JP4793863B2 - Method for producing interlayer cross-linked clay porous body - Google Patents

Method for producing interlayer cross-linked clay porous body Download PDF

Info

Publication number
JP4793863B2
JP4793863B2 JP2006086634A JP2006086634A JP4793863B2 JP 4793863 B2 JP4793863 B2 JP 4793863B2 JP 2006086634 A JP2006086634 A JP 2006086634A JP 2006086634 A JP2006086634 A JP 2006086634A JP 4793863 B2 JP4793863 B2 JP 4793863B2
Authority
JP
Japan
Prior art keywords
clay
porous body
layers
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006086634A
Other languages
Japanese (ja)
Other versions
JP2007261838A (en
Inventor
俊章 中尾
敏弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Prefecture
Original Assignee
Aichi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Prefecture filed Critical Aichi Prefecture
Priority to JP2006086634A priority Critical patent/JP4793863B2/en
Publication of JP2007261838A publication Critical patent/JP2007261838A/en
Application granted granted Critical
Publication of JP4793863B2 publication Critical patent/JP4793863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

この発明は層間架橋粘土(ピラードクレー)多孔体、特に孔径がミクロポーラスとマクロポーラスの中間のメソポーラスの層間架橋粘土多孔体を得ることのできる層間架橋粘土多孔体の製造方法に関する。   The present invention relates to an interlayer crosslinked clay porous body, and more particularly to a method for producing an interlayer crosslinked clay porous body capable of obtaining a mesoporous interlayer crosslinked clay porous body having a pore size between microporous and macroporous.

多孔体は、大別して孔径がナノレベル以下のミクロポーラス多孔体と、孔径が2〜50nm程度のメソポーラス多孔体と、孔径が50nm以上のマクロポーラス多孔体とに分類される。
これら多孔体のうち、メソポーラス多孔体は高分子物質に対する吸着能を有し、ガス凝縮吸着や溶液中の不純物除去といった利用目的に開発が進められている。
その応用分野は材料分野に限らず、環境エンジニアリング,食品工業,農業分野等多岐にわたる。
Porous materials are roughly classified into microporous porous materials having a pore size of nanometer or less, mesoporous porous materials having a pore size of about 2 to 50 nm, and macroporous porous materials having a pore size of 50 nm or more.
Of these porous bodies, mesoporous porous bodies have the ability to adsorb polymer substances, and are being developed for utilization purposes such as gas condensation adsorption and removal of impurities in solutions.
The field of application is not limited to the material field, but covers a wide range of fields such as environmental engineering, food industry, and agriculture.

具体的な用途として例えば下記のような用途、即ち
(a)醸造製品の滓下げ剤
(b)調湿材料,結露防止材,除湿材
(c)排水の浄化材用酵素担体
(d)肥料,防虫剤,農薬などの徐放材
等、2〜15nm程度の細孔を要する用途への好適な材料として期待されている。
Specific applications include, for example, the following applications: (a) A brewing agent for brewing products
(B) Humidity control material, anti-condensation material, dehumidifying material
(C) Enzyme carrier for wastewater purification material
(D) Sustained release materials such as fertilizers, insect repellents, and agricultural chemicals
It is expected as a suitable material for applications requiring pores of about 2 to 15 nm.

ここで滓下げ剤は蛋白質吸着によって醤油,酒などの醸造製品の濁りを取るもので、調湿材料は多湿環境下で空気中の水蒸気を吸着して除湿し又は乾燥環境下で吸着した水分を放出するものである。
排水の浄化材用酵素担体は、酵素担持によって排水中の汚れを酵素により分解するもので、徐放材は肥料とか農薬を事前に含ませておいてそれを徐々に放出するものである。
Here, the suspending agent removes turbidity of brewed products such as soy sauce and liquor by protein adsorption. To be released.
The enzyme carrier for waste water purification material is a material that decomposes dirt in waste water by enzyme, and the sustained release material contains fertilizer or agrochemical in advance and gradually releases it.

従来、多孔体としてはゼオライトや活性炭或いはシリカゲルといったものが広く用いられているが、これらのものは上記のミクロポーラス多孔体に属するもので、孔径が小さすぎて高分子物質を吸着できず、上記用途には適していないものである。
尤もシリカゲルにはメソポーラス多孔体も知られているが、シリカゲルの場合耐水性が無く、メソポーラスではあっても上記の用途には使用することができない。
Conventionally, zeolite, activated carbon or silica gel has been widely used as the porous body, but these belong to the microporous porous body, and the pore size is too small to adsorb the polymer substance. It is not suitable for use.
However, a mesoporous porous material is also known for silica gel. However, silica gel has no water resistance, and even if it is mesoporous, it cannot be used for the above applications.

一方層間架橋粘土(ピラードクレー)多孔体は、化学的に安定な無機物で耐水性,耐薬品性を有し、また加熱や薬品処理で再生可能であり、上記の用途には適した材料である。
しかしながら従来の層間架橋粘土多孔体はミクロポーラス多孔体であり、上記用途の材料として使用することができない。
そこで層間架橋粘土多孔体において孔径を大きくするための研究が行われている。
例えば、溶媒に分散させた膨潤性粘土鉱物にPVA(ポリビニルアルコール)等の水溶性高分子を架橋補助材として加えてこれを粘土鉱物の層間に介挿することで層間隔を広く保持し、そして膨潤状態にある粘土鉱物の層間を無機質材で架橋して層間架橋粘土多孔体を得る製造方法が開発されている(下記特許文献1,特許文献2,特許文献3,特許文献4,特許文献5)。
On the other hand, a porous layered interlaminar clay (pillared clay) is a chemically stable inorganic substance that has water resistance and chemical resistance, and can be regenerated by heating or chemical treatment, and is a material suitable for the above applications.
However, the conventional inter-layer crosslinked clay porous body is a microporous porous body and cannot be used as a material for the above applications.
Therefore, research is being conducted to increase the pore size in the inter-layer crosslinked clay porous body.
For example, by adding a water-soluble polymer such as PVA (polyvinyl alcohol) as a crosslinking aid to a swellable clay mineral dispersed in a solvent and interposing it between layers of clay mineral, the layer spacing is kept wide, and A production method has been developed in which an interlayer-crosslinked clay mineral is cross-linked with an inorganic material to obtain a porous intercalated clay (Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5). ).

特許第2507903号公報Japanese Patent No. 2507903 特公昭62−46490号公報Japanese Examined Patent Publication No. 62-46490 特開平4−254410号公報JP-A-4-254410 特公平7−106953号公報Japanese Examined Patent Publication No. 7-106953 特公平2−28543号公報Japanese Patent Publication No. 2-28543

しかしながらこれらの製造方法は、合成後において濾過洗浄による生成物の分離回収が困難で、遠心分離を行うか又は分離を行わずにそのまま長時間乾燥せざるを得ない問題がある。
前者の遠心分離にて目的物を回収する場合、遠心分離による目的物の回収自体に非常に手間がかかる問題がある他、遠心分離によって、層間の間隔を保っていた水溶性高分子が層間から強制的に除去されてしまうために、その後これを焼成したときに層間が縮まって層間隔が小さくなり、得られる多孔体の孔径が小さくなってしまう。
However, these production methods have a problem that it is difficult to separate and recover the product by filtration and washing after synthesis, and the product must be dried for a long time without performing centrifugation or separation.
In the case of collecting the target product by the former centrifugation, there is a problem that the recovery of the target product itself by centrifugation is very troublesome. Since it is forcibly removed, the layers are shrunk when it is subsequently fired, resulting in a decrease in layer spacing and a decrease in the pore size of the resulting porous body.

他方、後者の長時間乾燥により目的物を回収する方法の場合、NaCl等の余剰の成分が残ってしまい、得られる層間架橋粘土多孔体の物性が低下したり副次的な生成物の発生が不可避である。更にまたこの方法にて得られる層間架橋粘土多孔体の孔径もまた小さく、メソポーラス材料と言うには尚不十分である。   On the other hand, in the case of the latter method in which the target product is recovered by long-time drying, surplus components such as NaCl remain, resulting in a decrease in physical properties of the resulting interlayer crosslinked clay porous body or generation of secondary products. Inevitable. Furthermore, the pore diameter of the interlayer crosslinked clay porous body obtained by this method is also small, which is still insufficient for a mesoporous material.

本発明は以上のような事情を背景とし、一般的な濾過洗浄により目的物を分離回収することが可能であり、しかも得られる多孔体の孔径が従来の層間架橋粘土多孔体よりも大きく、上記例示した用途に好適に使用可能な層間架橋粘土多孔体を得ることのできる、層間架橋粘土多孔体の製造方法を提供することを目的とする。   In the background of the above circumstances, the present invention is capable of separating and recovering the target product by general filtration and washing, and the pore size of the resulting porous body is larger than that of the conventional interlayer-crosslinked clay porous body, It aims at providing the manufacturing method of the interlayer bridge | crosslinking clay porous body which can obtain the interlayer bridge | crosslinking clay porous body which can be used conveniently for the illustrated use.

而して請求項1のものは、炭素数11〜17の炭化水素鎖を疎水基とするカルボン酸塩又はベンゼン若しくはベンゼン誘導体を疎水基とするカルボン酸塩とポリ塩化アルミニウムとの反応物をピラー材として、水溶性高分子溶液に分散させた膨潤性粘土鉱物の層間に挿入した状態とし、その後に該ピラー材にて該粘土鉱物の層と層とを架橋反応させることを特徴とする。   Thus, the present invention provides a pillar of a reaction product of a carboxylate having a hydrocarbon chain having 11 to 17 carbon atoms as a hydrophobic group or a carboxylate having a benzene or benzene derivative as a hydrophobic group and polyaluminum chloride. The material is characterized in that it is inserted between layers of a swellable clay mineral dispersed in a water-soluble polymer solution, and then the clay mineral layer is cross-linked with the pillar material.

請求項2のものは、請求項1において、前記水溶性高分子がPVA,PEO,PEGの何れか1種若しくは2種以上であることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the water-soluble polymer is one or more of PVA, PEO, and PEG.

請求項3のものは、請求項1,2の何れかにおいて、前記膨潤性粘土鉱物がスメクタイト又は膨潤性雲母鉱物であることを特徴とする。   According to a third aspect of the present invention, in any one of the first and second aspects, the swellable clay mineral is a smectite or a swellable mica mineral.

請求項4のものは、請求項1〜3の何れかにおいて、前記ピラー材を層間に挿入した前記粘土鉱物を溶媒から濾過により分離回収した後450〜950℃で加熱処理することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the clay mineral in which the pillar material is inserted between layers is separated and recovered by filtration from a solvent, and then heat-treated at 450 to 950 ° C. .

発明の作用・効果Effects and effects of the invention

以上のように本発明は、炭素数11〜17の炭化水素鎖を疎水基とするカルボン酸塩又はベンゼン若しくはベンゼン誘導体を疎水基とするカルボン酸塩とポリ塩化アルミニウムとの反応物をピラー材として、水溶性高分子溶液に分散させた膨潤性粘土鉱物の層間に介挿した状態とし、その後にこのピラー材にて粘土鉱物の層と層とを架橋反応させて層間架橋粘土多孔体を得るものである。   As described above, the present invention uses a carboxylate having a hydrocarbon chain having 11 to 17 carbon atoms as a hydrophobic group or a reaction product of a carboxylate having a benzene or benzene derivative as a hydrophobic group and polyaluminum chloride as a pillar material. , Interspersed between layers of swellable clay minerals dispersed in a water-soluble polymer solution, and then a cross-linking reaction between the layers of the clay minerals with this pillar material to obtain an interlayer crosslinked clay porous body It is.

図1は本発明の製造方法の代表的な例を模式的に表したものである。
図において10は膨潤性粘土鉱物を表しており、SiOの4面体より構成された層と、Al又はMgとO及びOHにより構成される8面体層とが上下に結合したものを1つの単位とする層12と12とが積層している。
各層12はAl→Mg置換や格子欠陥により負の電荷を有しており、層間にはNa,K,Ca2+,Mg2+(以下Naで代表する)等の交換性陽イオン14が周りを水分子で囲まれて入り込んでいる。
FIG. 1 schematically shows a typical example of the production method of the present invention.
In the figure, 10 represents a swellable clay mineral. One unit is composed of a layer composed of tetrahedral SiO 4 and an octahedral layer composed of Al, Mg, O, and OH. Layers 12 and 12 are stacked.
Each layer 12 has a negative charge due to Al → Mg substitution or lattice defects, and exchangeable cations 14 such as Na + , K + , Ca 2+ , Mg 2+ (hereinafter represented by Na + ) are present between the layers 12. It is surrounded by water molecules.

本発明では,(IV)に示しているようにカルボン酸塩(炭素数11〜17の炭化水素鎖を疏水基とするカルボン酸塩又はベンゼン若しくはベンゼン誘導体を疏水基とするカルボン酸塩)16と、ポリカチオン性無機物質であるポリ塩化アルミニウム18との反応物20を、ピラー材としてPVA(ポリビニルアルコール)等の水溶性高分子の溶液に分散させた膨潤性粘土鉱物10の層12間に挿入した状態とする。
図1中22はその水溶性高分子を表している。
In the present invention, as shown in (IV), a carboxylate (a carboxylate having a hydrocarbon chain having 11 to 17 carbon atoms as a brine group or a carboxylate having benzene or a benzene derivative as a brine group) 16 and A reaction product 20 with polyaluminum chloride 18 which is a polycationic inorganic substance is inserted between layers 12 of swellable clay mineral 10 in which a pillar material is dispersed in a solution of a water-soluble polymer such as PVA (polyvinyl alcohol). It will be in the state.
In FIG. 1, 22 represents the water-soluble polymer.

水溶性高分子22は、水と同様にして層12と12との間に取り込まれ、それらに対する突っ支い棒のような働きをして層12と12との間隔を広く保持する。
そのようにして間隔が広く保持された層12と12との間に上記の反応物20が取り込まれ、層12間に挿入される。
The water-soluble polymer 22 is taken in between the layers 12 and 12 in the same manner as water, and acts as a support rod with respect to them and keeps the distance between the layers 12 and 12 wide.
The reactant 20 described above is taken in between the layers 12 and 12 that are kept wide in this manner, and inserted between the layers 12.

反応物20は、ポリ塩化アルミニウムの塩素陰イオンがカルボン酸塩のカルボン酸陰イオンで置換される形で、それらポリ塩化アルミニウムとカルボン酸塩とが反応し結合したものと考えられる。従って分子量の大きな複数のカルボン酸陰イオンが、ポリ塩化アルミニウムに付加した形で反応物20が形成されていると考えられ、反応物20は全体的に嵩高くなっていて、層12と12との間にこの嵩高い反応物20が取り込まれることによって層12と12との間は更に効果的に広げられ或いは間隔保持されているものと考えられる。
また反応物20は、カルボン酸陰イオンが付加することで全体として疎水性が付与されている。
It is considered that the reactant 20 is formed by the reaction of the polyaluminum chloride and the carboxylate in a form in which the chloride anion of the polyaluminum chloride is replaced with the carboxylate anion of the carboxylate. Therefore, it is considered that the reactant 20 is formed in a form in which a plurality of carboxylate anions having a large molecular weight are added to polyaluminum chloride. The reactant 20 is bulky as a whole, and the layers 12 and 12 It is considered that the bulky reactant 20 is taken in between the layers 12 and 12 so that the layers 12 and 12 are more effectively spread or maintained.
Moreover, the reaction product 20 is imparted with hydrophobicity as a whole by addition of a carboxylate anion.

尚(IV)において層12と12との間に反応物20を挿入した状態とするための方法として、次の方法を好適に採用することができる。
即ち先ず膨潤性粘土鉱物10を、水溶性高分子22を水溶媒に溶解した水溶性高分子溶液に混合分散させる。
(II)はこのときの状態を表しており、PVA等の水溶性高分子22は、水が層12と12との間に取り込まれるのと同じ原理で層12と12との間に取り込まれる。そして層12と12との間に取り込まれた高分子22が突っ支い棒としての働きをなして、層12と12との間を広げ且つその広い間隔にこれを保持する。
In (IV), the following method can be suitably employed as a method for inserting the reactant 20 between the layers 12 and 12.
That is, first, the swellable clay mineral 10 is mixed and dispersed in a water-soluble polymer solution in which the water-soluble polymer 22 is dissolved in an aqueous solvent.
(II) shows the state at this time, and the water-soluble polymer 22 such as PVA is taken in between the layers 12 and 12 on the same principle that water is taken in between the layers 12 and 12. . Then, the polymer 22 taken in between the layers 12 and 12 functions as a support rod, widens the space between the layers 12 and 12 and holds it at a wide interval.

次にポリカチオンとしてのポリ塩化アルミニウムを加えることによって、層12と12との間に取り込まれている交換性陽イオン14、代表的にはNa+イオンをポリ塩化アルミニウムとの間でイオン交換し、層12と12との間にポリ塩化アルミニウム18の陽イオンを層間挿入(インターカレーション)させる。(III)はこのときの状態を表している。
そしてその後にカルボン酸塩を溶液中に加えて、カルボン酸塩とポリ塩化アルミニウムとを反応させる。
このようにして(IV)に示しているようにその反応物20を層12と12との間に挿入、即ち層間挿入させた状態とすることができる。
Next, by adding polyaluminum chloride as a polycation, the exchangeable cation 14, typically Na + ion, incorporated between layers 12 and 12 is ion-exchanged with polyaluminum chloride. The cations of the polyaluminum chloride 18 are inserted between the layers 12 and 12 (intercalation). (III) represents the state at this time.
Thereafter, a carboxylate is added to the solution to react the carboxylate with polyaluminum chloride.
In this way, as shown in (IV), the reactant 20 can be inserted between the layers 12 and 12, that is, inserted between the layers.

本発明では、この工程(IV)によって上記のように膨潤性粘土鉱物10そのものに疎水性を付与することができ、従って工程(IV)で得られた膨潤性粘土鉱物10は、溶媒としての水からの分離が極めて容易である。
それ故工程(IV)の膨潤性粘土鉱物10は、遠心分離その他の分離方法で容易に回収することができるが、本発明では好適には工程(IV)の膨潤性粘土鉱物10を濾過による分離によってこれを回収する。
In the present invention, hydrophobicity can be imparted to the swellable clay mineral 10 itself as described above by this step (IV). Therefore, the swellable clay mineral 10 obtained in the step (IV) is water as a solvent. Separation from is very easy.
Therefore, the swellable clay mineral 10 in the step (IV) can be easily recovered by centrifugation or other separation methods, but in the present invention, the swellable clay mineral 10 in the step (IV) is preferably separated by filtration. Recover this by

逆に言えば、工程(III)における膨潤性粘土鉱物10は水溶性高分子22,ポリ塩化アルミニウム18自体が高い親水性を有するために、膨潤性粘土鉱物10自体もまた極めて親水性で水との分離がはなはだ難しく、膨潤性粘土鉱物10が水溶媒中に一体に融合状態で混在した状態にあって全体として言わばどろどろの状態となっている。   In other words, since the swellable clay mineral 10 in the step (III) has high hydrophilicity in the water-soluble polymer 22 and the polyaluminum chloride 18 itself, the swellable clay mineral 10 itself is also extremely hydrophilic and has water. It is very difficult to separate the swellable clay mineral 10, and the swellable clay mineral 10 is in a mixed state in the water solvent in an integrated state, and as a whole, it is in a muddy state.

そこで従来の製造方法では、(IV)´に示しているように遠心分離を行って、(III)の粘土鉱物10を強制的に分離回収するようにしている。
ところがこの遠心分離は何回も操作が必要で非常に面倒な操作となり、最終的な層間架橋粘土多孔体を大量生産しようとすると実際には採用困難な方法である。即ちこの方法は量産には適していない。
またこのような遠心分離を施した場合、層12と12との間に存在して、層間の距離を広く保っていた水溶性高分子22の多くないしは一部が水とともに層12間から除去されるため、層12と12との間は縮まって層間隔が狭くなり((V)´参照)、その後の焼成によって得られる層間架橋粘土多孔体15の孔隙(孔径)も小さくなってしまう。
Therefore, in the conventional manufacturing method, as shown in (IV) ′, centrifugation is performed to forcibly separate and recover the clay mineral 10 of (III).
However, this centrifugation requires many operations and is a very troublesome operation, and it is actually a difficult method to adopt when attempting to mass-produce the final interlayer crosslinked clay porous body. That is, this method is not suitable for mass production.
In addition, when such centrifugation is performed, most or a part of the water-soluble polymer 22 existing between the layers 12 and 12 and maintaining a large distance between the layers is removed from between the layers 12 together with water. Therefore, the space between the layers 12 and 12 is reduced to narrow the gap between the layers (see (V) ′), and the pores (pore diameter) of the interlayer crosslinked clay porous body 15 obtained by subsequent firing are also reduced.

これに対し、本発明では(IV)の膨潤性粘土鉱物10に反応物20によって疎水性が付与されているため、困難且つ強制的な遠心分離を施さなくても、通常の濾過洗浄によって簡単に膨潤性粘土鉱物10を分離回収することができる。
このとき層間に存在している水溶性高分子22もまた一部が層間の水とともに層12と12との間から除去されるが、層12と12との間には嵩高い反応物20が依然として存在しているため、層12と12との間は依然として広い間隔に保持される。
そのため本発明によれば、その後の焼成によって従来に増して孔径の大きなメソポーラスの層間架橋粘土多孔体15が得られるのである。
尚その焼成に際してはポリ塩化アルミニウムがアルミナの柱となって層12と12とを架橋し、層間架橋粘土多孔体を形成する。
In contrast, in the present invention, since the hydrophobicity is imparted to the swellable clay mineral 10 of (IV) by the reactant 20, it can be easily performed by ordinary filtration and washing without difficult and forced centrifugation. The swellable clay mineral 10 can be separated and recovered.
At this time, a part of the water-soluble polymer 22 existing between the layers is also removed between the layers 12 and 12 together with the water between the layers, but the bulky reactant 20 is present between the layers 12 and 12. Since it is still present, the gap between the layers 12 and 12 is still maintained at a large distance.
Therefore, according to the present invention, the mesoporous interlayer cross-linked clay porous body 15 having a larger pore diameter than that of the prior art can be obtained by subsequent firing.
In the firing, polyaluminum chloride serves as an alumina column to crosslink layers 12 and 12 to form a porous intercalated clay.

以上のような本発明によれば、メソポーラス層間架橋粘土多孔体(細孔径がピーク径で13nm程度可能)を簡単な操作だけで安価に製造することができる。
また製造過程で目的の粘土鉱物を回収したときに余分な成分を除去できるため、層間架橋粘土多孔体の特性も良好で、優れた品質の層間架橋粘土多孔体を得ることができる。
尚本発明では炭素数11〜17の炭化水素鎖を疎水基とするカルボン酸塩としてラウリン酸ナトリウム,ミリスチン酸ナトリウム,パルミチン酸ナトリウム,ステアリン酸ナトリウム,オレイン酸ナトリウムを好適に用いることができる。
一方ベンゼン若しくはベンゼン誘導体を疎水基とするカルボン酸塩として安息香酸ナトリウム,サリチル酸ナトリウムを好適に用いることができる。
また本発明では、水溶性高分子としてPVA,PEO(ポリエチレンオキサイド)PEG(ポリエチレングリコール)の何れか1種若しくは2種以上を好適に用いることができ(請求項2)、また膨潤性粘土鉱物としてスメクタイト又は膨潤性雲母鉱物を好適に用いることができる(請求項3)。
According to the present invention as described above, a mesoporous interlayer-crosslinked clay porous body (pore diameter can be about 13 nm at a peak diameter) can be produced at low cost by a simple operation.
In addition, since the excess components can be removed when the target clay mineral is recovered in the production process, the properties of the inter-layer cross-linked clay porous body are good, and an inter-layer cross-linked clay porous body of excellent quality can be obtained.
In the present invention, sodium laurate, sodium myristate, sodium palmitate, sodium stearate, and sodium oleate can be suitably used as a carboxylate having a hydrocarbon chain having 11 to 17 carbon atoms as a hydrophobic group.
On the other hand, sodium benzoate and sodium salicylate can be suitably used as a carboxylate having benzene or a benzene derivative as a hydrophobic group.
In the present invention, one or more of PVA, PEO (polyethylene oxide) and PEG (polyethylene glycol) can be suitably used as the water-soluble polymer (Claim 2), and the swellable clay mineral can be used. Smectite or a swellable mica mineral can be suitably used (Claim 3).

また上記焼成を450〜950℃の温度で行うことができる(請求項4)。   Moreover, the said baking can be performed at the temperature of 450-950 degreeC (Claim 4).

<実施例1>
(原料液調整)
膨潤性粘土鉱物である合成ヘクトライト(トピー工業株式会社製,NHT-70B,C.E.C:0.7meq/g)を蒸留水に分散させ、6.6mass%粘土懸濁液とした。また水溶性高分子であるポリビニルアルコール(和光純薬株式会社製、完全けん化型、平均重合度900〜1100)を蒸留水に加熱溶解させ、10mass%PVA溶液とした。そして6.6mass%粘土懸濁液と10mass%PVA溶液とを重量比3:1の比率で混合し、粘土5.0mass%-PVA2.5mass%溶液(以下粘土溶液H)とした。
塩素含有ポリカチオンであるポリ塩化アルミニウム溶液(多木化学株式会社製、タキバイン#1500)を溶液100gに対してAlが0.1molとなるように希釈し、Al 0.1mol/100g溶液(以下Al溶液)とした。
(インターカレーション)
粘土溶液H200gにAl溶液210g(粘土溶液中の粘土分に対して、AlO換算で重量比1)を加え、1時間撹拌した後、80℃の恒温槽中で36時間保持してインターカレーションを行った。
(疎水性の付与)
インターカレーション後の溶液に、脂肪酸塩溶液(ラウリン酸ナトリウム21.79gを蒸留水200gに加熱溶解させたもの)を加え、1時間撹拌した後、80℃の恒温槽中で24時間保持して疎水性の付与を行った。
(固液分離・焼成)
疎水性を付与した溶液を濾過洗浄し、室温で乾燥後、320℃で4時間、600℃で4時間の加熱焼成処理を行って層間架橋粘土多孔体を得た。
<Example 1>
(Raw material adjustment)
Synthetic hectorite (Topy Industries, Ltd., NHT-70B, CEC: 0.7 meq / g), which is a swelling clay mineral, was dispersed in distilled water to obtain a 6.6 mass% clay suspension. Polyvinyl alcohol (Wako Pure Chemical Industries, complete saponification type, average polymerization degree: 900 to 1100), which is a water-soluble polymer, was dissolved by heating in distilled water to obtain a 10 mass% PVA solution. A 6.6 mass% clay suspension and a 10 mass% PVA solution were mixed at a weight ratio of 3: 1 to obtain a clay 5.0 mass% -PVA 2.5 mass% solution (hereinafter, clay solution H).
Polyaluminum chloride solution (Taki Chemical Co., Ltd., Takibaine # 1500), a chlorine-containing polycation, is diluted so that Al becomes 0.1 mol with respect to 100 g of solution, and Al 0.1 mol / 100 g solution (hereinafter referred to as Al solution) It was.
(Intercalation)
Add 210g of Al solution (weight ratio 1 in terms of Al 2 O 3 to clay content in clay solution) to 200g of clay solution, stir for 1 hour, and hold for 36 hours in a constant temperature bath at 80 ° C. Calated.
(Give hydrophobicity)
Fatty acid salt solution (21.79 g of sodium laurate dissolved in 200 g of distilled water) was added to the solution after the intercalation, stirred for 1 hour, and then kept in a constant temperature bath at 80 ° C for 24 hours to make it hydrophobic Gender was added.
(Solid-liquid separation / firing)
The solution imparted with hydrophobicity was washed by filtration, dried at room temperature, and then subjected to a heat baking treatment at 320 ° C. for 4 hours and at 600 ° C. for 4 hours to obtain an interlayer crosslinked clay porous body.

<実施例2>
実施例1の(疎水性の付与)において、芳香族カルボン酸塩溶液(サリチル酸ナトリウム15.69gを蒸留水200gに溶解させたもの)を脂肪酸塩溶液の代わりに用いた以外は、実施例1と同様の工程で層間架橋粘土多孔体を得た。
<Example 2>
The same as Example 1 except that the aromatic carboxylate solution (15.69 g of sodium salicylate dissolved in 200 g of distilled water) was used in place of the fatty acid salt solution in Example 1 (Granting hydrophobicity). In the step, an interlayer crosslinked clay porous body was obtained.

<実施例3>
実施例1の(インターカレーション)において、Al溶液を105g(粘土溶液中の粘土分に対して、AlO換算で重量比0.5)とした以外は、実施例1と同様の工程で層間架橋粘土多孔体を得た。
<Example 3>
In Example 1 (intercalation), the same procedure as in Example 1 was repeated except that the Al solution was 105 g (weight ratio 0.5 in terms of Al 2 O 3 with respect to the clay content in the clay solution). A crosslinked clay porous body was obtained.

<実施例4>
(原料液調整)
膨潤性粘土鉱物であるモンモリロナイト(クニミネ工業株式会社製、クニピアF,C.E.C:1.15meq/g)を蒸留水に分散させ、2.2mass%粘土懸濁液とした。そして、この粘土懸濁液と実施例1記載の10mass%PVA溶液を、重量比9:1の比率で混合し、粘土2.0mass%-PVA1.0mass%溶液(以下粘土溶液M)とした。
実施例1記載のポリ塩化アルミニウム溶液を原液のまま用い、Al0.46mol/100g溶液(以下Al原溶液)とした。
(インターカレーション)
粘土溶液M500gにAl原溶液45g(粘土溶液中の粘土分に対して、AlO換算で重量比1)を加え、1時間撹拌した後、80℃の恒温槽中で36時間保持してインターカレーションを行った。
(疎水性の付与),(固液分離・焼成)共に実施例1と同様の工程で層間架橋粘土多孔体を得た。
<Example 4>
(Raw material adjustment)
Montmorillonite (Kunimine Kogyo Co., Ltd., Kunipia F, CEC: 1.15 meq / g), a swellable clay mineral, was dispersed in distilled water to obtain a 2.2 mass% clay suspension. The clay suspension and the 10 mass% PVA solution described in Example 1 were mixed at a weight ratio of 9: 1 to obtain a clay 2.0 mass% -PVA 1.0 mass% solution (hereinafter, clay solution M).
The polyaluminum chloride solution described in Example 1 was used as the stock solution to obtain an Al 0.46 mol / 100 g solution (hereinafter referred to as Al stock solution).
(Intercalation)
After adding 45 g of Al raw solution (500 wt% in terms of Al 2 O 3 with respect to the clay content in the clay solution) to 500 g of clay solution, stirring for 1 hour, and holding in a constant temperature bath at 80 ° C. for 36 hours Intercalation was performed.
Both (hydrophobicity imparting) and (solid-liquid separation / firing) were obtained by the same steps as in Example 1 to obtain an interlayer crosslinked clay porous body.

<実施例5>
実施例4の(インターカレーション)において、Al原溶液を23g(粘土溶液中の粘土分に対して、AlO換算で重量比0.5)とした以外は実施例4と同様の工程で層間架橋粘土多孔体を得た。
<Example 5>
In Example 4 (intercalation), the same procedure as in Example 4 was repeated except that the Al raw solution was 23 g (weight ratio 0.5 in terms of Al 2 O 3 with respect to the clay content in the clay solution). A crosslinked clay porous body was obtained.

<比較例1>
実施例1の(疎水性の付与)において、ラウリン酸ナトリウムを加えずに蒸留水200gのみを加え、1時間撹拌した後、80℃の恒温槽中で24時間保持したものを比較例1とし、実施例1との濾過性の比較を行った。
各溶液を100ml採取して吸引濾過を行ったところ、実施例1の溶液は4分半で濾過が完了したのに対し、比較例1では30分経過後でも6mlしか固液の分離ができなかった。(濾過条件:φ90mmNo.5B濾紙、水流アスピレーター使用)
そのため、比較例1の溶液は全量遠心分離で固液を分離し、実施例1と同様の焼成を行って層間架橋粘土多孔体を得た。
<Comparative Example 1>
In Example 1 (giving hydrophobicity), only 200 g of distilled water was added without adding sodium laurate, and the mixture was stirred for 1 hour and then kept in a thermostat at 80 ° C. for 24 hours as Comparative Example 1. A filterability comparison with Example 1 was performed.
When 100 ml of each solution was collected and subjected to suction filtration, the solution of Example 1 was completely filtered in 4 and a half minutes, whereas in Comparative Example 1, only 6 ml could be separated even after 30 minutes. It was. (Filtration condition: φ90mm No.5B filter paper, water aspirator used)
Therefore, the solution of Comparative Example 1 was separated into solid and liquid by centrifugal separation, and calcination was performed in the same manner as in Example 1 to obtain an interlayer crosslinked clay porous body.

<結果>
これら実施例と比較例で得られた層間架橋粘土多孔体の比表面積、細孔径分布のピーク値を表1及び図2に示した。ここで比表面積,細孔径分布の測定は窒素吸着で行った。
<Result>
Table 1 and FIG. 2 show the specific surface area and the peak value of the pore diameter distribution of the interlayer crosslinked clay porous bodies obtained in these Examples and Comparative Examples. Here, the specific surface area and pore size distribution were measured by nitrogen adsorption.

Figure 0004793863
Figure 0004793863

表1及び図2から明らかなように、比較例では小さな細孔径のものしか得られなかったのに対し、各実施例では孔径5nm以上の大きな細孔を有する層間架橋粘土多孔体を得ることができた。
更に比較例1では目的物である粘土鉱物を吸引濾過にては分離回収することができなかったのに対し、各実施例のものは何れも簡単に吸引濾過によって目的とする粘土鉱物を簡単に分離回収することができた。
As is apparent from Table 1 and FIG. 2, in the comparative examples, only small pore diameters were obtained, whereas in each example, an interlayer-crosslinked clay porous body having large pores having a pore diameter of 5 nm or more was obtained. did it.
Further, in Comparative Example 1, the target clay mineral could not be separated and collected by suction filtration, whereas in each example, the target clay mineral was easily obtained by suction filtration. It was possible to separate and recover.

本発明の製造方法の代表的な一例を模式的に表した図である。It is the figure which represented typically a typical example of the manufacturing method of this invention. 実施例及び比較例において得られた層間架橋粘土多孔体の細孔径分布を表した図である。It is the figure showing the pore size distribution of the interlayer bridge | crosslinking clay porous body obtained in the Example and the comparative example.

符号の説明Explanation of symbols

10 膨潤性粘土鉱物
12 層
16 カルボン酸塩
18 ポリ塩化アルミニウム
20 反応物
15 層間架橋粘土多孔体
10 Swelling Clay Mineral 12 Layer 16 Carboxylate 18 Polyaluminum Chloride 20 Reactant 15 Interlayer Crosslinked Clay Porous Body

Claims (4)

炭素数11〜17の炭化水素鎖を疎水基とするカルボン酸塩又はベンゼン若しくはベンゼン誘導体を疎水基とするカルボン酸塩とポリ塩化アルミニウムとの反応物をピラー材として、水溶性高分子溶液に分散させた膨潤性粘土鉱物の層間に挿入した状態とし、その後に該ピラー材にて該粘土鉱物の層と層とを架橋反応させることを特徴とする層間架橋粘土多孔体の製造方法。   Disperse in a water-soluble polymer solution using as a pillar material a reaction product of a carboxylate containing a hydrocarbon chain having 11 to 17 carbon atoms as a hydrophobic group or a carboxylate containing benzene or a benzene derivative as a hydrophobic group and polyaluminum chloride. A method for producing an inter-layered crosslinked clay porous body, characterized in that the clay mineral layer is inserted between layers of the swellable clay mineral, and then the layer of the clay mineral is crosslinked with the pillar material. 請求項1において、前記水溶性高分子がPVA,PEO,PEGの何れか1種若しくは2種以上であることを特徴とする層間架橋粘土多孔体の製造方法。   The method for producing a porous interlayer crosslinked clay according to claim 1, wherein the water-soluble polymer is one or more of PVA, PEO, and PEG. 請求項1,2の何れかにおいて、前記膨潤性粘土鉱物がスメクタイト又は膨潤性雲母鉱物であることを特徴とする層間架橋粘土多孔体の製造方法。   The method for producing a porous interlayer crosslinked clay according to any one of claims 1 and 2, wherein the swellable clay mineral is smectite or a swellable mica mineral. 請求項1〜3の何れかにおいて、前記ピラー材を層間に挿入した前記粘土鉱物を溶媒から濾過により分離回収した後450〜950℃で加熱処理することを特徴とする層間架橋粘土多孔体の製造方法。   4. The production of an inter-layer crosslinked clay porous body according to any one of claims 1 to 3, wherein the clay mineral in which the pillar material is inserted between layers is separated and recovered from a solvent by filtration and then heat-treated at 450 to 950 ° C. Method.
JP2006086634A 2006-03-27 2006-03-27 Method for producing interlayer cross-linked clay porous body Expired - Fee Related JP4793863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086634A JP4793863B2 (en) 2006-03-27 2006-03-27 Method for producing interlayer cross-linked clay porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086634A JP4793863B2 (en) 2006-03-27 2006-03-27 Method for producing interlayer cross-linked clay porous body

Publications (2)

Publication Number Publication Date
JP2007261838A JP2007261838A (en) 2007-10-11
JP4793863B2 true JP4793863B2 (en) 2011-10-12

Family

ID=38635201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086634A Expired - Fee Related JP4793863B2 (en) 2006-03-27 2006-03-27 Method for producing interlayer cross-linked clay porous body

Country Status (1)

Country Link
JP (1) JP4793863B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067952A (en) * 1996-05-10 1998-03-10 Ciba Specialty Chem Holding Inc Pigment composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356652B (en) * 2017-11-27 2023-07-07 东亚合成株式会社 Interlayer crosslinked layered inorganic compound and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067952A (en) * 1996-05-10 1998-03-10 Ciba Specialty Chem Holding Inc Pigment composition

Also Published As

Publication number Publication date
JP2007261838A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
Pereira et al. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review
Li et al. Novel application of red mud: Facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal
US6254845B1 (en) Synthesis method of spherical hollow aluminosilicate cluster
US9382133B2 (en) Adsorbent composite from natural raw materials to remove heavy metals from water
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
Zendehdel et al. Removal of heavy metals from aqueous solution by poly (acrylamide-co-acrylic acid) modified with porous materials
KR101171799B1 (en) Method for recycling of silica etching waste and method for preparing mesoporous materials
Tong et al. Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate
Singh Environmental remediation by nanoadsorbents-based polymer nanocomposite
EP1841526A2 (en) Method for the production of cationised adsorbents absorbent means obtainable thus and preferred use thereof
CN109071349B (en) Particulate composition and filter for purifying water
Yang et al. Individual and simultaneous adsorption of tetracycline and cadmium by dodecyl dimethyl betaine modified vermiculite
CN105080366B (en) A kind of reverse osmosis membrane and preparation method thereof
JPWO2008093628A1 (en) Boron remover and boron removal method using dry glue
JP4793863B2 (en) Method for producing interlayer cross-linked clay porous body
Shokri et al. Novel adsorptive mixed matrix membrane by incorporating modified nanoclay with amino acid for removal of arsenic from water
Sebastian et al. Layered clay-alginate composites for the adsorption of anionic dyes: a biocompatible solution for water/wastewater treatment
Wibulswas et al. Adsorption of phenolic compounds from water by surfactant-modified pillared clays
AU2021107526A4 (en) The preparation method and application of malic acid-chitosan nanoporous hydrogel microspheres
EP1699754B1 (en) Method for removal of guanidine compound from aqueous media
JP3629743B2 (en) Method for producing activated carbon
Önkal-Engin et al. Humic acid uptake from aqueous media using hydrotalcites and modified montmorillonite
Wibulswas et al. Removal of humic substances from water by alumina-based pillared clays
JP2004059330A (en) Tubular structure comprising amorphous aluminum silicate, method for manufacturing the same, and adsorbent using the tublar structure
JP5845644B2 (en) Boron adsorbent and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees