7) was obtained.

実施例2(リン酸澱粉加水分解物のリン含量及び粘度の測定)
リン酸澱粉加水分解物のリン含量を測定するため、各試作品にα−アミラーゼ(ターマミル120L、ノボザイムズジャパン株式会社製)0.1質量%(対乾燥試料)を加えて95℃、10分間加熱分解して均一な溶液を調製した。直ちに水道水で冷却し、塩酸を加えてpHを2に調整してからFiske−Subbarow法で無機リン含量を測定した。全リン含量は無機リン含量測定時にpH2に調整した試料を湿式灰化処理してから無機リンを測定した。
また、各試作品の20質量%水溶液を調製し、30℃における粘度をB型粘度計で測定した。リン含量及び粘度の測定結果を表1に示す。
Example 2 (Measurement of phosphorus content and viscosity of phosphate starch hydrolyzate)
In order to measure the phosphorus content of the phosphate starch hydrolyzate, 0.1% by mass of α-amylase (Termamyl 120L, Novozymes Japan Ltd.) (vs. dry sample) was added to each prototype at 95 ° C., 10 ° C. A homogeneous solution was prepared by thermal decomposition for minutes. Immediately after cooling with tap water, hydrochloric acid was added to adjust the pH to 2, and then the inorganic phosphorus content was measured by the Fishe-Subbarow method. The total phosphorus content was measured by subjecting the sample adjusted to pH 2 when measuring the inorganic phosphorus content to wet ashing, and then measuring inorganic phosphorus.
Moreover, 20 mass% aqueous solution of each prototype was prepared, and the viscosity in 30 degreeC was measured with the B-type viscometer. Table 1 shows the results of measurement of phosphorus content and viscosity.

Figure 0004797206
Figure 0004797206

実施例3(乳たんぱく質溶液に対する試作品の安定化効果の測定)
実施例1で得られた試作品を用いて酸性下における乳たんぱく質溶液の安定化に対する効果を調べた。脱脂粉乳の1質量%水溶液50gと予め加熱溶解した試作品の2質量%水溶液50gとを混合した後、攪拌しながら5質量%クエン酸水溶液にてpHを3.7まで低下させた。この混合液の懸濁粒子の平均粒径を、加熱前及び85℃、30分加熱後に、それぞれ粒度分布測定装置(形式SALD−1000、株式会社島津製作所製)を用いて測定した。その結果を表2に示す。
Example 3 (Measurement of Stabilization Effect of Prototype on Milk Protein Solution)
Using the prototype obtained in Example 1, the effect on the stabilization of the milk protein solution under acidic conditions was investigated. After mixing 50 g of a 1% by weight aqueous solution of skim milk powder and 50 g of a 2% by weight aqueous solution of a prototype which had been dissolved by heating in advance, the pH was lowered to 3.7 with a 5% by weight aqueous citric acid solution while stirring. The average particle size of the suspended particles of this mixed solution was measured using a particle size distribution measuring device (model SALD-1000, manufactured by Shimadzu Corporation) before heating and after heating at 85 ° C. for 30 minutes. The results are shown in Table 2.

Figure 0004797206
Figure 0004797206

表1及び表2の結果より未分解リン酸澱粉(試作品1)よりも分解されたリン酸澱粉(リン酸澱粉加水分解物)の方が乳たんぱく質の安定化に効果があることが確認できた。
実施例4(酸性乳飲料の試作)
実施例1で得られた試作品5を用いて酸性乳飲料を試作した。脱脂粉乳の4質量%水溶液25gと予め加熱溶解した試作品5の4質量%水溶液25gを混合した後、攪拌しながら果糖ブドウ糖液糖22質量%、クエン酸0.4質量%及びクエン酸ナトリウム0.1質量%を含む水溶液50gを添加した。これをT.K.ホモミキサー(プライミクス株式会社製)で5,000rpm、5分間均質化し、さらに高圧ホモジナイザー(インベンシス システムス株式会社 日本APV社製)により200kg/cm2で均質化した後、85℃で30分間殺菌した。得られた酸性乳飲料の平均粒径を、粒度分布測定装置を用いて測定した。結果を表3に示す。
From the results of Tables 1 and 2, it can be confirmed that the decomposed phosphate starch (phosphate starch hydrolyzate) is more effective in stabilizing the milk protein than the undegraded phosphate starch (prototype 1). It was.
Example 4 (Prototype of acidic milk beverage)
An acidic milk drink was made using the prototype 5 obtained in Example 1. After mixing 25 g of a 4% by weight aqueous solution of skim milk powder and 25 g of a 4% by weight aqueous solution of Prototype 5 dissolved in advance, 22% by weight of fructose-glucose liquid sugar, 0.4% by weight of citric acid and 0% of sodium citrate are mixed. . 50 g of an aqueous solution containing 1% by mass was added. This is T.W. K. Homogenized at 5,000 rpm for 5 minutes with a homomixer (Primics Co., Ltd.), further homogenized at 200 kg / cm 2 with a high-pressure homogenizer (Invensys Systems Japan APV Co., Ltd.), and then sterilized at 85 ° C. for 30 minutes. . The average particle size of the obtained acidic milk beverage was measured using a particle size distribution measuring device. The results are shown in Table 3.

Figure 0004797206
Figure 0004797206

表3の結果より、本発明の試作品は酸性乳飲料の安定化に効果があることが確認できた。
実施例5(ワキシーでない澱粉由来のリン酸澱粉加水分解物の調製及び評価)
タピオカ澱粉5kgを、リン酸1ナトリウム500gを溶解した水6.0kgに25℃で浸漬し、30分間攪拌した。その後、遠心分離して脱水したものを棚式乾燥機で乾燥した。これを焙焼機にて水分が5質量%以下になるまで95℃で予備乾燥させた後、150℃で60分焙焼し、10倍量の50質量%メタノールにより洗浄し、さらに95質量%エタノールにて洗浄した後、45℃で乾燥し、リン酸澱粉加水分解物を得た。その1kgを2kgの水に分散させたものにα−アミラーゼ(クライスターゼL1、天野エンザイム株式会社製)0.04質量%(リン酸澱粉加水分解物に対する質量%)を85℃で15分反応させた後、95℃で10分間保持して反応を停止し、さらにβ−アミラーゼ(ビオザイムM5、天野エンザイム株式会社製)0.05質量%(リン酸澱粉加水分解物に対する質量%)を65℃で2時間反応させた後、85℃で10分間保持して反応を停止した。これを珪藻土をろ過助剤として用いろ過したものを噴霧乾燥させリン酸澱粉加水分解物(試作品8)を得た。試作品8の結合リン含量及び粘度はそれぞれ1.23質量%及び20mPa・sであった。
さらに、試作品8を用いて酸性下における乳たんぱく質溶液の安定化に対する効果を調べた。脱脂粉乳2質量%水溶液50gと予め加熱溶解した試作品の2質量%水溶液50gとを混合した後、攪拌しながら5質量%クエン酸水溶液にてpHを3.7まで低下させた。この混合液を85℃、30分加熱した後、粒度分布測定装置(形式SALD−1000、株式会社島津製作所製)を用いて懸濁粒子の平均粒径を測定したところ、0.50μmであった。
以上の結果から、ワキシーでない澱粉由来のリン酸澱粉加水分解物についても酸性乳飲料に対する安定化効果が確認された。
From the results in Table 3, it was confirmed that the prototype of the present invention was effective in stabilizing the acidic milk beverage.
Example 5 (Preparation and Evaluation of Phosphate Starch Hydrolyzate Derived from Non-waxy Starch)
5 kg of tapioca starch was immersed at 25 ° C. in 6.0 kg of water in which 500 g of monosodium phosphate was dissolved, and stirred for 30 minutes. Thereafter, the product that had been centrifuged and dehydrated was dried with a shelf dryer. This was pre-dried at 95 ° C. until the water content became 5% by mass or less in a roaster, then roasted at 150 ° C. for 60 minutes, washed with 10 times the amount of 50% by mass, and further 95% by mass. After washing with ethanol, it was dried at 45 ° C. to obtain a phosphate starch hydrolyzate. Α-amylase (Chrytase L1, Amano Enzyme Co., Ltd.) 0.04 mass% (mass% based on phosphate starch hydrolyzate) was reacted at 85 ° C. for 15 minutes to 1 kg of the mixture dispersed in 2 kg of water. After that, the reaction was stopped by holding at 95 ° C. for 10 minutes, and 0.05% by mass of β-amylase (Biozyme M5, manufactured by Amano Enzyme Co., Ltd.) 0.05% by mass (mass% with respect to phosphate starch hydrolyzate) at 65 ° C. After reacting for 2 hours, the reaction was stopped by holding at 85 ° C. for 10 minutes. What filtered this using diatomaceous earth as a filter aid was spray-dried, and the phosphate starch hydrolyzate (prototype 8) was obtained. The bound phosphorus content and viscosity of prototype 8 were 1.23 mass% and 20 mPa · s, respectively.
Furthermore, the effect on the stabilization of the milk protein solution under acidic conditions was examined using prototype 8. After mixing 50 g of a 2% by weight aqueous solution of skim milk powder and 50 g of a 2% by weight aqueous solution of a prototype that had been dissolved by heating in advance, the pH was lowered to 3.7 with an aqueous 5% by weight citric acid solution while stirring. After heating this mixed liquid at 85 ° C. for 30 minutes, the average particle diameter of the suspended particles was measured using a particle size distribution analyzer (type SALD-1000, manufactured by Shimadzu Corporation), and was found to be 0.50 μm. .
From the above result, the stabilizing effect with respect to acidic milk drink was confirmed also about the starch hydrolyzate derived from starch which is not waxy.

Claims (4)

20質量%水溶液の粘度が10〜2000mPa・sであり、結合リン含量が、0.20〜1.0質量%である、モノエステル型リン酸澱粉加水分解物を有効成分とする酸性乳飲料用安定化剤。 A 20% by mass aqueous solution having a viscosity of 10 to 2000 mPa · s and a bound phosphorus content of 0.20 to 1.0% by mass for an acidic milk beverage containing a monoester phosphate starch hydrolyzate as an active ingredient Stabilizer. モノエステル型リン酸澱粉加水分解物が、澱粉のリン酸エステル化時に酸分解し、次いで酵素分解する工程によって得られる、モノエステル型リン酸澱粉の酸、熱及び/又は酵素による分解物である、請求項1に記載の安定化剤。 The monoester phosphate phosphate hydrolyzate is a product of acid, heat and / or enzyme degradation of monoester phosphate starch obtained by a process of acid degradation at the time of phosphate esterification of starch and then enzymatic degradation. The stabilizer according to claim 1. 請求項1又は2に記載の安定化剤を含む酸性乳飲料。 The acidic milk drink containing the stabilizer of Claim 1 or 2 . 酸性乳飲料の無脂固形分が3質量%以下である、請求項に記載の酸性乳飲料。 Nonfat solids content of the acidic milk drink of 3 mass% or less, according to claim 3 acidic milk beverages.
JP2007120821A 2007-05-01 2007-05-01 Acid milk beverage stabilizer and acid milk beverage Active JP4797206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120821A JP4797206B2 (en) 2007-05-01 2007-05-01 Acid milk beverage stabilizer and acid milk beverage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120821A JP4797206B2 (en) 2007-05-01 2007-05-01 Acid milk beverage stabilizer and acid milk beverage

Publications (2)

Publication Number Publication Date
JP2008271897A JP2008271897A (en) 2008-11-13
JP4797206B2 true JP4797206B2 (en) 2011-10-19

Family

ID=40050673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120821A Active JP4797206B2 (en) 2007-05-01 2007-05-01 Acid milk beverage stabilizer and acid milk beverage

Country Status (1)

Country Link
JP (1) JP4797206B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443173A (en) * 1987-08-07 1989-02-15 Kanebo Ltd Tasteful drink sealed in container
JP2002020398A (en) * 1994-08-11 2002-01-23 Ezaki Glico Co Ltd Phosphorylated sugar and method for producing the same
US20030148011A1 (en) * 2002-02-06 2003-08-07 Trksak Ralph M. Stabilizer for acidified milk beverages
JP2006249316A (en) * 2005-03-11 2006-09-21 Oji Paper Co Ltd Producing method of starch phosphate
JP2007020567A (en) * 2005-06-16 2007-02-01 Oji Paper Co Ltd Phosphorylated saccharide composition and method for producing the same

Also Published As

Publication number Publication date
JP2008271897A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
Zembyla et al. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review
CN101001538B (en) Calcium stable high acyl gellan gum for enhanced colloidal stability in beverages
EP2904907B1 (en) Emulsion-like compositions
JP2008307062A (en) Method for producing stabilized syrup
CN103416642A (en) Delayed gelling starch compositions
US4159982A (en) Protein/starch complex
JP2013013393A (en) Whipped cream stabilizer and stabilizing method
EA017026B1 (en) Food product comprising cream substitute and/or fat replacer and process for producing same
CZ76094A3 (en) Process for preparing products for starch degradation with narrow range of molecular weight and the use of such substances for the preparation of pharmaceutical compositions
JP6940259B2 (en) Low protein yogurt containing modified starch
KR20160021048A (en) Food products containing a modified waxy cassava starch
AU2014305725B2 (en) Composition for preparing set-type fermented milk, set-type fermented milk, and method for preparing set-type fermented milk
JP3488805B2 (en) Method for producing acidic milk beverage
JP4797206B2 (en) Acid milk beverage stabilizer and acid milk beverage
KR20140081069A (en) A fat replacer based on hydrocarbon and a food product comprising the same
JP2009511048A (en) Acidified dairy products containing pectin
CN102958383B (en) Acidic oil-in-water type emulsion food
JP2021528987A (en) Food composition containing vegetable protein and potassium metaphosphate
WO2018098181A1 (en) Starch-based texturizers for low protein yogurt compositions and method of making a low-protein yogurt
JP2000189071A (en) Water insoluble or difficultly soluble mineral dispersion composition
JP2013046605A (en) Dispersing agent for protein-containing food and beverage, and protein-containing food or beverage using the same
CN112106834A (en) Yoghourt containing clean label starch and preparation method thereof
CN109996446A (en) Starch adjusting material, soured milk composition and the method for preparing soured milk composition for low-protein Yoghourt
WO2016066751A1 (en) Process for preparing an oil-in-water emulsified food product
RU2827605C1 (en) Milk product and method for preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4797206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250