JP4792568B2 - Temperature sensor and temperature sensitive paint - Google Patents
Temperature sensor and temperature sensitive paint Download PDFInfo
- Publication number
- JP4792568B2 JP4792568B2 JP2005259417A JP2005259417A JP4792568B2 JP 4792568 B2 JP4792568 B2 JP 4792568B2 JP 2005259417 A JP2005259417 A JP 2005259417A JP 2005259417 A JP2005259417 A JP 2005259417A JP 4792568 B2 JP4792568 B2 JP 4792568B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- europium
- sensitive
- complex compound
- paint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Paints Or Removers (AREA)
Description
本発明は、感温センサ及び感温塗料、特に、温度感度が高く且つ圧力感度が極めて小さい、なお且つ励起光に対する耐久性に優れた感温センサ及び感温塗料に関するものである。 The present invention relates to a temperature sensor and a temperature-sensitive paint, and more particularly, to a temperature sensor and a temperature-sensitive paint that have high temperature sensitivity and extremely low pressure sensitivity and are excellent in durability against excitation light.
例えば、航空宇宙分野において、機体の表面温度場の計測は、流れ場の遷移現象に起因する流体力学的現象を理解するのに有効な手段として期待されている。航空機の飛行性能は、翼表面上の流れの特性に大きく依存する。翼表面上では層流と乱流が混在し、乱流が支配的になる(流れが翼から剥離する)と揚力が小さくなり、終いには失速(ストール)することになる。ところで、熱伝達率は流れが乱流か層流かにより異なるので、翼上の温度分布を計測することにより層流から乱流に移行するという遷移パターンを評価することが可能となる。
近年、感温塗料(Temperature-Sensitive Paint:TSP)を用いた温度場の計測が、航空宇宙分野の風洞実験において注目されている。この計測は、感温塗料に含まれた色素の発光が熱的失活により消光する現象を利用したものである。機体の模型表面に塗られた感温塗料に励起光を照射すると色素が発光する。その発光強度は温度と相関関係があり、その模型上の発光強度分布をCCDカメラで計測することにより温度場を求めることが可能となる。また、感温塗料としては、EuTTAやRu(phen)という化学物質を感温色素に使用した感温塗料が知られている(例えば、特許文献1を参照。)。
この感温塗料による温度場計測は、流れ場の遷移現象に起因する流体力学的現象を理解するのに有効な手段として期待されている一方で、従来技術として赤外線(lnfrared :IR)カメラによる温度場計測が行われているが、IRカメラで計測できる風洞観測窓の材質は限られており、一般に使用されているようなガラス材では計測できない。また、模型以外の周辺温度場環境に強く影響を受けるので、背景温度場の写り込みに注意が必要であり、セッティングが面倒であるという問題がある。その点、感温塗料を用いた計測では、上述したようなIRカメラが抱える問題はなく、より実用的な計測法であると言える。
For example, in the aerospace field, measurement of the surface temperature field of an airframe is expected as an effective means for understanding a hydrodynamic phenomenon caused by a transition phenomenon of a flow field. Aircraft flight performance is highly dependent on the characteristics of the flow over the wing surface. Laminar flow and turbulent flow are mixed on the blade surface, and when turbulent flow becomes dominant (the flow is separated from the blade), the lift becomes small and eventually stalls (stall). By the way, since the heat transfer coefficient differs depending on whether the flow is turbulent or laminar, it is possible to evaluate the transition pattern of transition from laminar flow to turbulent flow by measuring the temperature distribution on the blade.
In recent years, measurement of a temperature field using temperature-sensitive paint (Temperature-Sensitive Paint: TSP) has attracted attention in wind tunnel experiments in the aerospace field. This measurement utilizes the phenomenon that the light emission of the pigment contained in the temperature-sensitive paint is quenched by thermal deactivation. The dye emits light when the excitation light is irradiated to the temperature-sensitive paint applied to the model surface of the aircraft. The emission intensity has a correlation with temperature, and the temperature field can be obtained by measuring the emission intensity distribution on the model with a CCD camera. As temperature-sensitive paints, temperature-sensitive paints using a chemical substance such as EuTTA or Ru (phen) as a temperature-sensitive dye are known (see, for example, Patent Document 1).
While the temperature field measurement by this thermosensitive paint is expected as an effective means to understand the hydrodynamic phenomenon caused by the transition phenomenon of the flow field, the temperature by the infrared (IR) camera is known as the conventional technology. Although field measurement is performed, the material of the wind tunnel observation window that can be measured with an IR camera is limited, and it cannot be measured with a glass material that is generally used. In addition, since it is strongly influenced by the surrounding temperature field environment other than the model, it is necessary to pay attention to the reflection of the background temperature field, and there is a problem that the setting is troublesome. In that respect, in the measurement using the temperature-sensitive paint, there is no problem of the IR camera as described above, and it can be said that this is a more practical measurement method.
前述したように、感温色素としては一般にEuTTAやRu(phen)という化学物質が用いられているが、これらの感温色素は、温度感度は高いものの、若干圧力感度があるという問題を抱えている。つまり、高速気流中に置かれた風洞模型の表面には圧力分布が生じるため、従来の感温塗料で計測する場合、圧力感度に起因する計測誤差が含まれるという問題がある。従って、計測精度向上のためには従来の感温塗料よりも圧力感度が小さいものが必要である。また、これら従来の感温色素は光劣化を受けやすいという問題がある。実用実験では感温塗料を長時間使用するため光劣化に強い感温塗料の開発が望まれている。
そこで、本発明は、上記実情に鑑み創案されたものであって、温度感度が高く且つ圧力感度が極めて小さい、なお且つ励起光に対する耐久性に優れた感温センサ及び感温塗料を提供することを目的とする。
As mentioned above, chemical substances such as EuTTA and Ru (phen) are generally used as thermosensitive dyes, but these thermosensitive dyes have a problem that they have a slight pressure sensitivity although they have high temperature sensitivity. Yes. That is, since pressure distribution is generated on the surface of the wind tunnel model placed in a high-speed airflow, there is a problem that measurement errors due to pressure sensitivity are included when measuring with a conventional temperature-sensitive paint. Therefore, in order to improve the measurement accuracy, a pressure sensitivity lower than that of the conventional temperature sensitive paint is required. Further, these conventional thermosensitive dyes have a problem that they are susceptible to photodegradation. In practical experiments, since temperature sensitive paints are used for a long time, development of temperature sensitive paints that are resistant to light degradation is desired.
Therefore, the present invention has been made in view of the above circumstances, and provides a temperature sensor and a temperature-sensitive paint that have high temperature sensitivity, extremely low pressure sensitivity, and excellent durability against excitation light. With the goal.
前記目的を達成するため、本発明の感温センサは、温度に反応する感度部が、中心金属をユーロピウムとし優れた発光強度を有するユーロピウム多核錯体化合物から構成されていることを特徴とする。
本願発明者が鋭意研究したところ、希土類ユーロピウムEu(III)錯体分子の構造を制御することにより、従来の希土類錯体化合物を感温色素とする感温センサよりも、温度感度の向上、圧力感度の抑制、可視光励起による温度場計測および励起光に対する耐久性の向上が実現できることを見出し、本発明に到達した。
そこで、上記本発明の感温センサでは、温度に反応する感度部を中心金属としてユーロピウムを用いた多核錯体の分子構造とすることにより、温度に対する発光強度に優れ、結果として温度感度に優れるようにした。
In order to achieve the above object, the temperature-sensitive sensor of the present invention is characterized in that the temperature-sensitive sensitivity part is composed of a europium multinuclear complex compound having europium as a central metal and having excellent emission intensity.
As a result of extensive research by the inventor of the present application, by controlling the structure of the rare earth europium Eu (III) complex molecule, the temperature sensitivity is improved and the pressure sensitivity is improved compared to a conventional temperature sensor using a rare earth complex compound as a thermosensitive dye. It has been found that suppression, temperature field measurement by excitation with visible light, and improvement in durability against excitation light can be realized, and the present invention has been achieved.
Therefore, in the above-described temperature-sensitive sensor of the present invention, the molecular structure of a multinuclear complex using europium as a central metal is used as the sensitivity part that reacts to temperature, so that the emission intensity with respect to temperature is excellent, and as a result, the temperature sensitivity is excellent. did.
第1の発明の感温センサでは、前記ユーロピウム多核錯体化合物は、化学式[Eu4(μ−O)(L1)10]で表され、式中、L1が2ヒドロキシ4オクチロキシベンゾフェノン(2-hydroxy-4-octyloxybenzophenone)であることとした。
一般に、温度感度は、有機配位子と希土類イオンであるユーロピウムEu(III)イオンとの間の励起エネルギー準位の相関が重要な因子となる。この場合、有機配位子の三重項準位およびユーロピウムEu(III)イオンの発光準位(5D0)とのエネルギー差が1500cm-1以下であれば、一般的に温度依存性が高くなると考えられている。そこで、多核錯体化合物の配位子として、2ヒドロキシベンゾフェノン(2-hydroxybenzophenone)誘導体を採用した。また、本願発明者が鋭意研究したところ、有機配位子として長鎖アルキル基を有する有機配位子を多核錯体構造に導入して集合化させることで、圧力感度の発生要因となる酸素分子との相互作用を軽減することを見出した。さらに、可視光励起による蛍光検出は、多核錯体分子の吸収が400nmより長波長側に位置するように分子設計を施す必要があるが、2ヒドロキシベンゾフェノン誘導体と希土類イオンであるEu(III)イオンとの錯体形成によって、配位子部分の共役系をのばすことによりこれを可能とした。その結果、励起光は効果的にEu(III)イオンの発光エネルギーへと変換されるため、光劣化に強くなる。
そこで、上記第1の発明の感温センサでは、有機配位子として、2ヒドロキシ4オクチロキシベンゾフェノン(2-hydroxy-4-octyloxybenzophenone)を用いることにより、高い温度感度を保持しながら圧力感度が好適に抑制され、更に励起光に対する耐久性が高まるようにした。
In the temperature sensitive sensor of the first invention, the europium polynuclear complex compound is represented by a chemical formula [Eu 4 (μ-O) (L1) 10 ], wherein L1 is 2-hydroxy-4-octyloxybenzophenone (2-hydroxy). -4-octyloxybenzophenone).
In general, an important factor for temperature sensitivity is a correlation of excitation energy levels between an organic ligand and a rare earth ion, europium Eu (III) ion. In this case, if the energy difference between the triplet level of the organic ligand and the emission level ( 5 D 0 ) of the europium Eu (III) ion is 1500 cm −1 or less, the temperature dependence generally increases. It is considered. Therefore, a 2-hydroxybenzophenone derivative was employed as the ligand of the polynuclear complex compound. In addition, as a result of intensive research by the inventor of the present application, by introducing an organic ligand having a long-chain alkyl group into the polynuclear complex structure as an organic ligand and assembling it, oxygen molecules that cause pressure sensitivity and Found to reduce the interaction. Furthermore, in the fluorescence detection by visible light excitation, it is necessary to design the molecule so that the absorption of the polynuclear complex molecule is located on the longer wavelength side than 400 nm. However, the two-hydroxybenzophenone derivative and the rare earth ion Eu (III) ion This was made possible by extending the conjugated system of the ligand moiety by complex formation. As a result, the excitation light is effectively converted into the emission energy of Eu (III) ions, so that it is resistant to photodegradation.
Therefore, in the temperature sensor of the first invention, pressure sensitivity is suitable while maintaining high temperature sensitivity by using 2-hydroxy-4-octyloxybenzophenone as an organic ligand. The durability against excitation light is further increased.
第2の発明の感温センサでは、前記ユーロピウム多核錯体化合物は、化学式m[Eu4(μ−O)(L2)10]で表され、式中、L2が2ヒドロキシ4ドデシロキシベンゾフェノン(2-hydroxy-4-dodecyloxybenzophenone)であることとした。
上記第2の発明の感温センサでは、上記第1の発明と同様な設計思想から、有機配位子として、2ヒドロキシ4ドデシロキシベンゾフェノン(2-hydroxy-4-dodecyloxybenzophenone)を用いることにより、高い温度感度を保持しながら圧力感度が好適に抑制され、更に励起光に対する耐久性が高まるようにした。
In the temperature sensitive sensor of the second invention, the europium polynuclear complex compound is represented by a chemical formula m [Eu 4 (μ-O) (L2) 10 ], wherein L2 is 2hydroxy-4dodecyloxybenzophenone (2 -hydroxy-4-dodecyloxybenzophenone).
In the temperature sensor of the second invention, from the same design concept as the first invention, by using 2-hydroxy-4-dodecyloxybenzophenone as an organic ligand, While maintaining high temperature sensitivity, pressure sensitivity is suitably suppressed, and durability against excitation light is further increased.
前記目的を達成するため、第3の発明の感温塗料は、上記構成の多核錯体化合物に対し、ポリマーを混合して塗料とし、該塗料を物体表面に固着させ、物体表面の温度場の計測を可能としたことを特徴とする。
上記第3の発明の感温塗料では、塗料という形態にすることにより、あらゆる物体の表面に適応するようになるため、物体の表面形状に依存せずに、物体の表面温度場の計測が可能となる。
In order to achieve the object, the temperature-sensitive paint of the third invention is a paint obtained by mixing a polymer with the polynuclear complex compound having the above-described structure, and fixing the paint to the object surface, thereby measuring the temperature field on the object surface. It is possible to make it possible.
In the temperature-sensitive paint of the third aspect of the invention, since it is adapted to the surface of any object by adopting the form of paint, the surface temperature field of the object can be measured without depending on the surface shape of the object. It becomes.
本発明の感温センサによれば、従来の感温色素(EuTTAやRu(phen))よりも高い温度感度且つ極めて低い圧力感度の特性を有するため、高精度で物体の表面温度場の計測が可能となる。また、光劣化に対して耐久性を有するため実用風洞実験に適している。
また、本発明の感温センサは、従来の希土類錯体化合物と異なり、可視波長域において励起可能であるため、物体の表面温度場の計測は風洞観測窓の材質に左右されなくなる。さらに、感温センサの励起光源として可視光域の光源を使用するため、実験者が紫外光により眼を損傷するということがなくなる。
また、本発明に係るユーロピウム多核錯体化合物は、希土類錯体化合物に属するため、中心金属を交換することにより、発光波長を変えるということが容易となる。例えば、ユーロピウムEuをテルビウムTbに置き換えることで発光色を赤から緑に変えることができるようになる。従って、適切な波長域を選択することにより、感圧塗料との複合化が可能となる。その結果、複合塗料ができれば、圧力と温度場を同時に計測することができるようになる。
According to the temperature sensor of the present invention, since it has characteristics of higher temperature sensitivity and extremely lower pressure sensitivity than conventional temperature sensitive dyes (EuTTA and Ru (phen)), the surface temperature field of an object can be measured with high accuracy. It becomes possible. Moreover, since it has durability against light deterioration, it is suitable for practical wind tunnel experiments.
In addition, unlike the conventional rare earth complex compound, the temperature sensor of the present invention can be excited in the visible wavelength range, so that the measurement of the surface temperature field of the object does not depend on the material of the wind tunnel observation window. Furthermore, since a light source in the visible light region is used as an excitation light source for the temperature sensor, the experimenter does not damage the eyes with ultraviolet light.
In addition, since the europium polynuclear complex compound according to the present invention belongs to the rare earth complex compound, it is easy to change the emission wavelength by exchanging the central metal. For example, the emission color can be changed from red to green by replacing europium Eu with terbium Tb. Therefore, by selecting an appropriate wavelength range, it is possible to make a composite with a pressure sensitive paint. As a result, if a composite coating is made, the pressure and temperature fields can be measured simultaneously.
以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
図1は、本発明の感温センサの温度感度部を構成するユーロピウムEu多核錯体化合物がユーロピウムEu四核錯体化合物である場合の分子構造の一例を示す説明図である。
このユーロピウムEu四核錯体化合物100は、4個のユーロピウムEu(III)イオンと1個の酸素原子Oによってオキソ架橋構造を形成した中心金属と、中心金属の回りに配位子L1として、例えば、下記構造式を持った10個の2ヒドロキシ4オクチロキシベンゾフェノン(2-hydroxy-4-octyloxybenzophenone)とから構成されている。
The europium Eu tetranuclear
温度感度部が上記ユーロピウムEu四核錯体化合物100で構成された本発明の感温センサは、詳細については図3を参照しながら後述するが、可視光励起状態において、被測定物の温度に対応した発光強度を持った狭帯幅の先鋭光、いわゆるピーク光を発光するという特性を有している。特筆すべきは、従来のEu(TTA)やRu(phen)等の感温色素により感度部が構成された感温センサよりも高い温度感度特性を有し、なお且つこれら従来の感温センサに比べ極めて低い圧力感度特性を有している。従って、圧力が変動する航空機の風洞実験においても、好適に適用することができ、高精度で被測定物の温度場を計測することが可能となる。
The temperature sensor of the present invention in which the temperature sensitivity portion is composed of the europium Eu tetranuclear
また、本発明の感温センサが出力として発光するピーク光の波長域も可視光域であるため、例えば、励起光またはピーク光が透過する風洞観測窓として、汎用性の材質、例えばBK7(SCHOTT GLAS社の商品名)のガラス材を採用することが可能となる。さらに、励起光および蛍光の波長域が可視光域のため、実験者が励起光により眼を損傷するということが好適になくなる。 Further, since the wavelength range of the peak light emitted as the output of the temperature sensor of the present invention is also in the visible light range, for example, as a wind tunnel observation window through which excitation light or peak light is transmitted, a versatile material such as BK7 (SCHOTT It is possible to use the glass material of GLAS. Furthermore, since the wavelength range of the excitation light and the fluorescence is in the visible light range, it is preferable that the experimenter does not damage the eye with the excitation light.
上記配位子L1は、光増感機能を有する。ここで、「光増感機能」とは、照射された光エネルギー(本実施形態では、励起光の光エネルギー)を効率良くユーロピウムEu(III)イオンに移動させるという機能である。この機能により、ユーロピウムEu(III)イオンでは、励起光の光エネルギーを吸収して好適に励起され発光することになる。 The ligand L1 has a photosensitizing function. Here, the “photosensitization function” is a function of efficiently transferring irradiated light energy (in this embodiment, light energy of excitation light) to europium Eu (III) ions. With this function, europium Eu (III) ions absorb light energy of excitation light and are preferably excited to emit light.
また、上記配位子L1は、長鎖アルキル基を有するため、圧力感度の発生要因となる酸素分子とユーロピウムEu四核錯体との相互作用を軽減するという圧力感度抑制機能を有している。さらに、可視光励起による発光検出においては、錯体分子の吸収が400nmより長波長側において起こるように錯体分子の設計をする必要があるが、2−ヒドロキシベンゾフェノン誘導体と希土類イオンであるユーロピウムEu(III)イオンとにより錯体を形成することによって、配位子部分の共役系を伸ばしその長波長側での錯体分子の吸収を可能としている。その結果、励起光は効果的にユーロピウムEu(III)イオンの発光エネルギーへと変換されるため、ユーロピウムEu四核錯体化合物は光劣化に対して強くなる。 Moreover, since the said ligand L1 has a long-chain alkyl group, it has the pressure sensitivity suppression function of reducing the interaction of the oxygen molecule and europium Eu tetranuclear complex which become a generation factor of pressure sensitivity. Furthermore, in the detection of luminescence by excitation with visible light, it is necessary to design the complex molecule so that the absorption of the complex molecule occurs on the longer wavelength side than 400 nm. Europium Eu (III) which is a 2-hydroxybenzophenone derivative and a rare earth ion By forming a complex with ions, the conjugated system of the ligand portion is extended, and the complex molecule can be absorbed on the long wavelength side. As a result, since the excitation light is effectively converted into the emission energy of europium Eu (III) ions, the europium Eu tetranuclear complex compound becomes strong against photodegradation.
図2は、本発明の感温センサの温度感度部を構成するユーロピウムEu多核錯体化合物がユーロピウムEu四核錯体化合物である場合の分子構造の他の例を示す説明図である。
このユーロピウムEu四核錯体化合物200は、4個のユーロピウムEu(III)イオンと1個の酸素原子Oによってオキソ架橋構造を形成した中心金属と、中心金属の回りに配位子L2として、例えば、下記構造式を持った10個の2ヒドロキシ4ドデシロキシベンゾフェノン(2-hydroxy-4-dodecyloxybenzophenone)とから構成されている。
The europium Eu tetranuclear
このユーロピウム四核錯体化合物200は、配位子L2以外は上記ユーロピウムEu四核錯体化合物100と同一の分子構造である。また、ユーロピウム四核錯体化合物200の配位子L2も光増感機能および圧力感度抑制機能を有している。
The europium tetranuclear
一般に、ユーロピウム四核錯体化合物の配位子として、ベンゾフェノンまたはベンゾイルを基本骨格として有し、三重項π−π*状態が存在する化合物であることが好ましい。 In general, the ligand of the europium tetranuclear complex compound is preferably a compound having benzophenone or benzoyl as a basic skeleton and having a triplet π-π * state.
本発明の感温センサの一実施形態としての感温塗料TSP1,TSP2の製作例を以下に示す。
先ず、溶媒としてジクロロメタンを用い、ポリマーとしてPMMA(ポリメタクリル酸メチル)を用いた。そして、ジクロロメタン:10mlおよびPMMA:0.5gに対し、色素として下表のユーロピウムEu四核錯体化合物100,200を混合した。なお、M.Wは分子量を示す。
First, dichloromethane was used as a solvent, and PMMA (polymethyl methacrylate) was used as a polymer. Then, Europium Eu tetranuclear
図3は、感温塗料TSP1,TSP2の励起/蛍光特性を示すグラフである。図3の(a)は、感温塗料TSP1の励起/蛍光特性を示し、同(b)は、感温塗料TSP2の励起/蛍光特性を示している。なお、計測は、室温および大気圧環境下で行った。
感温塗料TSP1の励起波長は約410nmであり、蛍光波長は約615nmであった。一方、感温塗料TSP2では、励起波長は約410nmであり、蛍光波長は約615nmであった。つまり、波長に関し、こられのユーロピウムEu四核錯体化合物100,200はほぼ同様な特性を示し、従来の希土類錯体では紫外光励起(<350nm)であるが、ともに可視光域において励起され、可視光域の蛍光を発光する。なお、図3の(a)及び(b)中の615nmにおけるピークは、ユーロピウムEu(III)イオンの5D0→7F2の遷移に基づくものである。
FIG. 3 is a graph showing excitation / fluorescence characteristics of the temperature-sensitive paints TSP1 and TSP2. 3A shows the excitation / fluorescence characteristics of the temperature-sensitive paint TSP1, and FIG. 3B shows the excitation / fluorescence characteristics of the temperature-sensitive paint TSP2. Note that the measurement was performed under a room temperature and atmospheric pressure environment.
The excitation wavelength of the temperature sensitive paint TSP1 was about 410 nm, and the fluorescence wavelength was about 615 nm. On the other hand, in the temperature sensitive paint TSP2, the excitation wavelength was about 410 nm and the fluorescence wavelength was about 615 nm. In other words, regarding the wavelength, these europium Eu tetranuclear
図4は、感温塗料の較正試験システム10を示す説明図である。
この感温塗料較正試験システム10は、計測装置としてのパーソナルコンピュータ1と、感温塗料を励起する励起光を発生するキセノン光源2と、感温塗料が発光する蛍光を受光するCCDカメラ3と、感温塗料の試験用サンプルTSP1,TSP2を収容する真空チャンバ4と、試験用サンプルTSP1,TSP2が塗布された基板41の温度を制御する温度コントローラ5と、真空チャンバ4内の圧力を制御する圧力コントローラ6とを具備して構成されている。なお、励起光ヘッドの前面には励起フィルタ21が備わり、CCDカメラの前面には発光フィルタ31が備わっている。また、感温塗料TSP1,TSP2の励起スペクトルおよび蛍光スペクトルは長波長側において、ピークを有するため、真空チャンバ4の観測窓42のガラス材質としては、BK7(SCHOTT GLAS社の商品名)等を使用することができる。
FIG. 4 is an explanatory diagram showing a temperature-sensitive paint
The temperature-sensitive paint
図5は、感温塗料の温度感度特性を示すグラフである。なお、横軸は、基板41の温度を示し、縦軸は蛍光強度を示している。また、蛍光強度は、基準蛍光強度Iref に対する比をとり無次元化されている。また、比較例として、従来のルテニウム錯体化合物Ru(phen)を色素とした感温塗料の温度感度特性も併せて示した。また、真空チャンバ4の内部圧力は、圧力コントローラ6によって100[kPa]に保持した。
このグラフより、感温塗料TSP1および感温塗料TSP2の温度感度は、倶に10から40℃の温度域において約2.5%/℃であり計測上申し分ない感度を有することとなったのに対し、従来のRu(phen)を色素とする感温塗料の温度感度は、同温度域において約1.7%/℃であった。この結果から、本発明の感温塗料TSP1,TSP2は、従来の感温色素に比べ約1.5倍の温度感度を有していることが判る。
FIG. 5 is a graph showing temperature sensitivity characteristics of the temperature-sensitive paint. The horizontal axis indicates the temperature of the
From this graph, the temperature sensitivity of the temperature-sensitive paint TSP1 and temperature-sensitive paint TSP2 is about 2.5% / ° C in the temperature range of 10 to 40 ° C. On the other hand, the temperature sensitivity of the conventional temperature-sensitive paint using Ru (phen) as a pigment was about 1.7% / ° C. in the same temperature range. From this result, it can be seen that the thermosensitive paints TSP1 and TSP2 of the present invention have a temperature sensitivity about 1.5 times that of the conventional thermosensitive dye.
図6は、感温塗料の圧力感度特性を示すグラフである。なお、横軸は、真空チャンバ4の内部圧力を示し、縦軸は基準強度Iref に対する蛍光強度の逆比を示している。また、比較例として、従来のルテニウム錯体化合物Ru(phen)を色素とした感温塗料の感度特性も併せて示した。また、基板41の温度は、温度コントローラ5によって50℃に保持した。
このグラフより、感温塗料TSP1および感温塗料TSP2の圧力感度は、倶に0から100[kPa]の圧力域において殆どゼロに等しくなったのに対し、従来のルテニウム錯体化合物Ru(phen)を色素とする感温塗料の圧力感度は、同圧力域において約10%/100[kPa]であった。この結果から、本発明の感温塗料TSP1,TSP2は、従来の感温色素に比べ極めて低い圧力感度を有していることが判る。これは、従来のRu(phen)の錯体が、酸素濃度依存性を示すためであり、本発明の感温塗料は、長鎖アルキル基を有する有機配位子を多核錯体構造に導入して集合化させることで、圧力感度発生の要因となる酸素分子との相互作用を軽減する分子構造となっているためである。これにより、例えば、空気流の圧力が変動する翼表面の温度場を精度良く計測することが可能となる。
FIG. 6 is a graph showing the pressure sensitivity characteristic of the temperature-sensitive paint. The horizontal axis indicates the internal pressure of the
From this graph, the pressure sensitivity of the temperature-sensitive paint TSP1 and the temperature-sensitive paint TSP2 is almost zero in the pressure range of 0 to 100 [kPa], whereas the conventional ruthenium complex compound Ru (phen) The pressure sensitivity of the temperature-sensitive paint used as the dye was about 10% / 100 [kPa] in the same pressure range. From this result, it can be seen that the temperature-sensitive paints TSP1 and TSP2 of the present invention have extremely low pressure sensitivity compared to conventional temperature-sensitive dyes. This is because the conventional Ru (phen) complex exhibits oxygen concentration dependence, and the thermosensitive paint of the present invention is assembled by introducing an organic ligand having a long-chain alkyl group into a multinuclear complex structure. This is because it has a molecular structure that reduces the interaction with oxygen molecules that cause pressure sensitivity. Thereby, for example, it becomes possible to accurately measure the temperature field of the blade surface where the pressure of the air flow fluctuates.
図7は、感温塗料の劣化特性を示すグラフである。なお、横軸は、経過時間を示し、縦軸は発光強度の変化としてt=0[min]時の光強度に対する光強度の比を示している。また、なお、比較例として、従来のルテニウム錯体化合物Ru(phen)を色素とした感温塗料の劣化特性も併せて示した。また、基板41の温度は、温度コントローラ5によって20℃に保持し、真空チャンバ4の内部圧力は、圧力コントローラ6によって100[kPa]に保持した。
ここで、「劣化特性」とは、励起光により感温色素が破壊され、発光強度が減衰する割合を評価した結果である。従って、発光強度の減衰率が高い程、つまりグラフの右下がりの傾きが大きい程、劣化しやすいということになる。実験では、感温塗料を塗った基板41にキセノン光源2からの励起光を照射し、その発光強度の変化をCCDカメラ3で計測し、発光強度の変化量をパーソナルコンピュータ1によって算出した。
FIG. 7 is a graph showing deterioration characteristics of the temperature-sensitive paint. The horizontal axis indicates the elapsed time, and the vertical axis indicates the ratio of the light intensity to the light intensity at t = 0 [min] as a change in the light emission intensity. In addition, as a comparative example, deterioration characteristics of a temperature-sensitive paint using a conventional ruthenium complex compound Ru (phen) as a pigment are also shown. The temperature of the
Here, the “deterioration characteristics” are the results of evaluating the rate at which the thermosensitive dye is destroyed by the excitation light and the emission intensity is attenuated. Therefore, the higher the decay rate of the emission intensity, that is, the greater the downward slope of the graph, the easier it is to deteriorate. In the experiment, excitation light from the
このグラフの結果より、ルテニウム錯体化合物Ru(phen)を色素とした感温塗料では、時間の経過と共に発光強度が劣化しているのに対し、本発明の感温塗料TSP1,TSP2では、時間の経過と共に発光強度がほとんど劣化しておらず、光劣化に対し耐久性があり、実用的な感温センサと言える。 From the results of this graph, the temperature-sensitive paint using the ruthenium complex compound Ru (phen) as a pigment deteriorates the light emission intensity over time, whereas the temperature-sensitive paints TSP1 and TSP2 of the present invention have the time The light emission intensity hardly deteriorates with the passage of time, and is durable against light deterioration and can be said to be a practical temperature sensor.
本発明の感温センサの一実施形態である感温塗料によれば、高い温度感度特性かつ極めて低い圧力感度特性を有しているため、圧力が変動する環境下における被測定物の表面温度場の計測を精度よく行うことが可能となる。また、従来の感温塗料では、紫外線励起のため、実験室の窓に対して紫外線を透過させる特殊なガラス材質を使用しなければならなかったが、上記感温塗料は、可視光励起および可視光蛍光のため、可視光を透過させる汎用性のあるガラス材質を使用することが可能となり、設備コストを低減することが出来る。さらに、本発明の感温塗料は、光劣化に対して耐久性があり、十分明るい発光強度を有し、感温センサとして適している。 According to the temperature sensitive paint which is one embodiment of the temperature sensor of the present invention, it has a high temperature sensitivity characteristic and a very low pressure sensitivity characteristic. Can be measured with high accuracy. In addition, in the conventional temperature-sensitive paint, a special glass material that transmits ultraviolet rays to the laboratory window had to be used for excitation of ultraviolet rays. Because of fluorescence, it is possible to use a versatile glass material that transmits visible light, and the equipment cost can be reduced. Furthermore, the temperature-sensitive paint of the present invention is durable against light deterioration, has a sufficiently bright emission intensity, and is suitable as a temperature sensor.
上記ユーロピウムEu四核錯体化合物では、希土類イオンとしてユーロピウムイオンEu3+を使用したが、ユーロピウムイオンEu3+に代えて他の希土類イオン、例えば、テルビウムイオンTb3+、セリウムイオンCe3+、ネオジムイオンNd3+、サマリウムイオンSm3+、エルビウムEr3+およびイッテルビウムYb3+等を使用して複核希土類錯体化合物とすることも可能である。また、四核以外の同一種類の又は異種の希土類イオンから成る複核希土類錯体化合物とすることも可能である。 In the europium Eu tetranuclear complex compound, europium ion Eu 3+ is used as the rare earth ion, but other rare earth ions such as terbium ion Tb 3+ , cerium ion Ce 3+ , neodymium are used instead of europium ion Eu 3+. It is also possible to obtain a binuclear rare earth complex compound using ions Nd 3+ , samarium ions Sm 3+ , erbium Er 3+, ytterbium Yb 3+, and the like. It is also possible to use a binuclear rare earth complex compound composed of the same kind or different kind of rare earth ions other than the tetranuclear.
この場合、ユーロピウムイオンを他の希土類イオンに置換することにより、感温塗料の発光波長を変えることができる。例えば、ユーロピウムイオンEu3+をテルビウムイオンTb3+に置き換えることにより、発光波長を赤から緑に変えることができる。 In this case, the emission wavelength of the thermosensitive paint can be changed by substituting europium ions with other rare earth ions. For example, the emission wavelength can be changed from red to green by replacing europium ion Eu 3+ with terbium ion Tb 3+ .
従って、適切な波長域を選択することにより、感圧塗料との複合化が可能となる。その結果、複合塗料が実現すれば、圧力と温度場を同時に計測することが出来るようになる。 Therefore, by selecting an appropriate wavelength range, it is possible to make a composite with a pressure sensitive paint. As a result, if a composite coating is realized, the pressure and temperature fields can be measured simultaneously.
本発明の感温センサおよび感温塗料は、風洞実験における模型表面の温度場計測の他、液体の温度モニターおよびマイクロ物体の表面温度場の計測に対しても適用可能である。 The temperature sensor and the temperature-sensitive paint of the present invention can be applied not only to the measurement of the temperature field of the model surface in the wind tunnel experiment, but also to the measurement of the liquid temperature monitor and the surface temperature field of the micro object.
1 パーソナルコンピュータ
2 キセノン光源
3 CCDカメラ
4 真空チャンバ
5 温度コントローラ
6 圧力コントローラ
10 感温塗料の較正試験システム
100,200 ユーロピウムEu四核錯体
DESCRIPTION OF
Claims (3)
前記ユーロピウム多核錯体化合物は、化学式[Eu 4 (μ−O)(L1) 10 ]で表され、式中、L1が2ヒドロキシ4オクチロキシベンゾフェノン(2-hydroxy-4-octyloxybenzophenone)であることを特徴とする感温センサ。 The temperature sensitive sensor is a temperature sensitive sensor composed of a europium multinuclear complex compound having excellent emission intensity with europium as a central metal ,
The europium polynuclear complex compound is represented by the chemical formula [Eu 4 (μ-O) (L1) 10 ], wherein L1 is 2-hydroxy-4-octyloxybenzophenone. A temperature sensor.
前記ユーロピウム多核錯体化合物は、化学式m[Eu 4 (μ−O)(L2) 10 ]で表され、式中、L2が2ヒドロキシ4ドデシロキシベンゾフェノン(2-hydroxy-4-dodecyloxybenzophenone)であることを特徴とする感温センサ。 The temperature sensitive sensor is a temperature sensitive sensor composed of a europium multinuclear complex compound having excellent emission intensity with europium as a central metal,
The europium polynuclear complex compound is represented by the chemical formula m [Eu 4 (μ-O) (L2) 10 ], wherein L2 is 2-hydroxy-4-dodecyloxybenzophenone. temperature-sensitive sensor according to claim.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005259417A JP4792568B2 (en) | 2005-09-07 | 2005-09-07 | Temperature sensor and temperature sensitive paint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005259417A JP4792568B2 (en) | 2005-09-07 | 2005-09-07 | Temperature sensor and temperature sensitive paint |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007071714A JP2007071714A (en) | 2007-03-22 |
JP4792568B2 true JP4792568B2 (en) | 2011-10-12 |
Family
ID=37933274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005259417A Expired - Fee Related JP4792568B2 (en) | 2005-09-07 | 2005-09-07 | Temperature sensor and temperature sensitive paint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4792568B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5424183B2 (en) * | 2007-05-16 | 2014-02-26 | 独立行政法人 宇宙航空研究開発機構 | Compound molecular sensor |
JP5004228B2 (en) * | 2007-10-12 | 2012-08-22 | 独立行政法人 宇宙航空研究開発機構 | Three-layer pressure-sensitive paint thin film sensor |
CN102822131A (en) | 2010-04-01 | 2012-12-12 | 日立化成工业株式会社 | Rare-earth metal complex |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820316B2 (en) * | 1987-04-09 | 1996-03-04 | テルモ株式会社 | Temperature measuring instrument |
JPH11248550A (en) * | 1998-02-26 | 1999-09-17 | Toshiba Tec Corp | Temperature management member |
JP2001004460A (en) * | 1999-06-25 | 2001-01-12 | Osaka Gas Co Ltd | Method and apparatus for measuring temperature and temperature-sensitive coating |
US6875523B2 (en) * | 2001-07-05 | 2005-04-05 | E. I. Du Pont De Nemours And Company | Photoactive lanthanide complexes with phosphine oxides, phosphine oxide-sulfides, pyridine N-oxides, and phosphine oxide-pyridine N-oxides, and devices made with such complexes |
JP2004035896A (en) * | 2003-08-22 | 2004-02-05 | National Aerospace Laboratory Of Japan | Low temperature thermosensitive coating |
US20070166836A1 (en) * | 2003-10-07 | 2007-07-19 | Kazuhiro Manseki | Rare earth complex excellent in thermal resistance |
-
2005
- 2005-09-07 JP JP2005259417A patent/JP4792568B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007071714A (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hradil et al. | Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach | |
Würth et al. | Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields | |
Wang et al. | Optical oxygen sensors move towards colorimetric determination | |
Sun et al. | Temperature-sensitive luminescent nanoparticles and films based on a terbium (III) complex probe | |
Basu et al. | Optical oxygen sensor coating based on the fluorescence quenching of a new pyrene derivative | |
Basu et al. | Study of the mechanism of degradation of pyrene-based pressure sensitive paints | |
Egami et al. | Effects of solvents for luminophore on dynamic and static characteristics of sprayable polymer/ceramic pressure-sensitive paint | |
Burke et al. | Development of an optical sensor probe for the detection of dissolved carbon dioxide | |
Amao et al. | Oxygen sensing based on lifetime of photoexcited triplet state of platinum porphyrin–polystyrene film using time‐resolved spectroscopy | |
Basu et al. | Comparison of the oxygen sensor performance of some pyrene derivatives in silicone polymer matrix | |
JP4792568B2 (en) | Temperature sensor and temperature sensitive paint | |
Medina-Castillo et al. | Engineering of efficient phosphorescent iridium cationic complex for developing oxygen-sensitive polymeric and nanostructured films | |
Someya | Particle-based temperature measurement coupled with velocity measurement | |
Someya et al. | Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles | |
Higgins et al. | Novel hybrid optical sensor materials for in-breath O 2 analysis | |
JP5004228B2 (en) | Three-layer pressure-sensitive paint thin film sensor | |
CN109180692B (en) | Temperature-sensitive up-conversion system, preparation method thereof and application thereof in preparation of temperature sensor | |
CN116891742B (en) | Rare earth luminescent material and preparation method and application thereof | |
Mayeuski et al. | UV-induced alteration of luminescence chromaticity of Ln-based MOF-76 | |
WO2016063304A1 (en) | Luminescent lanthanide complexes and method of preparation thereof | |
Mills et al. | Luminescence temperature sensing using poly (vinyl alcohol)-encapsulated Ru (bpy) 3 2+ films | |
JP5424183B2 (en) | Compound molecular sensor | |
JP3896488B2 (en) | Pressure-sensitive paint with pressure-sensitive dye supported on fluoropolymer and its production method | |
CN108918476B (en) | Preparation method of dissolved oxygen fluorescent sensing film | |
WO2017154039A1 (en) | ORGANIC-INORGANIC HYBRID THIN FILM, pH SENSOR AND METHOD FOR PRODUCING ORGANIC-INORGANIC HYBRID THIN FILM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080905 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110615 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4792568 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140805 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |