JP4792734B2 - Contact type film thickness measuring machine - Google Patents

Contact type film thickness measuring machine Download PDF

Info

Publication number
JP4792734B2
JP4792734B2 JP2004346706A JP2004346706A JP4792734B2 JP 4792734 B2 JP4792734 B2 JP 4792734B2 JP 2004346706 A JP2004346706 A JP 2004346706A JP 2004346706 A JP2004346706 A JP 2004346706A JP 4792734 B2 JP4792734 B2 JP 4792734B2
Authority
JP
Japan
Prior art keywords
sheet
film thickness
contact
measuring element
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004346706A
Other languages
Japanese (ja)
Other versions
JP2006153732A (en
Inventor
竜徳 山本
圭 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004346706A priority Critical patent/JP4792734B2/en
Publication of JP2006153732A publication Critical patent/JP2006153732A/en
Application granted granted Critical
Publication of JP4792734B2 publication Critical patent/JP4792734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、接触式膜厚測定機およびその使用方法に関し、とりわけ電極合剤層が塗工されたシート状電極材の厚みを測定するための接触式膜厚測定機およびその使用方法に関する。   The present invention relates to a contact-type film thickness measuring machine and a method of using the same, and more particularly to a contact-type film thickness measuring machine for measuring the thickness of a sheet-like electrode material coated with an electrode mixture layer and a method of using the same.

近年の携帯電話、ラップトップパソコン、およびオーティオビジュアル機器などの電子機器が高機能化するにつれて、これらに使用される電源電池に対し、よりいっそうの小型化、軽量化、大容量化、および高エネルギ密度化が要求されている。そこで、従来のアルカリ蓄電池に代わり、リチウムイオン2次電池を始めとするさまざまな非水電解液電池が提案されている。   As electronic devices such as mobile phones, laptop computers, and audiovisual devices have become more sophisticated in recent years, the power batteries used in these devices have become smaller, lighter, larger capacity, and higher energy. Densification is required. Therefore, various non-aqueous electrolyte batteries including lithium ion secondary batteries have been proposed in place of conventional alkaline storage batteries.

リチウムイオン2次電池は、一般に、正極集電体と負極集電体に端子電極を取り付け、両電極板の間に短絡を防止するためのセパレータを挟んで捲回し、これを非水電解液で満たした電池ケース容器内に密封して構成される。
さらに詳述すると、リチウムイオン2次電池の各集電体の従来式の製造方法は、概略、
a)長尺で幅広のシート状の集電体金属板を準備する工程と、
b)電極合剤層塗工液を調整する工程と、
c)集電体金属板の両面上に塗工液(電極合剤層)が塗布された領域と塗布されない領域を周期的に形成するために、集電体金属板を所定方向に走行させながら電極合剤層塗工液を間欠的に塗布する工程と、
d)電極合剤層が形成された集電体金属板(単に、ウェブという)を乾燥させる工程と、
e)ウェブを圧延(プレス)する工程と、
f)ウェブを走行方向に短冊状にスリット切断する工程と、
g)短冊状にスリット切断された集電体を巻取ロールに捲回する工程と、
h)巻取ロールに一旦捲回された電極材ロールの最も外側にある一部(最外部)を全体の電極材ロールから切断して、切断された最外部について電極合剤層の膜厚を測定する工程とからなる。
In general, a lithium ion secondary battery has terminal electrodes attached to a positive electrode current collector and a negative electrode current collector, wound with a separator for preventing a short circuit between both electrode plates, and filled with a non-aqueous electrolyte. The battery case container is hermetically sealed.
More specifically, the conventional method for manufacturing each current collector of a lithium ion secondary battery is roughly as follows:
a) preparing a long and wide sheet-like current collector metal plate;
b) adjusting the electrode mixture layer coating solution;
c) While periodically running the current collector metal plate in a predetermined direction in order to periodically form a region where the coating liquid (electrode mixture layer) is applied and a region where it is not applied on both sides of the current collector metal plate A step of intermittently applying an electrode mixture layer coating solution;
d) drying the current collector metal plate (simply referred to as web) on which the electrode mixture layer is formed;
e) rolling (pressing) the web;
f) slitting the web into strips in the running direction;
g) winding the current collector slit-cut into strips onto a take-up roll;
h) A part (outermost part) on the outermost side of the electrode material roll once wound on the take-up roll is cut from the entire electrode material roll, and the film thickness of the electrode mixture layer is reduced for the outermost part cut. And measuring.

集電体金属板上に塗布され、プレスされた電極合剤層の膜厚は、最終的な製品としての電池の歩留まりおよび特性に重大な影響を与えるので、これをサブミクロンオーダの精度で正確に測定して、上記工程、とりわけ塗工液の調整工程と塗工工程にリアルタイムでフィードバックする必要がある。   The film thickness of the electrode mixture layer applied and pressed on the current collector metal plate has a significant effect on the yield and characteristics of the final product battery, which can be accurately measured with submicron accuracy. Therefore, it is necessary to feed back in real time to the above-described processes, particularly the coating liquid adjustment process and the coating process.

例えば、シート状電極材の厚みを測定するための従来式の装置が、特開2001−126719公報に開示されている。この接触式の厚み測定装置は、シート状電極材の両主面に垂直に当接するように対向配置された一対の接触式変位センサとして構成されている。また、各接触式変位センサは、スプリングを装着した支柱と、これに支持された支持板に固定されたローラ形状を有するセンサ接触子とを有し、センサ接触子の対接位置の移動に応じて、膜厚に対応する信号を出力する。   For example, a conventional apparatus for measuring the thickness of a sheet electrode material is disclosed in Japanese Patent Application Laid-Open No. 2001-126719. This contact-type thickness measuring device is configured as a pair of contact-type displacement sensors disposed to face each other so as to vertically contact both main surfaces of the sheet-like electrode material. Each contact-type displacement sensor has a support post mounted with a spring and a sensor contact having a roller shape fixed to a support plate supported by the support, and responds to movement of the contact position of the sensor contact. And outputs a signal corresponding to the film thickness.

しかし、こうした構成を有する接触式厚み測定装置によれば、スプリングは、使用中、接触子に弾発性を与えるために常に押し縮められた状態にあって、スプリングによる測定圧が経時的に低下しやすく(スプリングが劣化して弾発性が弱くなりやすく)、ローラ形状を有するセンサ接触子は、シート状電極と常に接触して、時間とともに摩滅・摩耗する傾向がある。一方、シート状電極材は、センサ接触子と接触した状態で走行するので、センサ接触子との接触領域において、電極活物質(電極合剤層)に損傷を与え、電池としての製品歩留まりが著しく低減するという問題があった。
特開2001−126719公報
However, according to the contact-type thickness measuring device having such a configuration, the spring is always compressed in order to give elasticity to the contact during use, and the measurement pressure by the spring decreases with time. The sensor contact having a roller shape tends to wear out and wear over time because the spring is easily deteriorated and the elasticity becomes weak. On the other hand, since the sheet-like electrode material travels in contact with the sensor contact, the electrode active material (electrode mixture layer) is damaged in the contact area with the sensor contact, and the product yield as a battery is remarkably increased. There was a problem of reduction.
JP 2001-126719 A

その他の従来技術において、サブミクロンオーダの精度で膜厚を測定する装置として、ユニオンツール株式会社製ミクロファイン(登録商標)が広く用いられている。
一例として、ユニオンツール株式会社製ミクロファインシリーズの型番S−2の接触式膜厚測定機について、図7を参照しながら以下説明する。
In other prior arts, Micro Fine (registered trademark) manufactured by Union Tool Co., Ltd. is widely used as an apparatus for measuring the film thickness with submicron order accuracy.
As an example, a contact-type film thickness measuring machine of model number S-2 of Micro Fine series manufactured by Union Tool Co., Ltd. will be described below with reference to FIG.

図7に示すように、接触式膜厚測定機101は、概略、定盤110と測定子120とを備え、定盤110は、載置表面112を含む金属製テーブル114と、これを所定位置に保持する固定治具116とを有し、測定子120は、載置表面112と対向し、連続した曲面(球面)形状または頂点を含む円錐形状に成型された接触表面112を有する。この膜厚測定機101は、定盤110の載置表面112と測定子120の接触表面112の間にシート状電極材130を挟持することにより、シート状電極材130の厚みを測定する。   As shown in FIG. 7, the contact-type film thickness measuring device 101 generally includes a surface plate 110 and a measuring element 120. The surface plate 110 includes a metal table 114 including a placement surface 112 and a predetermined position. The measuring element 120 has a contact surface 112 which faces the mounting surface 112 and is formed into a continuous curved surface (spherical surface) shape or a conical shape including a vertex. The film thickness measuring device 101 measures the thickness of the sheet-like electrode material 130 by sandwiching the sheet-like electrode material 130 between the mounting surface 112 of the surface plate 110 and the contact surface 112 of the measuring element 120.

また、測定子120は、シャフト124の下端部に固定され、ばねなどの付勢部材126により下方に定盤110に向かって付勢される。さらに、シャフト124は、レバー128に連結され、これを作業者が押し下げることにより、シャフト124および測定子120を引き上げることができる。すなわち作業者は、レバー128を解放しさえすれば、シート状電極材130を定盤110と測定子120の間に挟持して、その膜厚を測定でき、レバー128を押下することにより、膜厚測定を終了して、シート状電極材130の挟持を解除することができる。   The probe 120 is fixed to the lower end of the shaft 124 and is urged downward toward the surface plate 110 by an urging member 126 such as a spring. Further, the shaft 124 is connected to the lever 128, and the shaft 124 and the measuring element 120 can be pulled up when the operator pushes the shaft 124 down. That is, as long as the lever 128 is released, the operator can measure the film thickness by sandwiching the sheet-like electrode material 130 between the surface plate 110 and the measuring element 120. After the thickness measurement is completed, the sandwiching of the sheet electrode material 130 can be released.

測定する前の準備として、測定子120を徐々に降下させて、測定子120が定盤110に触れた時点でのモニタ値を0にリセットした後、さらにモニタ値が所定値(例えば−0.5mm)となった時点で、あらためてモニタ値を0にリセットする(この値を圧下点という)。こうして、モニタ値が0を示すとき、付勢部材126はシャフト124および測定子120をいくぶん下方に付勢するように、膜厚測定機101は初期設定される。   As a preparation before the measurement, the measuring element 120 is gradually lowered to reset the monitor value when the measuring element 120 touches the surface plate 110 to 0, and then the monitor value becomes a predetermined value (for example, −0. 5 mm), the monitor value is reset again to 0 (this value is referred to as the reduction point). Thus, when the monitor value indicates 0, the film thickness measuring device 101 is initially set so that the biasing member 126 biases the shaft 124 and the probe 120 somewhat downward.

しかしながら、シート状電極材130を微視的に見た場合、図8(a)および(b)に示すように、集電体金属板132上に塗工される電極合剤層134は、必ずしも平坦で均一な厚みを有するとは限らず、むしろ局在的な凹部135を含むことがある。このような電極合剤層134の凹部135に、球面形状または頂点を含む円錐形状に成型された測定子120が当接すると、測定子120は凹部135に潜り込んでしまい、ある範囲の面積をもつ所定領域の平均的な厚みを測定することができない。
また、電極合剤層134が柔らかい材質で構成される場合も同様に、測定子120の接触表面112は電極合剤層134内に食い込んでしまい、特定領域の平均的な膜厚を測定することは困難であった。
However, when the sheet-like electrode material 130 is viewed microscopically, as shown in FIGS. 8A and 8B, the electrode mixture layer 134 applied on the current collector metal plate 132 is not necessarily provided. It does not necessarily have a flat and uniform thickness, but rather may include a localized recess 135. When the measuring element 120 formed into a spherical shape or a conical shape including the apex contacts with the concave portion 135 of the electrode mixture layer 134, the measuring element 120 sinks into the concave portion 135 and has a certain area. The average thickness of the predetermined area cannot be measured.
Similarly, when the electrode mixture layer 134 is made of a soft material, the contact surface 112 of the probe 120 bites into the electrode mixture layer 134 and measures the average film thickness in a specific region. Was difficult.

その他の問題点として、定盤110のテーブル114は、上述の通り、鉄などの金属から形成されるが、定盤110と測定子120間にシート状電極材130を挟持することにより、シート状電極材130の厚み測定を繰り返すうちに(図9(a))、測定子120に対向する定盤110のテーブル114の一部が、図9(b)に示すように摩滅・摩耗して凹所137が形成される。凹所137が形成された後、あらたに膜厚測定機101が、図10(a)に示す位置でリセットされると、図10(b)に示すように凹所137の深さdの分だけ厚みを大きく表示し、正確に厚みを測定することができない。   As another problem, the table 114 of the surface plate 110 is formed of a metal such as iron as described above, but the sheet-like electrode material 130 is sandwiched between the surface plate 110 and the measuring element 120 to form a sheet shape. While repeating the thickness measurement of the electrode material 130 (FIG. 9A), a part of the table 114 of the surface plate 110 facing the measuring element 120 is worn and worn as shown in FIG. A location 137 is formed. After the formation of the recess 137, when the film thickness measuring device 101 is reset at the position shown in FIG. 10A, the depth d of the recess 137 is set as shown in FIG. Only the thickness is displayed large, and the thickness cannot be measured accurately.

さらに別の解決課題は、上述のように、シート状電極材130の膜厚を測定するためには、作業者はレバー128を単に解放するだけでよいが、性急な作業者によれば、レバー128を押し上げて、必要以上の力を測定子120に加え、必ずしも正確に膜厚が測定されない場合があった。   Yet another problem is that, as described above, in order to measure the film thickness of the sheet-like electrode material 130, the operator only needs to release the lever 128. In some cases, the film thickness is not always accurately measured by pushing up 128 and applying a force more than necessary to the probe 120.

これらの問題を解決するために、本発明は、シート状電極材上の電極合剤層の表面形状および構成材料に関係なく、所定領域の平均的な膜厚を常に高い精度で測定できる接触式膜厚測定機を提供することを目的とする。   In order to solve these problems, the present invention is a contact type that can always measure the average film thickness of a predetermined region with high accuracy regardless of the surface shape and constituent material of the electrode mixture layer on the sheet-like electrode material. It aims at providing a film thickness measuring machine.

また、測定子が当接する定盤のテーブルの一部が摩滅して、凹所が形成されることを回避できる接触式膜厚測定機を提供することを目的とする。   It is another object of the present invention to provide a contact-type film thickness measuring device capable of avoiding the formation of a recess due to wear of a part of a table on a surface plate with which a measuring element abuts.

さらに、性急な作業者が必要以上の力を測定子に加えることを防止して、付勢部材による安定的な力でシート状電極材上の電極合剤層を挟持することにより、作業者に起因するばらつきが生じることなく、膜厚を正確に測定できる接触式膜厚測定機を提供することを目的とする。   Furthermore, it is possible to prevent a sudden worker from applying an excessive force to the measuring element and sandwich the electrode mixture layer on the sheet-like electrode material with a stable force by the biasing member. It is an object of the present invention to provide a contact-type film thickness measuring device that can accurately measure the film thickness without causing variations.

請求項1に記載の本発明の接触式膜厚測定機は、
柔らかい材質で構成され、または局所的に凹部を有する電極合剤層が形成されたシート状金属集電体の厚みを測定するための接触式膜厚測定機であって、
平坦な載置表面を含む定盤と、前記載置表面に平行に延び、所定の接触面積を有する平坦な接触表面を含む測定子と、前記定盤の前記載置表面と前記測定子の前記接触表面との間で前記シート状金属集電体を挟持するように前記測定子を付勢する付勢部材とを備え、前記測定子の前記接触表面の接触面積は、前記電極合剤層内またはその局所的凹部内に食い込まない程度に大きく、かつ、前記定盤の前記載置表面と前記シート状金属集電体との間に形成される隙間を解消する程度に小さく、前記定盤は、少なくとも前記載置表面がセラミックからなり、前記測定子の前記接触表面は、これを載置表面から見たとき直径が2mm〜4mmの円形を有することを特徴とする。
The contact-type film thickness measuring machine of the present invention according to claim 1 is:
A contact-type film thickness measuring device for measuring the thickness of a sheet-shaped metal current collector formed of a soft material or having an electrode mixture layer locally having a recess,
A surface plate including a flat mounting surface, a measuring element including a flat contact surface extending in parallel to the mounting surface and having a predetermined contact area, and the mounting surface and the measuring surface of the surface plate. A biasing member that biases the measuring element so as to sandwich the sheet-shaped metal current collector between the contact surface, and a contact area of the contact surface of the measuring element is within the electrode mixture layer or large enough not bite into its local recess, and, rather small enough to eliminate the gap formed between the front according置表surface and the sheet-like metal current collector of the platen, said platen Is characterized in that at least the mounting surface is made of ceramic, and the contact surface of the measuring element has a circular shape with a diameter of 2 mm to 4 mm when viewed from the mounting surface .

請求項に記載の本発明の接触式膜厚測定機は、前記定盤の前記載置表面と前記測定子の前記接触表面で挟持された前記薄膜部材を解放するように作動するアクチュエータとをさらに有する。 According to a second aspect of the present invention, there is provided a contact-type film thickness measuring machine comprising: an actuator that operates to release the thin film member sandwiched between the mounting surface of the surface plate and the contact surface of the measuring element. Also have.

請求項に記載の本発明の接触式膜厚測定機を使用する方法によれば、前記シート状金属集電体が圧延された後、巻取コアに捲回されるまでに、膜厚測定機を用いて、該シート状金属集電体の厚みを測定することを特徴とする。 According to the method of using the contact-type film thickness measuring machine of the present invention described in claim 3, after the sheet-shaped metal current collector is rolled, the film thickness is measured before being wound on the winding core. The thickness of the sheet metal current collector is measured using a machine.

請求項に記載の本発明の接触式膜厚測定機を使用する方法によれば、プレスローラの下流側に隣接して配置された膜厚測定機を用いて、前記シート状金属集電体の厚みを測定する。


According to the method of using the contact-type film thickness measuring device of the present invention according to claim 4 , the sheet-like metal current collector is used by using a film thickness measuring device arranged adjacent to the downstream side of the press roller. Measure the thickness.


以下、添付図面を参照して本発明に係る接触式膜厚測定機の実施の形態を説明する。本発明に係る接触式膜厚測定機1は、図1に示すように、概略、定盤10と測定子20とを備える。本発明の定盤10は、載置表面12を含むセラミック製テーブル14を備え、これを所定位置に保持する固定治具16をさらに備える。一方、本発明の測定子20は、載置表面12と対向し、所定の接触面積を有する平坦な接触表面22を備える。本発明の測定子20の接触表面22は、好適には、円形形状を有するが、円形または矩形形状などの任意の平面形状を有していてもよい。そして膜厚測定機1は、定盤10のセラミック製テーブル14の載置表面12と測定子20の平坦な接触表面22との間にシート状電極材30を挟持することにより、シート状電極材30の厚みを測定する。なお、シート状電極材30は、集電体金属板32と、その上に塗工された電極合剤層34を含む(図2参照)。   Embodiments of a contact-type film thickness measuring device according to the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the contact-type film thickness measuring machine 1 according to the present invention generally includes a surface plate 10 and a measuring element 20. The surface plate 10 of the present invention includes a ceramic table 14 including a mounting surface 12 and further includes a fixing jig 16 that holds the ceramic table 14 in a predetermined position. On the other hand, the probe 20 of the present invention includes a flat contact surface 22 that faces the mounting surface 12 and has a predetermined contact area. The contact surface 22 of the probe 20 of the present invention preferably has a circular shape, but may have an arbitrary planar shape such as a circular shape or a rectangular shape. The film thickness measuring machine 1 sandwiches the sheet-like electrode material 30 between the mounting surface 12 of the ceramic table 14 of the surface plate 10 and the flat contact surface 22 of the measuring element 20, thereby providing a sheet-like electrode material. A thickness of 30 is measured. The sheet-like electrode material 30 includes a current collector metal plate 32 and an electrode mixture layer 34 coated thereon (see FIG. 2).

セラミック製テーブル14は鉄製テーブルより格段に剛性が高いので、測定子20の接触表面22が繰り返して当接しても、セラミック製テーブル14の載置表面12は、従来の鉄製テーブルのように摩滅することがない。したがって、従来技術で説明したように、セラミック製テーブル14の載置表面12に凹所が形成されることなく、シート状電極材30の厚みを正確に測定することができる。   Since the ceramic table 14 is much higher in rigidity than the iron table, even if the contact surface 22 of the probe 20 is repeatedly contacted, the mounting surface 12 of the ceramic table 14 is worn like a conventional iron table. There is nothing. Therefore, as described in the prior art, the thickness of the sheet-like electrode material 30 can be accurately measured without forming a recess in the mounting surface 12 of the ceramic table 14.

一方、測定子20は、シャフト24の下端部に固定され、シャフト24の上端部にはレバー28が連結されている。レバー28は、ばねなどの付勢部材26により図1の左上方へ付勢される。すなわち、測定子20は、付勢部材26により、シャフト24およびレバー28を介して下方に定盤10に向かって付勢され、付勢部材26の付勢力より大きい力でレバー28を押し下げると、シャフト24および測定子20が引き上げられる。さらに本発明の膜厚測定機1は、レバー28を上下方向に作動させるためのアクチュエータ40を備え、アクチュエータ40はレバー28に当接した状態で上下伸縮可能なロッド42と、これを駆動するシリンダ44とを有する。   On the other hand, the probe 20 is fixed to the lower end portion of the shaft 24, and a lever 28 is connected to the upper end portion of the shaft 24. The lever 28 is biased to the upper left in FIG. 1 by a biasing member 26 such as a spring. That is, the probe 20 is urged downward by the urging member 26 toward the surface plate 10 via the shaft 24 and the lever 28, and when the lever 28 is pushed down with a force larger than the urging force of the urging member 26, The shaft 24 and the probe 20 are pulled up. Furthermore, the film thickness measuring machine 1 of the present invention is provided with an actuator 40 for operating the lever 28 in the vertical direction. The actuator 40 is a rod 42 that can be vertically expanded and contracted in contact with the lever 28 and a cylinder for driving the rod 42. 44.

こうして構成されたアクチュエータ40(ロッド42およびシリンダ44)は、作業者のスイッチ操作などにより自動的にレバー28を上下方向に作動させることができる。したがって、本発明によれば、作業者の直接的な作用によることなく、ばねなどの付勢部材26による安定した付勢力により、シート状電極材30を接触表面22および載置表面12の間に挟持することができるので、作業者の作業形態に起因するばらつきの少ない厚み測定を実現することができる。   The actuator 40 (rod 42 and cylinder 44) configured in this way can automatically operate the lever 28 in the vertical direction by an operator's switch operation or the like. Therefore, according to the present invention, the sheet-like electrode material 30 is placed between the contact surface 22 and the mounting surface 12 by a stable urging force by the urging member 26 such as a spring without the direct action of the operator. Since it can be pinched, it is possible to realize thickness measurement with little variation due to the work form of the operator.

上述のように、本発明の測定子20が有する平坦な接触表面22は、研磨技術および切削技術などの任意の技術を用いて成型することができる。したがって、図8(a)および(b)で示すように、シート状電極材30上に塗工された電極合剤層34が局所的に凹部を有する場合、あるいは電極合剤層34が柔らかい材質で構成される場合であっても、本発明の測定子20は、その接触表面22が平坦であるので、図2に示すように、電極合剤層34内に食い込むことなく、電極合剤層34と面で接し、所定範囲の面積領域の平均的な厚みが正確に測定される。   As described above, the flat contact surface 22 included in the probe 20 of the present invention can be molded using any technique such as a polishing technique and a cutting technique. Therefore, as shown in FIGS. 8A and 8B, when the electrode mixture layer 34 applied on the sheet-like electrode material 30 has a concave portion locally, or the electrode mixture layer 34 is a soft material. Even if it is comprised by this, since the contact surface 22 of the measuring element 20 of this invention is flat, as shown in FIG. 2, an electrode mixture layer does not dig into the electrode mixture layer 34, as shown in FIG. 34 is in contact with the surface, and the average thickness of a predetermined area area is accurately measured.

なお、シート状電極材30は、図3(a)および(b)に示すように、うねり(浮き)36が生じ、定盤10との間に微少な隙間38が形成されることがあるが、通常、測定子20がシート状電極材30を押圧することで、図3(a)に示すように、定盤10とシート状電極材30の間の隙間38は解消される。ところが、測定子20の接触面積が大きすぎると、付勢部材26による単位面積あたりの付勢力が小さくなるため(力が分散するため)、図3(b)に示すように、隙間38が解消されない。この状態で、シート状電極材30の厚みを測定すると、隙間38の厚み分だけ大きく表示され、シート状電極材30の厚みを正確に測定することができなくなってしまう。   In addition, as shown in FIGS. 3A and 3B, the sheet-like electrode material 30 has undulations (floats) 36, and a minute gap 38 may be formed between the plate-like electrode material 30 and the surface plate 10. Usually, when the probe 20 presses the sheet-like electrode material 30, the gap 38 between the surface plate 10 and the sheet-like electrode material 30 is eliminated as shown in FIG. However, if the contact area of the probe 20 is too large, the urging force per unit area by the urging member 26 becomes small (because the force is dispersed), so that the gap 38 is eliminated as shown in FIG. Not. If the thickness of the sheet-like electrode material 30 is measured in this state, it is displayed larger by the thickness of the gap 38, and the thickness of the sheet-like electrode material 30 cannot be measured accurately.

すなわち、測定子20の接触表面22は、従来技術のように曲面または円錐形状を有する場合、電極合剤層34内に食い込むので、正確に測定することができず、一方、接触表面22があまりに広い接触面積を有する場合、シート状電極材30が接触表面22から浮いた状態で測定されるので、同様に、正確な測定を阻害する。したがって、測定子20の接触表面22は、以下の実施例でより詳細に説明するが、約2mm〜約4mmの直径を含む円形形状を有することが好ましく、さらに好適には約3mmの直径を含む円形形状を有する。   That is, when the contact surface 22 of the probe 20 has a curved surface or a conical shape as in the prior art, the contact surface 22 bites into the electrode mixture layer 34, and thus cannot be measured accurately, while the contact surface 22 is too much. In the case of having a wide contact area, the sheet-like electrode material 30 is measured in a state where it floats from the contact surface 22, so that accurate measurement is similarly hindered. Accordingly, the contact surface 22 of the probe 20 will be described in more detail in the examples below, but preferably has a circular shape including a diameter of about 2 mm to about 4 mm, and more preferably includes a diameter of about 3 mm. It has a circular shape.

ところで、膜厚測定機は、従来、製造ラインとは独立した品質検査工程に配置され、上述のように、巻取ロールに一旦捲回された電極材ロールの最外部を全体の電極材ロールから切り離して、品質検査工程における膜厚測定機まで搬送し、切断されたシート状電極材の厚みを測定していた。こうして切断されたシート状電極材は、厚みが測定された後、破棄されていたが、相当の長さ(例えば、数メートル)に及び、その単位長さ当たりの単価が高価であるため、生産コストを著しく増大させていた。   By the way, the film thickness measuring machine is conventionally arranged in a quality inspection process independent of the production line, and as described above, the outermost part of the electrode material roll once wound on the winding roll is removed from the entire electrode material roll. It cut | disconnected and conveyed to the film thickness measuring machine in a quality inspection process, and measured the thickness of the cut | disconnected sheet-like electrode material. The sheet-like electrode material cut in this way was discarded after the thickness was measured, but it has a considerable length (for example, several meters), and the unit price per unit length is expensive. The cost was significantly increased.

そこで、本発明の膜厚測定機1は、製造ライン中、すなわちシート状電極材30がプレスされた後、巻取コアに捲回されるまでの工程中に配置され、シート状電極材30の厚みをインラインで測定するように改善される。より好ましくは、図示しないプレスローラの下流側に隣接して配置された膜厚測定機1を用いて、シート状電極材30の厚みを測定する。なお、シート状電極材30の厚みを測定する時、シート状電極材30の走行は一時停止される。   Therefore, the film thickness measuring device 1 of the present invention is disposed in the production line, that is, in the process until the sheet-shaped electrode material 30 is pressed and wound around the winding core. Improved to measure thickness inline. More preferably, the thickness of the sheet-like electrode material 30 is measured using the film thickness measuring device 1 disposed adjacent to the downstream side of a press roller (not shown). Note that when the thickness of the sheet electrode material 30 is measured, the travel of the sheet electrode material 30 is temporarily stopped.

したがって、シート状電極材30の厚みを測定するために、一旦捲回された電極材ロールの一部を切り離して測定する必要がなく、すべてのシート状電極材30を後工程である電池アセンブリ工程において有効に活用することができ、生産性を格段に向上させることができる。
また、シート状電極材30の厚みを随時測定し、測定結果をリアルタイムで関連する前工程にフィードバックすることができるので、より精度よく厚み管理を実現することができる。
Therefore, in order to measure the thickness of the sheet-like electrode material 30, it is not necessary to cut and measure a part of the wound electrode material roll once, and all the sheet-like electrode materials 30 are post-process battery assembly steps. Can be used effectively, and productivity can be significantly improved.
Moreover, since the thickness of the sheet-like electrode material 30 can be measured at any time and the measurement result can be fed back to the related previous process in real time, the thickness management can be realized with higher accuracy.

以下の5種類の測定子を用意して、ユニオンツール株式会社製ミクロファインシリーズの型番TH−R1(セラミックテーブル付き)を用いてシート状電極材の厚みを測定した。
測定子S1:連続した球面形状の接触表面を有する(未加工)。
測定子S2:直径2mmの円形平面形状を有するように接触表面を切削加工した。
測定子S3:直径3mmの円形平面形状を有するように接触表面を切削加工した。
測定子S4:直径4mmの円形平面形状を有するように接触表面を切削加工した。
測定子S5:直径5mmの円形平面形状を有するように接触表面を切削加工した。
The following five kinds of measuring elements were prepared, and the thickness of the sheet-like electrode material was measured using a model number TH-R1 (with a ceramic table) of Micro Fine Series manufactured by Union Tool Co., Ltd.
Measuring element S1: It has a continuous spherical contact surface (unprocessed).
Measuring element S2: The contact surface was cut so as to have a circular planar shape with a diameter of 2 mm.
Measuring element S3: The contact surface was cut so as to have a circular planar shape with a diameter of 3 mm.
Measuring element S4: The contact surface was cut so as to have a circular planar shape with a diameter of 4 mm.
Measuring element S5: The contact surface was cut so as to have a circular planar shape with a diameter of 5 mm.

各測定子S1〜S5による測定する前の準備作業として、測定子を徐々に降下させて、測定子が定盤に触れた時点でのモニタ値を0にリセットした後、さらにモニタ値が所定値(例えば−0.5mm)となった時点で、あらためてモニタ値を0にリセットした。
被測定用のシート状電極材として、正極用シート状電極材サンプルを作製し、同一サンプルに対してそれぞれ10回ずつ連続して厚みを測定し、その結果として、測定値の標準偏差を以下のように算出した。

Figure 0004792734
As a preparatory work before measurement by each of the measuring elements S1 to S5, the measuring value is gradually lowered, the monitor value when the measuring element touches the surface plate is reset to 0, and then the monitoring value is a predetermined value. When the value reached (for example, −0.5 mm), the monitor value was reset to 0 again.
As a sheet-like electrode material to be measured, a positive electrode-like sheet-like electrode material sample is prepared, and the thickness is continuously measured 10 times each for the same sample. As a result, the standard deviation of the measured value is as follows: Calculated as follows.
Figure 0004792734

測定子の接触表面の直径を横軸にとり、各測定子S1〜S5を用いて測定した測定値の標準偏差(表1)を縦軸にプロットして、図4に示すグラフを得た。   The diameter of the contact surface of the probe is plotted on the horizontal axis, and the standard deviation (Table 1) of the measured values measured using the probe S1 to S5 is plotted on the vertical axis to obtain the graph shown in FIG.

上記説明したように、測定子の接触表面が連続的な球面形状を有する場合(測定子S1)、電極合剤層の局所的な凹部または柔らかい構成材料に起因して、電極合剤層34内に食い込むことがあるため、厚みの繰り返し測定値に対するばらつき(標準偏差)が大きい(σ=0.45μm)のに対し、測定子の接触表面が2mm〜4mm直径の円形平面形状に切削加工されたとき(測定子S2〜S4)、標準偏差が測定子S1に比して約半分以下となり、好適にも、ばらつきの小さい測定結果が得られた。とりわけ、測定子の接触表面が3mm直径の円形平面形状を有するとき、繰り返し測定値に対するばらつきが最も少ない測定を行うことができた。   As described above, in the case where the contact surface of the probe has a continuous spherical shape (measurer S1), the electrode mixture layer 34 is caused by a local recess or a soft constituent material of the electrode mixture layer. However, the contact surface of the probe was cut into a circular flat shape with a diameter of 2 mm to 4 mm, whereas the variation (standard deviation) of the thickness measured repeatedly (standard deviation) was large (σ = 0.45 μm). (Measurement elements S2 to S4), the standard deviation was about half or less compared to the measurement element S1, and a measurement result with a small variation was obtained. In particular, when the contact surface of the probe has a circular plane shape with a diameter of 3 mm, it was possible to perform measurement with the least variation with respect to repeated measurement values.

また、測定子の接触表面の直径が5mm以上になると、上述のように、付勢力が分散され、図3(a)に示すように隙間38が残ったまま厚み測定するため、繰り返し測定値のばらつきに悪影響を及ぼす。   When the diameter of the contact surface of the probe becomes 5 mm or more, the urging force is dispersed as described above, and the thickness is measured with the gap 38 remaining as shown in FIG. Adversely affects variation.

したがって、上記実施例1によれば、測定子20の接触表面22は、直径が約2mm〜約4mmの円形形状を有することが好ましく、約3mm直径の円形形状を有することがより好ましいと結論付けられた。   Therefore, according to Example 1 above, it is concluded that the contact surface 22 of the probe 20 preferably has a circular shape with a diameter of about 2 mm to about 4 mm, more preferably a circular shape with a diameter of about 3 mm. It was.

次に、3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いると、測定結果が誤差因子による変動の影響を受けにくいことを、田口メソッドによる品質工学手法を用いて以下のように実証した。   Next, using a measuring element having a circular contact surface with a diameter of 3 mm and a surface plate with a ceramic table, the measurement results are less affected by fluctuations due to error factors using the quality engineering method by Taguchi Method. Demonstrated.

一般に、膜厚測定機を日々使用するにつれて、付勢部材(ばね)は劣化して、その付勢力は弱くなり、圧下点(−0.5mmにリセットした場合)は徐々に−0.5mmから0mmへとシフトする傾向がある。このように付勢力および圧下点が変動しても、これに影響を受けることなく、厚み測定値に対するばらつきが小さいまま維持されることが好ましい。   Generally, as the film thickness measuring machine is used every day, the urging member (spring) deteriorates and its urging force becomes weaker, and the reduction point (when reset to -0.5 mm) gradually starts from -0.5 mm. There is a tendency to shift to 0 mm. Even if the urging force and the reduction point fluctuate in this way, it is preferable that the variation with respect to the thickness measurement value is kept small without being affected by this.

そこで、未加工の測定子およびセラミックテーブルなしの定盤を用いた場合(A1)と、3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いた場合(A2)に関し、ばねの付勢力および圧下点に対して意図的な変動を与えた以下の2つの条件(N1,N2)において、厚みの測定結果のばらつきの大小を評価した。
条件N1:未使用のばねを用い、圧下点が−0.5mmとなるように初期設定した。
(測定値がより小さく表示されるように付勢力および圧下点を変動させる条件)
条件N2:劣化したばねを用い、圧下点が−0.1mmとなるように初期設定した。
(測定値がより大きく表示されるように付勢力および圧下点を変動させる条件)
Therefore, in the case of using a raw measuring element and a surface plate without a ceramic table (A1), and in the case of using a measuring element having a circular contact surface of 3 mm diameter and a surface table with a ceramic table (A2), The following two conditions (N1, N2) that gave intentional fluctuations to the biasing force and the reduction point of the spring were evaluated for the magnitude of variation in the thickness measurement results.
Condition N1: An unused spring was used, and initial setting was performed so that the reduction point was -0.5 mm.
(Conditions for changing the biasing force and the reduction point so that the measured value is displayed smaller)
Condition N2: Using a deteriorated spring, initial setting was performed so that the reduction point was -0.1 mm.
(Conditions for changing the biasing force and the reduction point so that the measured value is displayed larger)

測定用サンプルとして、次の4種類のサンプル(M1〜M4)を作製し、別の標準測定機を用いて、以下のように、それぞれのサンプルの膜厚の真値を得た。
サンプルM1:142.8μm
サンプルM2:147.4μm
サンプルM3:152.5μm
サンプルM4:156.4μm
The following four types of samples (M1 to M4) were prepared as measurement samples, and the true value of the film thickness of each sample was obtained as follows using another standard measuring machine.
Sample M1: 142.8 μm
Sample M2: 147.4 μm
Sample M3: 152.5 μm
Sample M4: 156.4 μm

そして、未加工の測定子およびセラミックテーブルなしの定盤を用いて(A1)、条件N1において、サンプルM1〜M4の厚みを複数回測定して、その平均値を求めた。同様に、未加工の測定子およびセラミックテーブルなしの定盤を用いて(A1)、条件N2において、サンプルM1〜M4の厚みを複数回測定して、その平均値を求めた。
さらに、3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いて(A2)、条件N1およびN2において、サンプルM1〜M4の厚みを複数回測定して、その平均値を求めた。
こうして、表2の厚み測定結果を得た。

Figure 0004792734
Then, using an unprocessed probe and a surface plate without a ceramic table (A1), the thickness of the samples M1 to M4 was measured a plurality of times under the condition N1, and the average value was obtained. Similarly, the thickness of the samples M1 to M4 was measured a plurality of times under the condition N2 using an unprocessed probe and a surface plate without a ceramic table (A1), and the average value was obtained.
Further, using a measuring element having a circular contact surface with a diameter of 3 mm and a surface plate with a ceramic table (A2), in conditions N1 and N2, the thicknesses of samples M1 to M4 are measured a plurality of times, and the average value is obtained. Asked.
Thus, the thickness measurement results shown in Table 2 were obtained.
Figure 0004792734

ここで、表2の測定結果から、A1およびA2に関する信号変動(S)、有効除数(r)、線形式(L)、線形式(L)、比例項の変動(Sβ)、比例項の差の変動(SN×β)、誤差変動(S)、誤差分散(V)、調合誤差分散(V)、および標準偏差(σ)を算出した。

Figure 0004792734
Here, from the measurement results in Table 2, the signal variation (S T ), effective divisor (r), linear format (L 1 ), linear format (L 2 ), proportional term variation (S β ) for A 1 and A 2 , The proportional term difference variation (S N × β ), error variation (S e ), error variance (V e ), blending error variance (V n ), and standard deviation (σ) were calculated.
Figure 0004792734

一方、表2の測定結果から、未加工の測定子およびセラミックテーブルなしの定盤を用いた場合(A1)と、3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いた場合(A2)に関し、上記条件N1およびN2における真値と測定値の関係をプロットしたところ、図5および図6のグラフを得た。ここで、条件N1の測定値を一点鎖線で、条件N2の測定値を直線で示し、真値と測定値が一致する理想的な場合を破線で示した。   On the other hand, from the measurement results shown in Table 2, when using an unprocessed measuring element and a surface plate without a ceramic table (A1), a measuring element having a 3 mm diameter circular contact surface and a surface table with a ceramic table were used. In the case (A2), the relationship between the true value and the measured value under the above conditions N1 and N2 was plotted, and the graphs of FIGS. 5 and 6 were obtained. Here, the measurement value of the condition N1 is indicated by a one-dot chain line, the measurement value of the condition N2 is indicated by a straight line, and an ideal case where the true value and the measurement value match is indicated by a broken line.

表3に示すように、3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いた場合(A2)のSN比は、未加工の測定子およびセラミックテーブルなしの定盤を用いた場合(A1)のSN比よりも著しく改善されており(−0.27dbから5.59db)、上記A2の測定値のばらつき(σ)も同様に上記A1の場合より格段に小さくなっている。すなわち、本発明のように、3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いると、ばねの付勢力および圧下点に変動があっても、その影響を受けにくい、ばらつきの少ない測定が実現されることを意味している。   As shown in Table 3, the SN ratio in the case of using a measuring element having a circular contact surface with a diameter of 3 mm and a surface plate with a ceramic table (A2) is as follows. When used, the signal-to-noise ratio is significantly improved (−0.27 db to 5.59 db), and the variation (σ) of the measured value of A2 is also much smaller than that of A1. Yes. That is, as in the present invention, using a measuring element having a circular contact surface with a diameter of 3 mm and a surface plate with a ceramic table, even if there is a variation in the biasing force and the reduction point of the spring, it is not easily affected. This means that measurement with little variation is realized.

同様に、図5および図6に示すグラフにおいて、上記A1の場合よりA2の場合において、測定値を示す直線および一点鎖線が理想的な場合を示す破線により接近していることから、3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いると、測定結果が誤差因子(付勢力および圧下点)による変動の影響を受けにくいことが実証された。   Similarly, in the graphs shown in FIG. 5 and FIG. 6, in the case of A2 than in the case of A1, the straight line indicating the measured value and the one-dot chain line are closer to the broken line indicating the ideal case. It was demonstrated that the measurement results were less susceptible to fluctuations due to error factors (biasing force and reduction point) when using a probe with a circular contact surface and a surface plate with a ceramic table.

本発明の接触式膜厚測定機の概略正面図である。It is a schematic front view of the contact-type film thickness measuring machine of this invention. 図1に示す膜厚測定機を用いて、凹部を含む電極合剤層を有するシート状電極材の厚みを測定する状態を示す拡大正面図である。It is an enlarged front view which shows the state which measures the thickness of the sheet-like electrode material which has an electrode mixture layer containing a recessed part using the film thickness measuring machine shown in FIG. 図1に示す膜厚測定機を用いて、うねりを有するシート状電極材を測定する状態を示す正面図である。It is a front view which shows the state which measures the sheet-like electrode material which has a wave | undulation using the film thickness measuring device shown in FIG. 測定子の接触表面の直径と測定値の標準偏差の関係を示すグラフである。It is a graph which shows the relationship between the diameter of the contact surface of a measuring element, and the standard deviation of a measured value. 未加工の測定子およびセラミックテーブルなしの定盤を用いた場合の、誤差要因を与える2つの条件における測定結果と真値の関係を示すグラフである。It is a graph which shows the relationship between the measurement result in two conditions which give an error factor, and a true value at the time of using an unprocessed measuring element and a surface plate without a ceramic table. 3mm直径の円形形状の接触表面を有する測定子およびセラミックテーブル付き定盤を用いた場合の、誤差要因を与える2つの条件における測定結果と真値の関係を示すグラフである。It is a graph which shows the relationship between the measurement result in two conditions which give an error factor, and a true value at the time of using the measuring element which has a circular-shaped contact surface of 3 mm diameter, and a surface plate with a ceramic table. 従来技術による接触式膜厚測定機の概略正面図である。It is a schematic front view of the contact-type film thickness measuring machine by a prior art. 凹部を含む電極合剤層を有するシート状電極材と、これを従来の膜厚測定機を用いて厚み測定する状態を示す拡大正面図である。It is an enlarged front view which shows the state which measures the thickness using the conventional film thickness measuring machine with the sheet-like electrode material which has an electrode mixture layer containing a recessed part. 従来式の金属製テーブルが測定子と繰り返し当接することにより、摩滅して形成された凹所を示す概略図である。It is the schematic which shows the recess formed by abrasion when the conventional metal table contact | abuts repeatedly with a measuring element. 凹所が形成された状態でリセットされた後に、厚み測定されるシート状電極材を示す概略図である。It is the schematic which shows the sheet-like electrode material by which thickness measurement is performed after resetting in the state in which the recess was formed.

符号の説明Explanation of symbols

1 接触式膜厚測定機、10 定盤、12 載置表面、14 セラミック製テーブル、16 固定治具、20 測定子、22 接触表面、24 シャフト、26 付勢部材(ばね)、28 レバー、30 シート状電極材、32 集電体金属板、34 電極合剤層、36 うねり(浮き)、38 隙間、40 アクチュエータ、42 ロッド、44 シリンダ44。

DESCRIPTION OF SYMBOLS 1 Contact type film thickness measuring machine, 10 Surface plate, 12 Mounting surface, 14 Ceramic table, 16 Fixing jig, 20 Measuring element, 22 Contact surface, 24 Shaft, 26 Energizing member (spring), 28 Lever, 30 Sheet electrode material, 32 current collector metal plate, 34 electrode mixture layer, 36 swell (floating), 38 gap, 40 actuator, 42 rod, 44 cylinder 44.

Claims (4)

柔らかい材質で構成され、または局所的に凹部を有する電極合剤層が形成されたシート状金属集電体の厚みを測定するための接触式膜厚測定機であって、
平坦な載置表面を含む定盤と、
前記載置表面に平行に延び、所定の接触面積を有する平坦な接触表面を含む測定子と、
前記定盤の前記載置表面と前記測定子の前記接触表面との間で前記シート状金属集電体を挟持するように前記測定子を付勢する付勢部材とを備え、
前記測定子の前記接触表面の接触面積は、前記電極合剤層内またはその局所的凹部内に食い込まない程度に大きく、かつ、前記定盤の前記載置表面と前記シート状金属集電体との間に形成される隙間を解消する程度に小さく、
前記定盤は、少なくとも前記載置表面がセラミックからなり、
前記測定子の前記接触表面は、これを載置表面から見たとき直径が2mm〜4mmの円形を有することを特徴とする接触式膜厚測定機。
A contact-type film thickness measuring device for measuring the thickness of a sheet-shaped metal current collector formed of a soft material or having an electrode mixture layer locally having a recess,
A surface plate including a flat mounting surface;
A measuring element including a flat contact surface extending parallel to the mounting surface and having a predetermined contact area;
An urging member for urging the measuring element so as to sandwich the sheet metal collector between the mounting surface of the surface plate and the contact surface of the measuring element;
The contact area of the contact surface of the measuring element is large enough not to bite into the electrode mixture layer or a local recess thereof, and the mounting surface of the surface plate and the sheet-shaped metal current collector rather small enough to eliminate the gap formed between the,
The surface plate has at least the mounting surface made of ceramic,
The contact-type film thickness measuring machine , wherein the contact surface of the measuring element has a circular shape with a diameter of 2 mm to 4 mm when viewed from the mounting surface .
前記定盤の前記載置表面と前記測定子の前記接触表面で挟持された前記薄膜部材を解放するように作動するアクチュエータとをさらに有する請求項1に記載の膜厚測定機。   The film thickness measuring machine according to claim 1, further comprising an actuator that operates to release the thin film member sandwiched between the mounting surface of the surface plate and the contact surface of the measuring element. 請求項1に記載の膜厚測定機を使用する方法であって、
前記シート状金属集電体が圧延された後、巻取コアに捲回されるまでに、膜厚測定機を用いて、該シート状金属集電体の厚みを測定することを特徴とする膜厚測定機の使用方法。
A method of using the film thickness measuring device according to claim 1,
A film characterized by measuring the thickness of the sheet-shaped metal current collector using a film thickness measuring machine after the sheet-shaped metal current collector has been rolled and before being wound around the winding core How to use the thickness measuring machine.
プレスローラの下流側に隣接して配置された膜厚測定機を用いて、前記シート状金属集電体の厚みを測定することを特徴とする膜厚測定機の請求項に記載の使用方法。 The usage method according to claim 3 , wherein the thickness of the sheet-shaped metal current collector is measured using a film thickness measuring device arranged adjacent to the downstream side of the press roller. .
JP2004346706A 2004-11-30 2004-11-30 Contact type film thickness measuring machine Expired - Fee Related JP4792734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346706A JP4792734B2 (en) 2004-11-30 2004-11-30 Contact type film thickness measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346706A JP4792734B2 (en) 2004-11-30 2004-11-30 Contact type film thickness measuring machine

Publications (2)

Publication Number Publication Date
JP2006153732A JP2006153732A (en) 2006-06-15
JP4792734B2 true JP4792734B2 (en) 2011-10-12

Family

ID=36632212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346706A Expired - Fee Related JP4792734B2 (en) 2004-11-30 2004-11-30 Contact type film thickness measuring machine

Country Status (1)

Country Link
JP (1) JP4792734B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426004A (en) * 2011-08-17 2012-04-25 东莞市骏泰精密机械有限公司 Lithium battery thickness measuring device
KR102035070B1 (en) * 2019-06-14 2019-10-23 주식회사 대한이앤씨 Slope and height measuring apparatus for bridge structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021014B2 (en) * 2009-10-30 2012-09-05 日本碍子株式会社 Method for forming laminate
JP2013022673A (en) * 2011-07-20 2013-02-04 Disco Corp Cutting tool device
KR101500228B1 (en) * 2013-12-18 2015-03-09 심재헌 the measuring device and method to measuring coating layer of ring
CN105004305B (en) * 2015-08-31 2018-10-30 株洲壹星科技股份有限公司 A kind of pantograph collector head carbon sliding block thickness detection apparatus
CN105157652B (en) * 2015-08-31 2018-06-19 株洲壹星科技股份有限公司 A kind of pantograph collector head carbon sliding block thickness detecting method
CN105834259B (en) * 2016-05-30 2018-12-04 深圳市瑞德丰精密制造有限公司 Sheet metal is clapped and thickness detecting equipment
KR102095358B1 (en) 2017-02-24 2020-03-31 주식회사 엘지화학 Apparatus for measuring thickness of battery materials
KR102071471B1 (en) * 2017-09-22 2020-01-30 삼성중공업 주식회사 Apparatus for measuring dry film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148302U (en) * 1984-09-04 1986-04-01
JPH08334301A (en) * 1995-06-06 1996-12-17 Fuji Photo Film Co Ltd Probe for measuring instrument
JP3602310B2 (en) * 1997-10-21 2004-12-15 松下電器産業株式会社 Flatness measurement device
JP2001126719A (en) * 1999-10-22 2001-05-11 Toshiba Battery Co Ltd Method and apparatus for measuring mass of active material of sheet-form electrode
JP2002257502A (en) * 2001-03-05 2002-09-11 Junichi Kushibiki Device and method for measuring thickness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426004A (en) * 2011-08-17 2012-04-25 东莞市骏泰精密机械有限公司 Lithium battery thickness measuring device
KR102035070B1 (en) * 2019-06-14 2019-10-23 주식회사 대한이앤씨 Slope and height measuring apparatus for bridge structure

Also Published As

Publication number Publication date
JP2006153732A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4792734B2 (en) Contact type film thickness measuring machine
JP2010080272A (en) Method of manufacturing electrode plate for battery
JP5411371B1 (en) Roll press equipment and thickness measurement system
JP2005538850A (en) Process and apparatus for thinning alkali metal or alloy thereof
EP3527932B1 (en) Apparatus for measuring thickness of battery materials
CN108630883A (en) Calendering device
JP5046517B2 (en) Manufacturing method and manufacturing apparatus for battery electrode plate
JP2009184090A (en) Thin film coating sheet test piece cut out method and thin film coating sheet manufacturing device
CN110404980A (en) Novel no extension precision rollers machine
JP5795300B2 (en) Inspection method and inspection apparatus for battery electrode plate manufacturing apparatus
JP7000889B2 (en) Membrane electrode gas diffusion layer joint cutting device
EP4000828A1 (en) Method for manufacturing membrane-electrode assembly with sub-gasket, device for manufacturing membrane-electrode assembly with sub-gasket, and sub-gasket substrate
CN211077884U (en) Rolling mechanism
JP4794184B2 (en) Method for producing electrode plate for alkaline storage battery
JP5710633B2 (en) Workpiece punching device, work punching method, and manufacturing method of continuously variable transmission element
JP2009166220A (en) Pattern drawing press device and parallel degree measuring system of pattern drawing press device
CN215152086U (en) Battery pole piece forming equipment
JP2000140907A (en) Method and device for rolling metal lithium
JP2000188103A (en) Rolling device for battery electrode body
JPH11129006A (en) Rolling method and equipment for metallic lithium
JP3955752B2 (en) Battery electrode manufacturing method
JP2008006396A (en) Coating device and method for preparing electrode plate
CN219949984U (en) Rolling rewinder
EP1205990A2 (en) Method for producing electrodes for battery
JP2018206538A (en) Active material density inspecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees