JP4793921B2 - Hydrogen chloride gas sensor - Google Patents

Hydrogen chloride gas sensor Download PDF

Info

Publication number
JP4793921B2
JP4793921B2 JP2006098451A JP2006098451A JP4793921B2 JP 4793921 B2 JP4793921 B2 JP 4793921B2 JP 2006098451 A JP2006098451 A JP 2006098451A JP 2006098451 A JP2006098451 A JP 2006098451A JP 4793921 B2 JP4793921 B2 JP 4793921B2
Authority
JP
Japan
Prior art keywords
conductor
gas
electrolyte
electrode
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006098451A
Other languages
Japanese (ja)
Other versions
JP2007271490A (en
Inventor
陽一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Institute of Technology NUC
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Kyushu Electric Power Co Inc filed Critical Kyushu Institute of Technology NUC
Priority to JP2006098451A priority Critical patent/JP4793921B2/en
Publication of JP2007271490A publication Critical patent/JP2007271490A/en
Application granted granted Critical
Publication of JP4793921B2 publication Critical patent/JP4793921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大気中または特定の雰囲気下の塩化水素ガス濃度を測定するガスセンサに関する。   The present invention relates to a gas sensor for measuring a hydrogen chloride gas concentration in the air or in a specific atmosphere.

塩化水素(HCl)ガスは化学プラントや活性炭製造過程で生成し、環境影響物質ともなることから大気汚染防止法により排出基準が定められている。特に、近年ではセメント製造プロセスや各種焼却炉におけるダイオキシン生成の間接的な監視などのためにも、排出されるHClガス濃度を常時測定することが重要となっており、安価で高性能な測定法が求められている。   Since hydrogen chloride (HCl) gas is generated in the process of manufacturing chemical plants and activated carbon and becomes an environmental impact substance, emission standards are set by the Air Pollution Control Law. In recent years, it has become important to constantly measure the concentration of HCl gas discharged for the indirect monitoring of dioxin formation in cement manufacturing processes and various incinerators. Is required.

現在最も広く利用されているHClガス濃度の測定法はイオン電極法であるが、温度の影響を受けやすく、自動分析用の機器は大型で高価となる欠点がある。その他の方法にはイオンクロマトグラフ法、滴定法、吸光光度法などがあるが、対象ガスの前処理が必要であったり連続分析が不可能であったりするなどの課題があり燃焼排ガスなどのHCl濃度の常時測定には適さない。(例えば非特許文献1参照)   The most widely used method for measuring the HCl gas concentration is the ion electrode method. However, it is susceptible to temperature, and automatic analysis equipment has the disadvantage of being large and expensive. Other methods include ion chromatography, titration, and absorptiometry, but there are problems such as the need for pretreatment of the target gas and the inability to perform continuous analysis, and HCl such as combustion exhaust gas. Not suitable for continuous measurement of concentration. (For example, see Non-Patent Document 1)

一方、特許文献1には全固体型素子を用いた化学センサが提案されているが、酸素イオン導電性固体電解質を用いているため、原理的に酸素濃度の影響により測定値に誤差が生じるという問題がある。
JIS K0107:2002 特開平8−021820号公報
On the other hand, although a chemical sensor using an all-solid-state element is proposed in Patent Document 1, since an oxygen ion conductive solid electrolyte is used, an error in the measured value is caused by the influence of oxygen concentration in principle. There's a problem.
JIS K0107: 2002 JP-A-8-021820

本発明が解決しようとする課題は、測定値の誤差が小さく、かつ安価なHClガスセンサを提供することにある。   The problem to be solved by the present invention is to provide a low-cost HCl gas sensor with small measurement error.

本発明は、陽イオン伝導体を電解質とし、電解質の少なくとも一面に金属酸化物又はゼオライトを電極層として有するHClガスセンサを提供する。   The present invention provides an HCl gas sensor having a cation conductor as an electrolyte and a metal oxide or zeolite as an electrode layer on at least one surface of the electrolyte.

本発明では、電解質として陽イオン伝導体(例えば、ナトリウム超イオン伝導体)を、電極層に金属酸化物又はゼオライトを使用することで、原理的に酸素など他のガスの影響を受け難く、精度の高いHClガスセンサが実現できる。   In the present invention, a cation conductor (for example, a sodium superionic conductor) is used as an electrolyte, and a metal oxide or zeolite is used for an electrode layer. A high HCl gas sensor can be realized.

電解質となる陽イオン伝導体としては、ナトリウム超イオン伝導体、ナトリウムイオン伝導体、又はリチウムイオン伝導体を使用する。電解質としては、ナトリウム超イオン伝導体であるNaDySi12が好ましいが、その他にNaXSi12(X=Y、Nd、Sm、Gdの何れか)も使うことができる。一方、電極層としては、RuO又はNbが好ましいが、MoO、WO、Y型ゼオライト、ZSM5型ゼオライトも使うことができる。 The cation conductor as the electrolyte, uses sodium super ionic conductor, sodium ion conductor, or a lithium ion conductor. As the electrolyte, Na 5 DySi 4 O 12 which is a sodium superionic conductor is preferable, but Na 5 XSi 4 O 12 (any of X = Y, Nd, Sm and Gd) can also be used. On the other hand, RuO 2 or Nb 2 O 5 is preferable as the electrode layer, but MoO 3 , WO 3 , Y-type zeolite, and ZSM5 type zeolite can also be used.

このHClガスセンサにおいては、測定対象ガス中のHClガス濃度に応じて電解質と電極層との間に起電力を発生するため、この起電力を公知の方法により測定することにより、測定対象ガス中のHClガス濃度を知ることができる。   In this HCl gas sensor, an electromotive force is generated between the electrolyte and the electrode layer in accordance with the HCl gas concentration in the measurement target gas. Therefore, by measuring this electromotive force by a known method, It is possible to know the HCl gas concentration.

以上説明した本発明のHClガスセンサは、陽イオン伝導体の板を製作し、その上に金属酸化物電極層又はゼオライト電極層を形成するという簡単な方法で製造でき、出来上がったセンサの構成も簡単であるため、従来のHClガス測定法に比べて安価に提供できる。   The above-described HCl gas sensor of the present invention can be manufactured by a simple method in which a cation conductor plate is manufactured and a metal oxide electrode layer or a zeolite electrode layer is formed thereon, and the configuration of the completed sensor is also simple. Therefore, it can be provided at a lower cost than conventional HCl gas measurement methods.

本発明によれば、安価なHClガスの計測が実現可能であり、かつ酸素など他のガス成分の影響を小さくすることができる。   According to the present invention, inexpensive measurement of HCl gas can be realized, and the influence of other gas components such as oxygen can be reduced.

以下、実施例に基づき本発明に係るセンサの実施の形態について説明する。ただし、本発明はこの実施例に限定されるものではない。   Embodiments of the sensor according to the present invention will be described below based on examples. However, the present invention is not limited to this embodiment.

図1は、本発明に係るセンサの構造を示す側面断面図である。同図に示すように、本発明に係るセンサは、陽イオン伝導体(実施例ではナトリウム超イオン伝導体)からなる電解質1の一面に金属酸化物又はゼオライトからなる電極層2を形成して構成されるものである。   FIG. 1 is a side sectional view showing a structure of a sensor according to the present invention. As shown in the figure, the sensor according to the present invention is configured by forming an electrode layer 2 made of a metal oxide or zeolite on one surface of an electrolyte 1 made of a cation conductor (a sodium superionic conductor in the embodiment). It is what is done.

まず、図1に示すような本発明に係るセンサの製造方法の一例を示す。   First, an example of a method for manufacturing a sensor according to the present invention as shown in FIG. 1 will be described.

本発明に用いるナトリウム超イオン伝導体の原料としてケイ酸エチル((CSiO)、ケイ酸ナトリウム9水和物(NaSiO・9HO)、リン酸二水素アンモニウム((NH)HPO)および硝酸ジスプロシウム6水和物(Dy(NO・6HO)を用いた。これらを混合して1時間攪拌し、75℃に加温して水分を蒸発させ、得られた残渣物を120℃で一晩置いて乾燥させた。このようにして得られた固形物を720℃で4時間焼結し、その後二酸化ケイ素(SiO)を添加し、4時間粉砕して粉末を得た。 As a raw material of the sodium superionic conductor used in the present invention, ethyl silicate ((C 2 H 5 ) 4 SiO 4 ), sodium silicate nonahydrate (Na 2 SiO 3 .9H 2 O), ammonium dihydrogen phosphate using ((NH 4) H 2 PO 4) and dysprosium nitrate hexahydrate (Dy (NO 3) 3 · 6H 2 O). These were mixed and stirred for 1 hour, warmed to 75 ° C. to evaporate the water, and the resulting residue was dried at 120 ° C. overnight. The solid thus obtained was sintered at 720 ° C. for 4 hours, and then silicon dioxide (SiO 2 ) was added and pulverized for 4 hours to obtain a powder.

この粉末を520MPaでプレスし、1050℃で6時間焼成して、ナトリウム超イオン伝導体NaDySi12の板を得た。 This powder was pressed at 520 MPa and fired at 1050 ° C. for 6 hours to obtain a plate of sodium superionic conductor Na 5 DySi 4 O 12 .

次に、金属酸化物電極としてNbをテレピン油でペースト状にしたものを、上記方法により製作したナトリウム超イオン伝導体の板の上に塗布、乾燥させて500℃で焼成して、ナトリウム超イオン伝導体NaDySi12板の一面に金属酸化物Nbの薄膜を有するセンサを得た。 Next, a paste of Nb 2 O 5 with turpentine oil as a metal oxide electrode was applied onto a sodium superionic conductor plate produced by the above method, dried and fired at 500 ° C., A sensor having a thin film of metal oxide Nb 2 O 5 on one surface of a sodium superionic conductor Na 5 DySi 4 O 12 plate was obtained.

上記方法で得られたセンサの電極層2に、図2に示すように金メッシュを設置して試験電極3とし、参照極4として電解質1に白金黒および白金メッシュを設置した。   As shown in FIG. 2, a gold mesh was placed on the electrode layer 2 of the sensor obtained by the above method as the test electrode 3, and platinum black and platinum mesh were placed on the electrolyte 1 as the reference electrode 4.

上記測定装置の試験電極3に被検知ガスとして微量のHCl又は他のガス(NO、NO、CO、O)を含む窒素(N)ガスを、参照極4には空気をそれぞれ供給し、被検知ガスの種類および濃度を変化させて電極電位(500℃における試験電極と参照極の電位差ΔE(mV))を測定した。 Nitrogen (N 2 ) gas containing a trace amount of HCl or other gas (NO, NO 2 , CO 2 , O 2 ) as a gas to be detected is supplied to the test electrode 3 of the measuring device, and air is supplied to the reference electrode 4. The electrode potential (potential difference ΔE (mV) between the test electrode and the reference electrode at 500 ° C.) was measured while changing the type and concentration of the gas to be detected.

その結果を表1に示す。

Figure 0004793921
The results are shown in Table 1.
Figure 0004793921

ここで、表中の「ΔE/dec」とは、センサの感度として、ガス濃度が10倍になったときのセンサ素子の電位差がどう変わるかを示したもので、実験データに対して対数近似を行い平均感度を計算した。すなわち、decは、decadeのことで、対数プロットのlogで、桁が一桁変わったときの傾きを示す。   Here, “ΔE / dec” in the table indicates how the potential difference of the sensor element changes when the gas concentration becomes 10 times as the sensitivity of the sensor. The average sensitivity was calculated. That is, dec is a decade and indicates the slope when the digit is changed by one digit in the log of the logarithmic plot.

表1から、電極電位はHCl濃度に依存するが、酸素など他のガス成分の影響は小さいことがわかる。   Table 1 shows that the electrode potential depends on the HCl concentration, but the influence of other gas components such as oxygen is small.

また、測定対象ガス中のHCl濃度を0ppmから500ppmに変化させてセンサの起電力変化を測定したところ、90%応答時間は5分と良好であり、HCl濃度の連続測定にも適していることがわかる。   In addition, when the change in the electromotive force of the sensor was measured by changing the HCl concentration in the gas to be measured from 0 ppm to 500 ppm, the 90% response time was good at 5 minutes and it was suitable for continuous measurement of the HCl concentration. I understand.

実施例1の方法で作製したナトリウム超イオン伝導体NaDySi12の板の上にRuOをテレピン油でペースト状にしたものを塗布、乾燥させて500℃で焼成して、ナトリウム超イオン伝導体NaDySi12板の一面に金属酸化物RuOの薄膜を有するセンサを得た。 On a plate of sodium superionic conductor Na 5 DySi 4 O 12 produced by the method of Example 1, a paste of RuO 2 in turpentine oil was applied, dried and fired at 500 ° C. A sensor having a thin film of metal oxide RuO 2 on one surface of an ionic conductor Na 5 DySi 4 O 12 plate was obtained.

上記方法で得られたセンサに、実施例1の場合と同様に試験電極3を設置し、試験電極3に被検知ガスとして微量のHCl又は他のガス(NO、NO、CO、O)を含む窒素(N)ガスを、参照極4には空気をそれぞれ供給し、被検知ガスの種類および濃度を変化させて電極電位(400℃における試験電極と参照極の電位差ΔE(mV))を測定した。 A test electrode 3 is installed in the sensor obtained by the above method in the same manner as in Example 1, and a small amount of HCl or other gas (NO, NO 2 , CO 2 , O 2) is detected as a gas to be detected on the test electrode 3. ) Containing nitrogen (N 2 ) gas, air is supplied to the reference electrode 4, and the type and concentration of the gas to be detected are changed to change the electrode potential (potential difference ΔE (mV) between the test electrode and the reference electrode at 400 ° C.). ) Was measured.

その結果を表2に示す。

Figure 0004793921
The results are shown in Table 2.
Figure 0004793921

表2から、電極電位はHCl濃度に依存するが、酸素など他のガス成分の影響は小さいことがわかる。   Table 2 shows that the electrode potential depends on the HCl concentration, but the influence of other gas components such as oxygen is small.

また、測定対象ガス中のHCl濃度を0ppmから500ppmに変化させてセンサの起電力変化を測定したところ、90%応答時間は10分と良好であり、HCl濃度の連続測定にも適していることがわかる。   In addition, when the change in the electromotive force of the sensor was measured by changing the HCl concentration in the gas to be measured from 0 ppm to 500 ppm, the 90% response time was good at 10 minutes and it was suitable for continuous measurement of the HCl concentration. I understand.

実施例1の方法で作製したナトリウム超イオン伝導体NaDySi12の板の上にゼオライト(ZSM−5型)をテレピン油でペースト状にしたものを塗布、乾燥させて500℃で焼成して、ナトリウム超イオン伝導体NaDySi12板の一面にゼオライトの薄膜を有するセンサを得た。 A paste of zeolite (ZSM-5 type) made of turpentine oil was applied on a plate of sodium superionic conductor Na 5 DySi 4 O 12 prepared by the method of Example 1, dried and fired at 500 ° C. Thus, a sensor having a zeolite thin film on one surface of the sodium superionic conductor Na 5 DySi 4 O 12 plate was obtained.

上記方法で得られたセンサに、実施例1の場合と同様に試験電極3を設置し、試験電極3に被検知ガスとして微量のHCl又は他のガス(NO、CO、O)を含む窒素(N)ガスを、参照極4には空気をそれぞれ供給し、被検知ガスの種類および濃度を変化させて電極電位(400℃における試験電極と参照極の電位差ΔE(mV))を測定した。 The sensor obtained by the above method is provided with the test electrode 3 in the same manner as in Example 1, and the test electrode 3 contains a trace amount of HCl or other gas (NO, CO 2 , O 2 ) as the gas to be detected. Nitrogen (N 2 ) gas and air are supplied to the reference electrode 4, and the electrode potential (potential difference ΔE (mV) between the test electrode and the reference electrode at 400 ° C.) is measured by changing the type and concentration of the gas to be detected. did.

その結果を表3に示す。

Figure 0004793921
表3から、電極電位はHCl濃度に依存するが、二酸化炭素濃度や酸素濃度の影響は小さいことがわかる。 The results are shown in Table 3.
Figure 0004793921
Table 3 shows that the electrode potential depends on the HCl concentration, but the influence of the carbon dioxide concentration and the oxygen concentration is small.

また、測定対象ガス中のHCl濃度を0ppmから250ppmに変化させてセンサの起電力変化を測定したところ、90%応答時間は25分と良好であり、HCl濃度の連続測定にも適していることがわかる。   In addition, when the change in the electromotive force of the sensor was measured by changing the HCl concentration in the gas to be measured from 0 ppm to 250 ppm, the 90% response time was 25 minutes, which is suitable for continuous measurement of the HCl concentration. I understand.

本発明のセンサを用いれば、他のガス成分の影響を受け難いHClガス濃度測定装置を安価に製造することができ、排ガス中のHCl濃度の連続測定などに利用可能である。   By using the sensor of the present invention, an HCl gas concentration measuring device that is hardly affected by other gas components can be manufactured at low cost, and can be used for continuous measurement of HCl concentration in exhaust gas.

本発明に係るセンサの構造を示す側面断面図である。It is side surface sectional drawing which shows the structure of the sensor which concerns on this invention. 本発明に係るセンサを使用した測定装置の概要図である。It is a schematic diagram of the measuring device using the sensor concerning the present invention.

符号の説明Explanation of symbols

1 電解質
2 電極層
3 試験電極
4 参照電極
1 Electrolyte 2 Electrode Layer 3 Test Electrode 4 Reference Electrode

Claims (3)

陽イオン伝導体を電解質とし、かつ電解質の少なくとも一面に金属酸化物を電極層として有し、電極層に試験電極を設け、電解質に参照極を設けた塩化水素ガスセンサであって、陽イオン伝導体が、ナトリウム超イオン伝導体、ナトリウムイオン伝導体又はリチウムイオン伝導体であり、金属酸化物が、RuO 、Nb 、MoO 又はWO である塩化水素ガスセンサ。 Cation conductor as an electrolyte, and possess at least one surface of the electrolyte of the metal oxide as an electrode layer, a test electrode on the electrode layer is provided, a hydrogen chloride gas sensor having a reference electrode in an electrolyte, the cation conductor but sodium super ionic conductor, a sodium ion conductor or a lithium ion conductor, metal oxide, RuO 2, Nb 2 O 5 , MoO 3 or WO 3 is hydrogen chloride gas sensor. 陽イオン伝導体を電解質とし、かつ電解質の少なくとも一面にゼオライトを電極層として有し、電極層に試験電極を設け、電解質に参照極を設けた塩化水素ガスセンサであって、陽イオン伝導体が、ナトリウム超イオン伝導体、ナトリウムイオン伝導体又はリチウムイオン伝導体である塩化水素ガスセンサ。 Cation conductor as an electrolyte, and to have a zeolite to at least one surface of the electrolyte as an electrode layer, a test electrode on the electrode layer is provided, a hydrogen chloride gas sensor having a reference electrode in an electrolyte, the cation conductor, A hydrogen chloride gas sensor which is a sodium superionic conductor, a sodium ion conductor or a lithium ion conductor . ナトリウム超イオン伝導体が、NaDySi12である請求項1又は2に記載の塩化水素ガスセンサ。 Sodium super ionic conductor, hydrogen chloride gas sensor according to claim 1 or 2 is Na 5 DySi 4 O 12.
JP2006098451A 2006-03-31 2006-03-31 Hydrogen chloride gas sensor Active JP4793921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098451A JP4793921B2 (en) 2006-03-31 2006-03-31 Hydrogen chloride gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098451A JP4793921B2 (en) 2006-03-31 2006-03-31 Hydrogen chloride gas sensor

Publications (2)

Publication Number Publication Date
JP2007271490A JP2007271490A (en) 2007-10-18
JP4793921B2 true JP4793921B2 (en) 2011-10-12

Family

ID=38674436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098451A Active JP4793921B2 (en) 2006-03-31 2006-03-31 Hydrogen chloride gas sensor

Country Status (1)

Country Link
JP (1) JP4793921B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101983278B1 (en) * 2017-07-11 2019-05-28 이승철 SENSOR DEVICE AND SENSOR FOR DETECTING HCl AND METHOD FOR MANUFACTURING THEREOF
CN116609401B (en) * 2023-07-21 2024-01-23 南方电网数字电网研究院有限公司 HCl sensor, doped carbon nanotube material, preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290809B2 (en) * 1994-07-07 2002-06-10 日本碍子株式会社 Chlorine compound gas sensor
JPH11271261A (en) * 1998-03-24 1999-10-05 Tokuyama Corp Solid electrolyte carbon dioxide sensor element
US6682638B1 (en) * 1999-11-19 2004-01-27 Perkin Elmer Llc Film type solid polymer ionomer sensor and sensor cell
JP2004506181A (en) * 2000-07-27 2004-02-26 シティ テクノロジー リミテッド Gas sensor

Also Published As

Publication number Publication date
JP2007271490A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
Ponnaiah et al. Picomolar-level electrochemical detection of thiocyanate in the saliva samples of smokers and non-smokers of tobacco using carbon dots doped Fe3O4 nanocomposite embedded on g-C3N4 nanosheets
El Mhammedi et al. Ca10 (PO4) 6 (OH) 2-modified carbon-paste electrode for the determination of trace lead (II) by square-wave voltammetry
US20090026076A1 (en) Nox sensor with improved selectivity and sensitivity
EP3307673A1 (en) Nox gas sensor
EP1831665A2 (en) Ammonia gas sensor method and device
Yang et al. Promoting selectivity and sensitivity for a high temperature YSZ-based electrochemical total NOx sensor by using a Pt-loaded zeolite Y filter
WO2010062566A2 (en) Ammonia gas sensor method and device
JP4793921B2 (en) Hydrogen chloride gas sensor
Balaish et al. Widening the Range of Trackable Environmental and Health Pollutants for Li‐Garnet‐Based Sensors
Suetsugu et al. C3H6 sensing characteristics of rod-type yttria-stabilized zirconia-based sensor for ppb level environmental monitoring applications
WO2006067491A1 (en) Amperometric sensor and method for the detection of gaseous analytes comprising a working electrode comprising edge plane pyrolytic graphite
KR100864381B1 (en) NOX Sensor And for Calculating Method Of Total NOX Concentration Using it
CN100363740C (en) Dual-solid electrolyte Co2 sensor and production thereof
Zhang et al. Improvement on mixed-potential type ammonia sensor by a Cr2O3 gas-phase catalyst layer
WO1997047964A1 (en) Gas sensor
Tanaka et al. Cobalt-based solid reference-electrode usable in zirconia-based sensors for detection of oxygen or volatile organic compounds
Nagai et al. Solid electrolyte type NH3 gas sensor applicable in a humid atmosphere
US20110210013A1 (en) Selective gas sensor device and associated method
US9097661B2 (en) Electrochemical sulfur sensor and the method of making the same
Mao et al. Fabrication of an electrochemical sensor for NOx based on ionic liquids and MoS2
JP4475587B2 (en) Nitrous oxide gas sensor
Ueda et al. Novel measuring method for detection of propene using zirconia-based amperometric sensor with oxide-based sensing electrode
Lakhmi et al. From the Modeling of an Electrochemical YSZ-Based Gas Sensor Used in Electrolysis Mode
Lakhmi et al. Modeling of Electrochemical SOFC-Based Sensors
JPH09264873A (en) Carbon dioxide sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250