JP4795018B2 - Autofocus imaging optical system - Google Patents

Autofocus imaging optical system Download PDF

Info

Publication number
JP4795018B2
JP4795018B2 JP2005378656A JP2005378656A JP4795018B2 JP 4795018 B2 JP4795018 B2 JP 4795018B2 JP 2005378656 A JP2005378656 A JP 2005378656A JP 2005378656 A JP2005378656 A JP 2005378656A JP 4795018 B2 JP4795018 B2 JP 4795018B2
Authority
JP
Japan
Prior art keywords
optical system
focus
optical path
focal length
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005378656A
Other languages
Japanese (ja)
Other versions
JP2007178821A (en
Inventor
毅 若園
塗師  隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005378656A priority Critical patent/JP4795018B2/en
Publication of JP2007178821A publication Critical patent/JP2007178821A/en
Application granted granted Critical
Publication of JP4795018B2 publication Critical patent/JP4795018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光路中に分岐光学系を有し、分岐光束を用いてオートフォーカスを行うオートフォーカス結像光学系に関するものである。   The present invention relates to an autofocus imaging optical system that has a branching optical system in an optical path and performs autofocus using a branched light beam.

スチルカメラやビデオカメラ等の撮影装置におけるオートフォーカス技術としては、従来から種々の方式が提案されている。特に、光路中に分岐光学系を配置し、分岐光路中にオートフォーカス検出手段を設けたレンズ・撮像装置が特許文献1〜3に提案されている。   Conventionally, various methods have been proposed as an autofocus technique in a photographing apparatus such as a still camera or a video camera. In particular, Patent Documents 1 to 3 propose lenses and imaging devices in which a branching optical system is disposed in the optical path and an autofocus detection unit is provided in the branching optical path.

これらの特許文献のように、分岐光学系からの分岐光束により合焦状態を検出しオートフォーカスを行う撮像システムでは、原則として分岐光学系以降の合焦検出側の光学系と撮像側の光学系との関係を一定とすることが必要である。これにより次の項目が達成され、適切な合焦制御が可能となる。   As in these patent documents, in an imaging system that detects an in-focus state by a branched light beam from a branching optical system and performs autofocusing, in principle, the optical system on the focus detection side and the optical system on the imaging side after the branching optical system It is necessary to make the relationship between and constant. As a result, the following items are achieved, and appropriate focusing control is possible.

(a)合焦検出手段からの検出値と撮像面での合焦状態の関係が一定に保たれる。   (A) The relationship between the detection value from the focus detection means and the focus state on the imaging surface is kept constant.

(b)画面周辺部の被写体に対するオートフォーカスを考えた場合に、撮像面上の所定位置に対応する測距枠の位置関係が一定に保たれる。   (B) When considering auto-focusing on the subject in the periphery of the screen, the positional relationship of the distance measurement frames corresponding to a predetermined position on the imaging surface is kept constant.

更に、フォーカス移動群の単位操作量とピント変化量の関係を所定の関係とすることが望ましい。それにより、高速・高精度のオートフォーカスが達成可能である。   Furthermore, it is desirable that the relationship between the unit operation amount of the focus movement group and the focus change amount be a predetermined relationship. As a result, high-speed and high-precision autofocus can be achieved.

(c)フォーカス移動群の単位操作量とピント変化量の関係を所定の関係とし、この関係に基づいてフォーカス移動群の操作速度や位置制御精度を規定できる。   (C) The relationship between the unit operation amount of the focus movement group and the focus change amount is set as a predetermined relationship, and the operation speed and position control accuracy of the focus movement group can be defined based on this relationship.

特開昭55−76312号公報JP-A-55-76312 特開平9−274130号公報JP-A-9-274130 特開2002−365517号公報JP 2002-365517 A

しかし、一般にテレビカメラ用の結像光学系では、結像光学系内に挿脱可能な焦点距離変換光学系が配置されている。この焦点距離変換光学系の光路への挿脱によって、分岐光学系以降の合焦検出側の光学系と撮像側の光学系との関係が維持できなくなるので、上述の(a)、(b)を達成できなくなるという問題点がある。   However, generally, in an imaging optical system for a television camera, a focal length conversion optical system that can be inserted into and removed from the imaging optical system is arranged. Since the focal length converting optical system is inserted into and removed from the optical path, the relationship between the focusing detection side optical system and the imaging side optical system after the branching optical system cannot be maintained. There is a problem that cannot be achieved.

また、焦点距離変換光学系の挿脱によってフォーカス移動群の単位操作量とピント変化量の関係を維持することができなくなり、(c)を達成することができなくなるという問題点がある。   Further, there is a problem that the relationship between the unit operation amount of the focus movement group and the focus change amount cannot be maintained by inserting / removing the focal length conversion optical system, and (c) cannot be achieved.

本発明の目的は、上述の問題点を解消し、入射光束を結像光学系内で分岐して合焦検出を行う結像光学系において、高精度かつ高速で、様々な結像光学系の使用状況に対応可能なオートフォーカス結像光学系を提供することにある。   An object of the present invention is to solve the above-mentioned problems, and in an imaging optical system that performs focus detection by branching an incident light beam in the imaging optical system, various imaging optical systems of high accuracy and high speed are provided. An object of the present invention is to provide an autofocus imaging optical system that can cope with the use situation.

上記目的を達成するための本発明に係るオートフォーカス結像光学系は、フォーカス移動群と、該フォーカス移動群の像側の光路中に配置した光路分岐光学系と、前記フォーカス移動群と前記光路分岐光学系の間に挿脱可能に配置された焦点距離変換光学系と、前記光路分岐光学系からの分岐光束を用いて前記フォーカス移動群による合焦状態を検出する合焦検出手段と、該合焦検出手段の出力を基にオートフォーカス演算を行う演算手段と、該演算手段の出力を基に前記フォーカス移動群を駆動制御する駆動制御手段とを有するオートフォーカス結像光学系であって、前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入することによる焦点距離の変換倍率をβ2、前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入していない状態での、所定量のピント変化に対する前記フォーカス移動群の移動量をX、前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入した状態での、前記所定量のピント変化に対する前記フォーカス移動群の移動量をX´、前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入していない状態での検出側合焦精度をPb、前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入した状態での前記検出側合焦精度をPb´とするとき、
0.8<β2・X´/X<1.2
0.9<(Pb´・β2)/Pb<1.1
を満足することを特徴としている。
更に、前記焦点距離変換光学系の前記光路への挿脱に伴って、前記演算手段は前記合焦検出手段からの信号に対する前記フォーカス移動群の駆動量を切換えることを特徴としている。
更に、前記焦点距離変換光学系の前記光路への挿脱に伴って、前記合焦検出手段からの信号に対する前記駆動制御手段の制御精度を切換えることを特徴としている。
また、本発明に係る撮影装置は、上記のオートフォーカス結像光学系と、該オートフォーカス結像光学系の像側に配置した撮像手段とを備えることを特徴としている。
In order to achieve the above object, an autofocus imaging optical system according to the present invention includes a focus movement group, an optical path branching optical system disposed in an optical path on the image side of the focus movement group, the focus movement group, and the optical path. A focal length conversion optical system that is detachably disposed between the branching optical systems, a focus detection unit that detects a focus state by the focus movement group using a branched light beam from the optical path branching optical system, and An autofocus imaging optical system having a calculation unit that performs an autofocus calculation based on an output of a focus detection unit, and a drive control unit that drives and controls the focus movement group based on the output of the calculation unit, By inserting the focal length conversion optical system into the optical path between the focus moving group and the optical path branching optical system, the focal length conversion magnification is β2, and the focal length conversion optical system is The movement amount of the focus movement group with respect to a predetermined amount of focus change in a state where it is not inserted in the optical path between the focus movement group and the optical path branching optical system is X, and the focal length conversion optical system is the focus movement X ′ represents the amount of movement of the focus movement group with respect to the predetermined amount of focus change in the state of being inserted into the optical path between the group and the optical path branching optical system, and the focal length conversion optical system is referred to as the focus movement group. The focusing accuracy on the detection side when not inserted in the optical path between the optical path branching optical system is Pb, and the focal length conversion optical system is in the optical path between the focus moving group and the optical path branching optical system. When the detection-side focusing accuracy in the state of being inserted into is Pb ′ ,
0.8 <β2 2 · X ′ / X <1.2
0.9 <(Pb ′ · β2) / Pb <1.1
It is characterized by satisfying.
Further, as the focal length conversion optical system is inserted into and removed from the optical path, the calculation means switches a driving amount of the focus movement group with respect to a signal from the focus detection means.
Furthermore, the control accuracy of the drive control means for the signal from the focus detection means is switched as the focal length conversion optical system is inserted into and removed from the optical path.
According to another aspect of the present invention, there is provided a photographing apparatus comprising: the autofocus imaging optical system described above; and an imaging unit disposed on the image side of the autofocus imaging optical system.

本発明に係るオートフォーカス結像光学系によれば、合焦検出出力に対するフォーカス群駆動量、合焦検出手段の検出精度を適切に設定可能となり、焦点距離変換光学系の挿脱によらず適切なオートフォーカスを行うことが可能になる。   With the autofocus imaging optical system according to the present invention, it is possible to appropriately set the focus group drive amount with respect to the focus detection output and the detection accuracy of the focus detection means, which is appropriate regardless of whether the focal length conversion optical system is inserted or removed. Auto focus can be performed.

本発明を図示の実施例に基づいて詳細に説明する。
図1は実施例に先立って説明する結像光学系の概略図である。入射光の光路上に、フォーカス移動群1、光路に挿脱自在の焦点距離変換光学系2、分岐光学系3、撮像側部分光学系4a、撮像手段5が順次に配列され、分岐光学系3の分岐方向に検出側部分光学系4b、合焦検出素子6が配列されている。
The present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 is a schematic view of an imaging optical system described prior to the embodiment. On the optical path of the incident light, the focus moving group 1, the focal length conversion optical system 2 that can be inserted into and removed from the optical path, the branching optical system 3, the imaging side partial optical system 4a, and the imaging means 5 are sequentially arranged. The detection-side partial optical system 4b and the focus detection element 6 are arranged in the branching direction.

光路への焦点距離変換光学系2の挿入前において、フォーカス移動群1の結像倍率をβ1、撮像側部分光学系4aの結像倍率をβ4a、検出側部分光学系4bの結像倍率をβ4bとすると、撮影側結像倍率βa及び検出側結像倍率βbは、次式で表される。
βa=β1・β4a (1)
βb=β1・β4b (2)
Before insertion of the focal length conversion optical system 2 into the optical path, the imaging magnification of the focus moving group 1 is β1, the imaging magnification of the imaging side partial optical system 4a is β4a, and the imaging magnification of the detection side partial optical system 4b is β4b. Then, the imaging side imaging magnification βa and the detection side imaging magnification βb are expressed by the following equations.
βa = β1 · β4a (1)
βb = β1 · β4b (2)

従って、撮影側結像倍率βaに対する検出側結像倍率βbの結像倍率比Rβabは次式で表され、この結像倍率比Rβabは分岐光学系3以降の撮像側部分光学系4a、検出側部分光学系4bの結像倍率βa、βbによって決まる。
Rβab=βb/βa=β4b/β4a (3)
Accordingly, the imaging magnification ratio Rβab of the detection-side imaging magnification βb with respect to the imaging-side imaging magnification βa is expressed by the following equation. The imaging magnification ratio Rβab is the imaging-side partial optical system 4a after the branching optical system 3, and the detection side It is determined by the imaging magnifications βa and βb of the partial optical system 4b.
Rβab = βb / βa = β4b / β4a (3)

次に、撮像手段5の対角方向の撮像範囲、つまりイメージサイズをS0、合焦検出素子6に含まれる合焦検出素子6の対角方向の測距枠の取り得る範囲をA0とすると、イメージサイズS0に対する合焦検出可能範囲の割合Rasは次式で表される。
Ras=(A0/S0)・Rβab (4)
Next, assuming that the diagonal imaging range of the imaging unit 5, that is, the image size is S0, and the range that the focus detection element 6 included in the focus detection element 6 can take the diagonal distance measurement frame is A0. The ratio Ras of the focus detectable range with respect to the image size S0 is expressed by the following equation.
Ras = (A0 / S0) .Rβab (4)

ここで、この合焦検出可能範囲の割合Rasの条件としては、次式の範囲であることが望ましい。
0.3<Ras<1.1 (5)
Here, as a condition of the ratio Ras of the focus detectable range, it is desirable that the range is the following formula.
0.3 <Ras <1.1 (5)

即ち、(5)式の上限を越えると、測距枠の取り得る範囲A0が画面外にはみ出てしまい、適切に合焦できなくなってしまう。また、(5)式の下限を越えると、画面上で測距枠の取り得る範囲A0が限られてしまい、適切なフレーミングに支障をきたしてしまう。   In other words, if the upper limit of the expression (5) is exceeded, the range A0 that the distance measurement frame can take will protrude beyond the screen, and it will not be possible to focus properly. If the lower limit of the expression (5) is exceeded, the range A0 that the distance measurement frame can take on the screen is limited, and appropriate framing is hindered.

焦点距離変換光学系2による光学的な倍率変換がなされる場合に、焦点距離変換光学系2の変換倍率をβ2とすると、焦点距離変換光学系2が光路に挿入された場合の撮影側結像倍率βa’、検出側結像倍率βb’はそれぞれ次式となる。
βa’=β1・β2・β4a (6)
βb’=β1・β2・β4b (7)
When optical magnification conversion is performed by the focal length conversion optical system 2, if the conversion magnification of the focal length conversion optical system 2 is β2, imaging on the photographing side when the focal length conversion optical system 2 is inserted in the optical path The magnification βa ′ and the detection-side imaging magnification βb ′ are respectively expressed by the following equations.
βa ′ = β1, β2, β4a (6)
βb ′ = β1, β2, β4b (7)

従って、焦点距離変換光学系2の光路への挿入後の撮影側結像倍率βa’に対する検出側結像倍率βb’の結像倍率比Rβab’は次式となる。
Rβab’=βb’/βa’=Rβab (8)
Therefore, the imaging magnification ratio Rβab ′ of the detection-side imaging magnification βb ′ with respect to the imaging-side imaging magnification βa ′ after insertion into the optical path of the focal length conversion optical system 2 is expressed by the following equation.
Rβab ′ = βb ′ / βa ′ = Rβab (8)

焦点距離変換光学系2の挿入前後において、結像倍率比Rβabは変化しないので、(4)式から合焦検出可能範囲の割合Rasも変化せず、焦点距離変換光学系2の挿脱によって測距枠の取り得る範囲A0は変わることはない。   Since the imaging magnification ratio Rβab does not change before and after the insertion of the focal length conversion optical system 2, the ratio Ras of the focus detectable range does not change from the equation (4), and is measured by inserting and removing the focal length conversion optical system 2. The range A0 that the distance frame can take does not change.

測距枠は図2に示すように合焦検出素子6の範囲全体を使用する方式、図3に示すように任意の範囲を連続的に移動・選択する方式、図4に示す離散的な領域の全体又は一部を選択する方式等の何れでもよい。なお、測距枠の取り得る範囲A0は、合焦検出側の像面における長さ寸法で規定し、特に指示しない場合は画面の水平・垂直・対角の何れの寸法を含むものとする。   As shown in FIG. 2, the distance measurement frame is a system that uses the entire range of the focus detection element 6, a system that continuously moves and selects an arbitrary range as shown in FIG. 3, and a discrete area shown in FIG. Any of the methods of selecting all or a part of these may be used. Note that the range A0 that the distance measurement frame can take is defined by the length dimension on the image plane on the focus detection side, and includes any of horizontal, vertical, and diagonal dimensions of the screen unless otherwise specified.

撮像側でピントずれ量ΔSaがある場合に、検出側のピントずれ量ΔSbは、撮像側に対する検出側結像倍率比Rβabの二乗に比例し、次式で表される。
ΔSb=ΔSa・Rβab2 (9)
When there is a focus shift amount ΔSa on the imaging side, the detection-side focus shift amount ΔSb is proportional to the square of the detection-side imaging magnification ratio Rβab with respect to the imaging side and is expressed by the following equation.
ΔSb = ΔSa · Rβab 2 (9)

従って、結像倍率比Rβabが分かっていれば、検出側でピントずれ量ΔSbを測定することにより、撮像側のピントずれ量ΔSaを求めることができる。   Therefore, if the imaging magnification ratio Rβab is known, the focus shift amount ΔSa on the imaging side can be obtained by measuring the focus shift amount ΔSb on the detection side.

焦点距離変換光学系2の挿入前において、フォーカス移動群1の単位移動量に対する撮像側ピント変化量をΔFaとしたとき、検出側ピント変化量ΔFbは次式で表される。
ΔFb=ΔFa・Rβab2 (10)
When the imaging-side focus change amount with respect to the unit movement amount of the focus movement group 1 is ΔFa before the focal length conversion optical system 2 is inserted, the detection-side focus change amount ΔFb is expressed by the following equation.
ΔFb = ΔFa · Rβab 2 (10)

従って、合焦のために必要なフォーカス移動群1の駆動量Xは次式となる。
X=−ΔSa・ΔXa=−ΔSb・ΔXb (11)
Accordingly, the drive amount X of the focus movement group 1 necessary for focusing is expressed by the following equation.
X = −ΔSa · ΔXa = −ΔSb · ΔXb (11)

ただし、ΔXa=1/ΔFa、ΔXb=1/ΔFbで表され、検出側のピントずれ量ΔSbを測定し、(11)式に基づいた駆動量Xによりフォーカス制御することによって、高速かつ高精度なオートフォーカスが達成できる。   However, it is expressed by ΔXa = 1 / ΔFa and ΔXb = 1 / ΔFb, and the focus shift amount ΔSb on the detection side is measured, and the focus is controlled by the drive amount X based on the equation (11), thereby achieving high speed and high accuracy. Autofocus can be achieved.

焦点距離変換光学系2が光路に挿入され、光学的な倍率変換がなされる場合に、焦点距離変換光学系2の挿入後の検出側のピント変化量ΔFb’は、次式で表される。
ΔFb’=ΔFa・β22・Rβab2=ΔFb・β22 (12)
When the focal length conversion optical system 2 is inserted into the optical path and optical magnification conversion is performed, the focus change amount ΔFb ′ on the detection side after insertion of the focal length conversion optical system 2 is expressed by the following equation.
ΔFb ′ = ΔFa · β2 2 · Rβab 2 = ΔFb · β2 2 (12)

従って、焦点距離変換光学系2の挿入後のフォーカス移動群1の駆動量X’は次式となる。
X’=−ΔSb/ΔFb’=X/β22 (13)
Accordingly, the drive amount X ′ of the focus movement group 1 after the insertion of the focal length conversion optical system 2 is expressed by the following equation.
X ′ = − ΔSb / ΔFb ′ = X / β2 2 (13)

焦点距離変換光学系2の挿入前に対し、検出値当りのフォーカス駆動量が変化してしまうことを回避するために、駆動量X’は次式の範囲とすることが望ましい。
0.8<β22・X’/X<1.2 (14)
In order to avoid the focus drive amount per detection value from changing before the focal length conversion optical system 2 is inserted, the drive amount X ′ is preferably in the range of the following equation.
0.8 <β2 2 · X ′ / X <1.2 (14)

これにより、焦点距離変換光学系2の挿脱によらずに、合焦制御をほぼ同等に維持することができる。   Thereby, focusing control can be maintained substantially equal without depending on the insertion / removal of the focal length conversion optical system 2.

撮像手段5に対する最小錯乱円径をδ、結像光学系の絞り値(Fナンバ)をFNoとすると、撮像側における焦点深度dfは次式で表される。
df=2・FNo・δ (15)
When the minimum circle of confusion with respect to the imaging means 5 is δ and the aperture value (F number) of the imaging optical system is FNo, the focal depth df on the imaging side is expressed by the following equation.
df = 2 · FNo · δ (15)

焦点距離変換光学系2の光路への挿入前において、撮像側で必要な合焦精度Paと、検出側検出精度Pbの関係は、結像倍率比Rβabの二乗を用いて次式で表される。
Pb=Pa・Rβab2 (16)
Prior to insertion of the focal length conversion optical system 2 into the optical path, the relationship between the focusing accuracy Pa required on the imaging side and the detection side detection accuracy Pb is expressed by the following equation using the square of the imaging magnification ratio Rβab. .
Pb = Pa · Rβab 2 (16)

また、検出側合焦精度Pbは焦点深度dfに比例した値とすると次式となる。
Pb=CP・df・Rβab2
=CP・2・FNo・δ・Rβab2 (17)
Further, when the detection-side focusing accuracy Pb is a value proportional to the focal depth df, the following equation is obtained.
Pb = CP · df · Rβab 2
= CP ・ 2 ・ FNo ・ δ ・ Rβab 2 (17)

ただし、CPは定数であり、この定数CPの値としては、次式の範囲程度が望ましく、この定数CPの値を設定することにより、検出側合焦精度Pbと焦点深度dfを任意に設定することが可能となる。
0.1<CP<1.0 (18)
However, CP is a constant, and the value of this constant CP is preferably in the range of the following equation. By setting the value of this constant CP, the detection-side focusing accuracy Pb and the focal depth df are arbitrarily set. It becomes possible.
0.1 <CP <1.0 (18)

焦点距離変換光学系2を光路に挿入した状態における結像光学系のFナンバFNo’は、挿入前のFナンバFNoに対して変化し、次式で表される。
FNo’=FNo・β2 (19)
The F number FNo ′ of the imaging optical system in a state where the focal length conversion optical system 2 is inserted in the optical path changes with respect to the F number FNo before insertion, and is expressed by the following equation.
FNo ′ = FNo · β2 (19)

結像倍率比Rβabは前述のように、焦点距離変換光学系2の挿脱によって変化せず、次式で表される。
Rβab’=Rβab (20)
As described above, the imaging magnification ratio Rβab does not change due to the insertion / removal of the focal length conversion optical system 2 and is expressed by the following equation.
Rβab ′ = Rβab (20)

従って、焦点距離変換光学系2の挿入後の検出側合焦精度Pb’は、(17)、(19)、(20)式から次式となる。
Pb’・β2=Pb (21)
Therefore, the detection-side focusing accuracy Pb ′ after insertion of the focal length conversion optical system 2 is expressed by the following equation from equations (17), (19), and (20).
Pb ′ · β2 = Pb (21)

焦点距離変換光学系2の挿脱による検出側合焦精度Pbをほぼ同等とするためには、次式のような範囲とすることが望ましい。
0.9<(Pb’・β2)/Pb<1.1 (22)
In order to make the detection-side focusing accuracy Pb by insertion / removal of the focal length conversion optical system 2 substantially equal, it is desirable to set the range as in the following equation.
0.9 <(Pb ′ · β2) / Pb <1.1 (22)

図5は実施例の構成図を示している。入射光の光路中には、フォーカス移動群1、光路に挿脱可能な焦点距離変換光学系2、分岐光学系3、リレーレンズ群11、撮像手段5が配列され、分岐光学系3の分岐方向には合焦検出素子6を有する合焦検出手段12が配置されている。合焦検出手段12の出力は演算手段13に接続され、演算手段13の出力はフォーカス移動群1を駆動する駆動手段14に接続されている。また、演算手段13には焦点距離変換光学系2の挿脱を検知する検知手段15の出力が接続されている。なお、実施例における焦点距離変換光学系2の焦点距離変換倍率β2は2.0である。   FIG. 5 shows a configuration diagram of the embodiment. In the optical path of the incident light, a focus moving group 1, a focal length conversion optical system 2 that can be inserted into and removed from the optical path, a branching optical system 3, a relay lens group 11, and an imaging unit 5 are arranged, and the branching direction of the branching optical system 3 A focus detection means 12 having a focus detection element 6 is arranged in the. The output of the focus detection means 12 is connected to the calculation means 13, and the output of the calculation means 13 is connected to the drive means 14 that drives the focus movement group 1. The calculation means 13 is connected to the output of the detection means 15 that detects insertion / removal of the focal length conversion optical system 2. Note that the focal length conversion magnification β2 of the focal length converting optical system 2 in the embodiment is 2.0.

光路分岐光学系3により分岐された光束により、合焦検出手段12はその検出値を出力し、演算手段13の演算によりフォーカス移動群1を駆動制御してオートフォーカスを行っている。焦点距離変換光学系2を光路に挿入すると、撮像範囲に対する合焦検出可能範囲の割合Ras’は次式となる。
Ras’=Ras (23)
The focus detection unit 12 outputs a detection value based on the light beam branched by the optical path branching optical system 3, and the focus movement group 1 is driven and controlled by calculation of the calculation unit 13 to perform autofocus. When the focal length conversion optical system 2 is inserted into the optical path, the ratio Ras ′ of the focus detectable range to the imaging range is expressed by the following equation.
Ras' = Ras (23)

挿入前に対し画面上での測距可能範囲は変化せず、本実施例では焦点距離変換光学系2の挿脱によって測距可能範囲は変化することはない。   The distance measurement possible range on the screen does not change before the insertion, and in this embodiment, the distance measurement possible range does not change due to the insertion / removal of the focal length conversion optical system 2.

焦点距離変換光学系2を挿入すると、検出側ピント変化量ΔFb’は、(12)式から次式となる。
ΔFb’=0.25・ΔFb (24)
When the focal length conversion optical system 2 is inserted, the detection-side focus change amount ΔFb ′ is expressed by the following equation from the equation (12).
ΔFb ′ = 0.25 · ΔFb (24)

このピント変位量ΔFb’は焦点距離変換光学系2の挿入前に対して変化してしまうので、挿入後のフォーカス移動群1の駆動量X’を次式とすることにより、焦点距離変換光学系2の挿脱前後で同等の合焦制御を達成する。
X’=0.25・X (25)
Since this focus displacement amount ΔFb ′ changes with respect to that before insertion of the focal length conversion optical system 2, the focal length conversion optical system is obtained by setting the drive amount X ′ of the focus movement group 1 after insertion to the following equation. Equivalent focus control is achieved before and after 2 insertion / removal.
X ′ = 0.25 · X (25)

本実施例では、δ=0.01mm、Rβab=1.0であり、CP=0.25として、(18)式の条件を満たして適切な合焦制御を可能としている。   In this embodiment, δ = 0.01 mm, Rβab = 1.0, and CP = 0.25, satisfying the condition of the equation (18) and enabling proper focusing control.

焦点距離変換光学系2を挿入すると、結像光学系のFナンバFNo’は、挿入前のFナンバFNoに対して変化し次式となる。
FNo’=2.0・FNo (26)
When the focal length conversion optical system 2 is inserted, the F number FNo ′ of the image forming optical system changes with respect to the F number FNo before insertion and becomes the following expression.
FNo '= 2.0 ・ FNo (26)

焦点距離変換光学系2の挿入時の検出側の合焦精度Pb’を挿入前の検出側の合焦精度Pbに対して、次式とすることにより、焦点距離変換光学系2の挿脱前後で合焦精度を同等に維持している。
Pb’=2.0・Pb (27)
Before and after insertion / removal of the focal length conversion optical system 2 by setting the focus accuracy Pb ′ on the detection side at the time of insertion of the focal length conversion optical system 2 to the focus accuracy Pb on the detection side before insertion, as follows: The focus accuracy is maintained at the same level.
Pb ′ = 2.0 · Pb (27)

図6は実施例の結像光学系を備えた撮像装置の構成図を示している。撮像装置はカメラ本体Cと結像光学系Lで構成され、結像光学系Lはカメラ本体Cに交換自在に装着されている。   FIG. 6 is a configuration diagram of an image pickup apparatus including the imaging optical system according to the embodiment. The imaging apparatus includes a camera body C and an imaging optical system L, and the imaging optical system L is mounted on the camera body C in a replaceable manner.

結像光学系の概略図である。It is the schematic of an imaging optical system. 合焦検出素子の測距枠の説明図である。It is explanatory drawing of the ranging frame of a focus detection element. 合焦検出素子の測距枠の説明図である。It is explanatory drawing of the ranging frame of a focus detection element. 合焦検出素子の測距枠の説明図である。It is explanatory drawing of the ranging frame of a focus detection element. 実施例の結像光学系の構成図である。It is a block diagram of the imaging optical system of an Example. 撮像装置の構成図である。It is a block diagram of an imaging device.

符号の説明Explanation of symbols

1 フォーカス移動群
2 焦点距離変換光学系
3 分岐光学系
4a 撮像側部分光学系
4b 検出側部分光学系
5 撮像手段
6 合焦検出素子
11 リレーレンズ群
12 合焦検出手段
13 演算手段
14 駆動手段
15 検出手段
DESCRIPTION OF SYMBOLS 1 Focus movement group 2 Focal length conversion optical system 3 Branch optical system 4a Imaging side partial optical system 4b Detection side partial optical system 5 Imaging means 6 Focus detection element 11 Relay lens group 12 Focus detection means 13 Calculation means 14 Driving means 15 Detection means

Claims (2)

フォーカス移動群と、該フォーカス移動群の像側の光路中に配置した光路分岐光学系と、前記フォーカス移動群と前記光路分岐光学系の間に挿脱可能に配置された焦点距離変換光学系と、前記光路分岐光学系からの分岐光束を用いて前記フォーカス移動群による合焦状態を検出する合焦検出手段と、該合焦検出手段の出力を基にオートフォーカス演算を行う演算手段と、該演算手段の出力を基に前記フォーカス移動群を駆動制御する駆動制御手段とを有するオートフォーカス結像光学系であって、
前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入することによる焦点距離の変換倍率をβ2、
前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入していない状態での、所定量のピント変化に対する前記フォーカス移動群の移動量をX、
前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入した状態での、前記所定量のピント変化に対する前記フォーカス移動群の移動量をX´
前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入していない状態での検出側合焦精度をPb、
前記焦点距離変換光学系を前記フォーカス移動群と前記光路分岐光学系との間の光路中に挿入した状態での前記検出側合焦精度をPb´とするとき、
0.8<β2・X´/X<1.2
0.9<(Pb´・β2)/Pb<1.1
を満足することを特徴とするオートフォーカス結像光学系。
A focus movement group, an optical path branching optical system disposed in an optical path on the image side of the focus movement group, and a focal length conversion optical system disposed detachably between the focus movement group and the optical path branching optical system; A focus detection unit that detects a focused state by the focus movement group using a branched light beam from the optical path branching optical system, a calculation unit that performs an autofocus calculation based on an output of the focus detection unit, and An autofocus imaging optical system having drive control means for driving and controlling the focus movement group based on the output of the calculation means,
A focal length conversion magnification obtained by inserting the focal length conversion optical system into an optical path between the focus moving group and the optical path branching optical system is β2,
The amount of movement of the focus movement group with respect to a predetermined amount of focus change in a state where the focal length conversion optical system is not inserted in the optical path between the focus movement group and the optical path branching optical system is X,
X ′ , a movement amount of the focus movement group with respect to the predetermined amount of focus change in a state where the focal length conversion optical system is inserted in an optical path between the focus movement group and the optical path branching optical system .
The detection-side focusing accuracy in a state where the focal length conversion optical system is not inserted into the optical path between the focus moving group and the optical path branching optical system is Pb,
When the detection-side focusing accuracy in a state where the focal length conversion optical system is inserted in the optical path between the focus moving group and the optical path branching optical system is Pb ′ ,
0.8 <β2 2 · X ′ / X <1.2
0.9 <(Pb ′ · β2) / Pb <1.1
An autofocus imaging optical system characterized by satisfying
請求項に記載のオートフォーカス結像光学系と、該オートフォーカス結像光学系の像側に配置した撮像手段とを有することを特徴とする撮影装置。 An imaging apparatus comprising: the autofocus imaging optical system according to claim 1 ; and an imaging unit disposed on an image side of the autofocus imaging optical system.
JP2005378656A 2005-12-28 2005-12-28 Autofocus imaging optical system Expired - Fee Related JP4795018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378656A JP4795018B2 (en) 2005-12-28 2005-12-28 Autofocus imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378656A JP4795018B2 (en) 2005-12-28 2005-12-28 Autofocus imaging optical system

Publications (2)

Publication Number Publication Date
JP2007178821A JP2007178821A (en) 2007-07-12
JP4795018B2 true JP4795018B2 (en) 2011-10-19

Family

ID=38304058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378656A Expired - Fee Related JP4795018B2 (en) 2005-12-28 2005-12-28 Autofocus imaging optical system

Country Status (1)

Country Link
JP (1) JP4795018B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697650B2 (en) * 2012-12-13 2015-04-08 キヤノン株式会社 Imaging apparatus and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199335A (en) * 1987-02-14 1988-08-17 Nikon Corp Repeating adapter for camera
JPH1062677A (en) * 1996-08-22 1998-03-06 Gokou Internatl Corp:Kk Focus adjusting structure of zoom lens
JP2002365517A (en) * 2001-06-04 2002-12-18 Fuji Photo Optical Co Ltd Device for detecting state of focusing of photographic lens
JP4576852B2 (en) * 2004-03-04 2010-11-10 富士フイルム株式会社 Focus status detection device

Also Published As

Publication number Publication date
JP2007178821A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5379739B2 (en) Lens device
JP5247044B2 (en) Imaging device
US10257408B2 (en) Control apparatus that determines focal points of a plurality of optical systems, image pickup apparatus, image pickup system, lens apparatus, control method, and non-transitory computer-readable storage medium
JP2009145645A (en) Optical device
JP5868109B2 (en) Optical apparatus, lens barrel, and automatic focusing method
JP2007271702A (en) Lens device
US8218960B2 (en) Lens apparatus performing focusing according to zoom position
JP2014059407A (en) Optical instrument
JP2010169882A (en) Digital camera and optical equipment
JP2008268815A (en) Automatic focusing device
JP4795018B2 (en) Autofocus imaging optical system
JP2010191306A (en) Imaging apparatus
JP2008191391A (en) Focusing mechanism, and camera
JP6624789B2 (en) Focus control device, control method thereof, control program, and imaging device
JP2007065278A (en) Imaging apparatus and interchangeable lens system
JP2006084640A (en) Driving controller of zoom lens
JP5930979B2 (en) Imaging device
JP5135813B2 (en) Optical system drive device and camera
JP5523074B2 (en) LENS DEVICE AND IMAGING DEVICE
JP2021067720A5 (en)
JP2010139787A (en) Imaging apparatus
JP2008046417A (en) Digital camera and optical equipment
JP2007286217A (en) Imaging apparatus
JP2014038215A (en) Automatic focusing device, lens device having the same, and imaging apparatus
JP2012093532A (en) Optical equipment with autofocus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees