JP4791775B2 - Contaminated soil purification test method and contaminated soil purification test apparatus - Google Patents

Contaminated soil purification test method and contaminated soil purification test apparatus Download PDF

Info

Publication number
JP4791775B2
JP4791775B2 JP2005215329A JP2005215329A JP4791775B2 JP 4791775 B2 JP4791775 B2 JP 4791775B2 JP 2005215329 A JP2005215329 A JP 2005215329A JP 2005215329 A JP2005215329 A JP 2005215329A JP 4791775 B2 JP4791775 B2 JP 4791775B2
Authority
JP
Japan
Prior art keywords
tank
organic chemical
chemical substance
contaminated groundwater
simulated contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005215329A
Other languages
Japanese (ja)
Other versions
JP2007033166A (en
Inventor
和巳 村田
伸也 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Cosmo Oil Co Ltd
Priority to JP2005215329A priority Critical patent/JP4791775B2/en
Publication of JP2007033166A publication Critical patent/JP2007033166A/en
Application granted granted Critical
Publication of JP4791775B2 publication Critical patent/JP4791775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、被検土壌を入れた浄化試験槽内に模擬汚染地下水を通水し、土壌微生物の浄化能力を評価する試験方法及び試験装置、並びに模擬汚染地下水の調製方法及び装置に関する。ここで、模擬汚染地下水とは、液体状の石油製品中に含まれる、ベンゼン、トルエン、キシレン等の有機化学物質が、合計で1〜100mg/L程度の非常に希薄な濃度で溶解した、模擬汚染地下水(以下「原水」という)を言う。   The present invention relates to a test method and test apparatus for evaluating the purification ability of soil microorganisms by passing simulated contaminated groundwater through a purification test tank containing test soil, and a method and apparatus for preparing simulated contaminated groundwater. Here, the simulated contaminated groundwater is a simulation in which organic chemical substances such as benzene, toluene and xylene contained in liquid petroleum products are dissolved at a very dilute concentration of about 1 to 100 mg / L in total. Contaminated groundwater (hereinafter referred to as “raw water”).

近年、有機化学物質の土壌・地下水汚染の浄化対策として、土壌微生物の浄化能力を利用する技術が期待されている。
土壌の評価装置としては、カラム試験装置というものが一般的に用いられている(非特許文献1参照)。これは、内径数cmから数十cmのカラム管に被検土壌を充填したもので、ここに原水を通過させ、原水中の汚染物質がどれだけ除去されたかを評価するものである。
しかし、この装置では実際の地下環境(地下水の流れ、拡散等)とは、乖離しているため、試験結果が、現場と異なることがあった。
そこで、土壌微生物の現場における浄化能力を評価する試験が必要となる。
このような試験としては、被検土壌を充填したライシメータに原水を通過させ、得られた水を分析する方法が挙げられる(非特許文献2参照)。
しかしながら、原水中の有機化学物質の濃度が非常に希薄である(最大で100mg/L)ため、該有機化学物質の濃度の制御が困難であった。また、有機化学物質が揮発性である場合、有機化学物質の濃度が低下してしまい、一定濃度に保つことが困難であった。原水中の有機化学物質の濃度が一定に保たれないと、試験結果にばらつきが生じ、試験の信頼性が低下することとなる。
下村ら、鉄粉を用いた透過性地下水浄化壁のモデル化に関する研究、地下水学会誌題40巻第4号、445〜454頁、1998年 岩崎ら、大型土壌・地下水ライシメータによるトリクロロエチレン汚染のバイオオーグメンテーション試験、第36回日本水環境学会年会講演集、社団法人日本水環境学会、504頁、2002
In recent years, as a measure for the purification of soil and groundwater contamination of organic chemical substances, a technology that utilizes the purification ability of soil microorganisms is expected.
As a soil evaluation apparatus, a column test apparatus is generally used (see Non-Patent Document 1). This is a column tube having an inner diameter of several centimeters to several tens of centimeters filled with test soil, and raw water is allowed to pass through it to evaluate how much contaminants in the raw water have been removed.
However, since this device is different from the actual underground environment (groundwater flow, diffusion, etc.), the test results may differ from the actual site.
Therefore, a test for evaluating the purification capacity of soil microorganisms in the field is required.
Examples of such a test include a method in which raw water is passed through a lysimeter filled with test soil and the obtained water is analyzed (see Non-Patent Document 2).
However, since the concentration of the organic chemical substance in the raw water is very dilute (up to 100 mg / L), it is difficult to control the concentration of the organic chemical substance. Further, when the organic chemical substance is volatile, the concentration of the organic chemical substance is lowered, and it is difficult to maintain a constant concentration. If the concentration of organic chemicals in the raw water is not kept constant, the test results will vary and the test reliability will be reduced.
Shimomura et al., Research on modeling of permeable groundwater purification walls using iron powder, Journal of Groundwater Society Vol. 40, No. 4, pp. 445-454, 1998 Iwasaki et al. Bioaugmentation test of trichlorethylene contamination by large soil and groundwater lysimeter, 36th Annual Meeting of Japan Society on Water Environment, Japan Society on Water Environment, page 504, 2002

従って、本発明の目的は、有機化学物質の濃度が一定である原水を容易に供給できる方法、この方法を用いた土壌の浄化能力試験方法、装置を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of easily supplying raw water having a constant concentration of organic chemicals, and a soil purification ability test method and apparatus using this method.

本発明者は、上記課題を解決すべく鋭意研究した結果、検量管内の一定量の有機化学物質をガスで押し出し溶解槽に送液することで、微量の有機化学物質を一定濃度で含む原水を提供し得ることを見出し本発明を完成した。   As a result of diligent research to solve the above-mentioned problems, the present inventor obtained raw water containing a small amount of organic chemical substance at a constant concentration by extruding a certain amount of organic chemical substance in a calibration tube with gas and feeding it to a dissolution tank. The present invention has been completed.

すなわち、本発明は、検量管及び有機化学物質槽間で有機化学物質を6方バルブを介して循環させ、該6方バルブを切り替えることにより、検量管内の一定量の有機化学物質をガスで押し出し溶解槽に送液し、該溶解槽中で該有機化学物質と水とを攪拌混合し、得られた混合液を原水タンクに貯留することを特徴とする原水調製方法を提供するものである。   That is, according to the present invention, an organic chemical substance is circulated through a six-way valve between a calibration tube and an organic chemical substance tank, and a certain amount of the organic chemical substance in the calibration tube is pushed out by gas by switching the six-way valve. The present invention provides a raw water preparation method characterized by feeding the solution into a dissolution tank, stirring and mixing the organic chemical substance and water in the dissolution tank, and storing the obtained mixed liquid in a raw water tank.

また、本発明は、検量管及び有機化学物質槽間で有機化学物質を6方バルブを介して循環させ、該6方バルブを切り替えることにより、検量管内の一定量の有機化学物質をガスで押し出し溶解槽に送液し、該溶解槽中で該有機化学物質と水とを攪拌混合し、得られた原水を原水タンクに貯留し、該原水タンク中の原水を被検土壌を入れた浄化試験槽に供給し、該土壌の通過液を評価することを特徴とする土壌の浄化試験方法を提供するものである。   In addition, the present invention circulates an organic chemical substance between a calibration tube and an organic chemical tank through a 6-way valve, and by switching the 6-way valve, a certain amount of the organic chemical substance in the calibration tube is pushed out by gas. A purification test in which the organic chemical and water are stirred and mixed in the dissolution tank, the obtained raw water is stored in the raw water tank, and the raw water in the raw water tank is put in the test soil. The present invention provides a soil remediation test method characterized by being supplied to a tank and evaluating the soil passage liquid.

さらに本発明は、有機化学物質槽と、有機化学物質を循環させるポンプと、検量管と、6方バルブを有し、検量管及び有機化学物質槽間で有機化学物質を6方バルブを介して循環させ、該6方バルブを切り替えることにより、検量管内の一定量の有機化学物質をガスで押し出し溶解槽に送液する有機化学物質添加装置と、該有機化学物質と水とを攪拌混合する溶解槽と、溶解槽で得られた混合液を貯留する原水タンクを有することを特徴とする原水調製装置を提供するものである。   Furthermore, the present invention has an organic chemical substance tank, a pump for circulating the organic chemical substance, a calibration pipe, and a six-way valve, and the organic chemical substance is passed between the calibration pipe and the organic chemical substance tank via the six-way valve. By circulating and switching the 6-way valve, an organic chemical substance addition device that pushes a certain amount of organic chemical substance in the calibration tube with gas and sends it to the dissolution tank, and dissolution that stirs and mixes the organic chemical substance and water A raw water preparation device characterized by having a raw water tank for storing a tank and a mixed liquid obtained in a dissolution tank is provided.

さらにまた、本発明は、有機化学物質槽と、有機化学物質を循環させるポンプと、検量管と、6方バルブを有し、検量管及び有機化学物質槽間で有機化学物質を6方バルブを介して循環させ、該6方バルブを切り替えることにより、検量管内の一定量の有機化学物質をガスで押し出し溶解槽に送液する有機化学物質添加装置と、該有機化学物質と水とを攪拌混合する溶解槽と、溶解槽で得られた混合液を貯留する原水タンクと、該原水タンク中の原水を通過させる被検土壌を入れる浄化試験槽を有することを特徴とする土壌浄化試験装置を提供するものである。   Furthermore, the present invention has an organic chemical substance tank, a pump for circulating the organic chemical substance, a calibration pipe, and a six-way valve, and the organic chemical substance is placed between the calibration pipe and the organic chemical substance tank. The organic chemical substance adding device for extruding a certain amount of organic chemical substance in the calibration tube with gas and feeding it to the dissolution tank by stirring and mixing the organic chemical substance and water A soil remediation test apparatus characterized by having a dissolution tank, a raw water tank for storing a mixed solution obtained in the dissolution tank, and a purification test tank for storing test soil through which the raw water in the raw water tank passes. To do.

本発明の土壌の浄化試験方法および土壌の浄化試験装置によれば、一定濃度の原水が土壌に供給されるため、信頼性の高い試験結果が得られる。   According to the soil purification test method and the soil purification test apparatus of the present invention, since a constant concentration of raw water is supplied to the soil, a highly reliable test result can be obtained.

本発明の土壌浄化試験装置の概要としては、図1に示すものが挙げられる。
すなわち、本発明の土壌浄化試験装置は、有機化学物質添加装置と、有機化学物質と水とを攪拌混合する溶解槽と、溶解槽で得られた混合液を貯留する原水タンクと、該原水タンク中の原水を通過させる被検土壌を入れる浄化試験槽を有する。また、必要により、溶解槽に供給する水の溶存酸素を調整するための溶存酸素(DO)濃度調整槽を溶解槽の上流に設けてもよい。
As an outline of the soil purification test apparatus of the present invention, the one shown in FIG.
That is, the soil purification test apparatus of the present invention includes an organic chemical substance addition apparatus, a dissolution tank that stirs and mixes an organic chemical substance and water, a raw water tank that stores a mixed liquid obtained in the dissolution tank, and the raw water tank. It has a purification test tank that puts the soil to be tested through which the raw water passes. Moreover, you may provide the dissolved oxygen (DO) density | concentration adjustment tank for adjusting the dissolved oxygen of the water supplied to a dissolution tank in the upstream of a dissolution tank as needed.

有機化学物質添加装置
本発明で用いる有機化学物質は、試験目的に応じて適宜選択すればよいが、ベンゼン、トルエン、キシレン又はこれらの2種以上の混合物が、好ましいものとして挙げられる。
有機化学物質添加装置は、この有機化学物質を入れた有機化学物質槽、循環ポンプ、6方バルブ、検量管及び配管で構成される。有機化学物質添加装置の一態様を図2に示す。
先ず、図2の左図のように、有機化学物質を循環ポンプにより、有機化学物質槽、6方バルブ、検量管、再び6方バルブ、有機化学物質槽の順に循環させる。これにより、有機化学物質中の気泡を抜くことができる。なお、図中では、有機化学物質はBTX(ベンゼン、トルエン、キシレン)となっているが、これに限定されるものではない。
そして、6方バルブを切り替え(図2右図)、ガス(有機化学物質と反応しないものが好ましい。例えば、空気、窒素、希ガス類が挙げられる)により検量管中の有機化学物質を押し出し、溶解槽へ送る。検量管中の有機化学物質がガスで完全に置換された後、6方バルブが元に戻り、循環状態となる。
このような、6方バルブの切り替えは、溶解槽や原水タンクの液高センサー等からの信号により、自動的に行うことが好ましい。
Organic Chemical Substance Adder The organic chemical substance used in the present invention may be appropriately selected according to the purpose of the test, and benzene, toluene, xylene or a mixture of two or more of these may be mentioned as a preferable one.
The organic chemical substance adding device is composed of an organic chemical substance tank containing the organic chemical substance, a circulation pump, a six-way valve, a calibration pipe, and piping. One embodiment of the organic chemical substance adding apparatus is shown in FIG.
First, as shown in the left diagram of FIG. 2, an organic chemical substance is circulated in the order of an organic chemical substance tank, a six-way valve, a calibration tube, a six-way valve, and an organic chemical substance tank by a circulation pump. Thereby, the bubble in an organic chemical substance can be extracted. In the figure, the organic chemical substance is BTX (benzene, toluene, xylene), but is not limited thereto.
Then, the 6-way valve is switched (the right diagram in FIG. 2), and the gas (which does not react with the organic chemical substance is preferable. For example, air, nitrogen, and rare gases are included). Send to. After the organic chemical substance in the calibration tube is completely replaced with gas, the 6-way valve returns to its original state and enters a circulation state.
Such switching of the six-way valve is preferably performed automatically by a signal from a liquid height sensor or the like of the dissolution tank or raw water tank.

ここで、有機化学物質槽は、密度の変化や揮散を防ぐため、恒温槽とすることが好ましい。また、6方バルブと検量管は、高速液体クロマトグラフィーでの試料注入に用いられているものを使用することができる。また、検量管を交換することで、有機化学物質の添加量をコントロールすることができ、ひいては、原水中の有機化学物質の濃度を任意にコントロールすることができる。検量管の容量は、0.01〜0.3mL程度が好ましい。   Here, the organic chemical substance tank is preferably a thermostatic tank in order to prevent density change and volatilization. Moreover, what is used for the sample injection | pouring by a high performance liquid chromatography can be used for a 6-way valve and a calibration tube. Moreover, the amount of the organic chemical substance added can be controlled by exchanging the calibration tube, and thus the concentration of the organic chemical substance in the raw water can be arbitrarily controlled. The capacity of the calibration tube is preferably about 0.01 to 0.3 mL.

溶解槽
水を満たした後、一定量の有機化学物質を添加し、攪拌混合を行う槽である。
槽の容量は、特に限定されず、原水の単位時間当たりの使用量から決定すればよいが、2L程度が好ましい。
水の量と有機化学物質の量、添加するタイミングは液高センサーで制御することが好ましい。
難水溶性である、BTX(ベンゼン、トルエン、キシレン)等の有機化学物質を短時間で溶解させるには、攪拌速度及び有機化学物質の原液の添加量の最適化が必要である。攪拌速度が遅いと有機化学物質の溶解に長時間を要する。一方、攪拌速度が速すぎると有機化学物質の揮発による損失が大きく、結果として短時間に所定濃度に有機化学物質を溶解させることは難しい。そのため、適度な攪拌速度と時間を設定する必要がある。一例として、BTX(ベンゼン、トルエン、キシレン)を合計で100mg/L溶解させる場合、直径60mmに攪拌羽を用いて、600rpmで10分間攪拌することが好ましい。
また、溶解槽は、密閉槽ではないため、揮発をゼロにすることはできない。そのため、原水調製時には、攪拌中の揮発による損失を考慮して予め多めの有機化学物質を添加することが好ましい。大体の目安として、水2Lに対し、有機化学物質を10〜300μL程度添加することが好ましい。
なお、原水を浄化試験槽に通水する配管の途中で有機化学物質を混合させる、ライン混合で、原水を常時調製する方法の場合、水に対する有機化学物質の量が微量であるため、一定の濃度の原水を得ることは困難である。
有機化学物質溶解後の液は、電磁弁を用いて原水タンクに自動的に移すのが便利である。
Dissolving tank A tank in which a certain amount of organic chemical substance is added and stirred and mixed after filling with water.
Although the capacity | capacitance of a tank is not specifically limited and should just be determined from the usage-amount per unit time of raw | natural water, about 2L is preferable.
The amount of water, the amount of organic chemicals, and the timing of addition are preferably controlled by a liquid height sensor.
In order to dissolve organic chemical substances such as BTX (benzene, toluene, xylene), which are poorly water-soluble, in a short time, it is necessary to optimize the stirring speed and the addition amount of the organic chemical substance stock solution. If the stirring speed is slow, it takes a long time to dissolve the organic chemical. On the other hand, when the stirring speed is too high, loss due to volatilization of the organic chemical substance is large, and as a result, it is difficult to dissolve the organic chemical substance at a predetermined concentration in a short time. Therefore, it is necessary to set an appropriate stirring speed and time. As an example, when 100 mg / L of BTX (benzene, toluene, xylene) is dissolved in total, it is preferable to stir at 600 rpm for 10 minutes using a stirring blade having a diameter of 60 mm.
Moreover, since the dissolution tank is not a closed tank, volatilization cannot be made zero. Therefore, when preparing raw water, it is preferable to add a large amount of organic chemicals in advance in consideration of loss due to volatilization during stirring. As a rule of thumb, it is preferable to add about 10 to 300 μL of organic chemicals to 2 L of water.
In addition, in the case of a method of constantly preparing raw water by line mixing, in which organic chemicals are mixed in the middle of a pipe for passing raw water to a purification test tank, the amount of organic chemicals relative to water is very small. It is difficult to obtain raw water of concentration.
It is convenient to automatically transfer the solution after dissolution of organic chemicals to the raw water tank using a solenoid valve.

原水タンク
溶解槽で得られた原水は、原水タンクに送られる。原水タンクの内容量は特に限定されないが、コストの面から5〜20L程度が好ましい。また、原水は浄化試験温度(20℃前後が好ましい)に制御することが好ましいため、原水タンクは、恒温槽であることが望ましい。なお、原水の温度が浄化試験温度より低い場合は有機化学物質の揮散を少なくすることができるが、この場合は、原水が浄化試験槽に入る前に浄化試験温度に調整する必要がある。
タンク内の原水量が減り、タンクの上部のヘッドスペースが大きくなると原水中の有機化学物質が揮発し易くなるため、タンクは、常に満タンに近い状態にしておくことが望ましい。このため、タンク内の原水の容量は、液高センサーで検知し、一定量減った場合、溶解槽で原水を調製し、直ちに補給することが好ましい。
Raw water tank The raw water obtained in the dissolution tank is sent to the raw water tank. Although the internal volume of a raw | natural water tank is not specifically limited, About 5-20L is preferable from the surface of cost. Since the raw water is preferably controlled to the purification test temperature (preferably around 20 ° C.), the raw water tank is preferably a thermostatic bath. Note that when the temperature of the raw water is lower than the purification test temperature, the volatilization of the organic chemical substance can be reduced. In this case, it is necessary to adjust the raw water to the purification test temperature before entering the purification test tank.
As the amount of raw water in the tank decreases and the head space at the top of the tank increases, the organic chemicals in the raw water are likely to volatilize. Therefore, it is desirable to keep the tank nearly full. For this reason, when the volume of the raw water in the tank is detected by a liquid height sensor and reduced by a certain amount, the raw water is preferably prepared in a dissolution tank and immediately replenished.

溶存酸素濃度調整槽
溶解槽に供給する水の溶存酸素を所望により調整するための槽であり、任意的な槽である。
例えば、水の溶存酸素量が多く、有機化学物質が比較的生分解性の高い物質である場合、原水タンクの中で有機化学物質の好気性微生物分解が起こり、有機化学物質の濃度が変化することがあるため、水の溶存酸素量を減らしたい場合がある。この場合は、窒素ガス等をバブリングする。
一方、原水タンク内の有機化学物質の分解の虞が無い場合で、かつ浄化試験において、溶存酸素濃度が高い原水を必要とする場合があり、この場合は、酸素又は空気をバブリングして溶存酸素濃度を高めることができる。
なお、上記以外の場合は、特に溶存酸素濃度調整槽は設けなくてもよい。
溶存酸素濃度調整槽の容量は、特に限定されず、原水の単位時間当たりの使用量から決定すればよいが、3L程度の水槽が好ましい。
また、槽内の水温は20℃程度の一定温度にすることが好ましい。水温が高いと、次の溶解槽で、有機化学物質の揮発が多くなり好ましくない。
Dissolved oxygen concentration adjustment tank This is a tank for adjusting the dissolved oxygen of water supplied to the dissolution tank as desired, and is an optional tank.
For example, if the amount of dissolved oxygen in water is large and the organic chemical is a relatively highly biodegradable substance, the aerobic microbial decomposition of the organic chemical occurs in the raw water tank, and the concentration of the organic chemical changes. Sometimes, you want to reduce the amount of dissolved oxygen in water. In this case, nitrogen gas or the like is bubbled.
On the other hand, when there is no risk of decomposition of the organic chemicals in the raw water tank, and in the purification test, raw water with a high dissolved oxygen concentration may be required. In this case, dissolved oxygen is bubbled with dissolved oxygen. The concentration can be increased.
In cases other than the above, the dissolved oxygen concentration adjusting tank is not particularly required.
The capacity | capacitance of a dissolved oxygen concentration adjustment tank is not specifically limited, What is necessary is just to determine from the usage-amount per unit time of raw | natural water, but a water tank of about 3L is preferable.
Moreover, it is preferable to make the water temperature in a tank into the fixed temperature of about 20 degreeC. When the water temperature is high, the volatilization of the organic chemical substance increases in the next dissolution tank, which is not preferable.

浄化試験槽
浄化試験槽は、被検土壌中の微生物が上記有機化学物質を分解する能力、微生物の環境等を調査する槽である。
浄化試験槽及び配管は、試験対象の有機化学物質を吸着しないもの(ステンレス、フッ素樹脂等が好ましい)で構成する。
槽の大きさは、特に限定されないが、200L〜12000L程度が好ましく、土壌を充填しても耐えられる強度が必要である。また、槽内は恒温にすることが望ましく、このためウオータージャケット等を設けることが好ましい。また、有機化学物質の揮発を防止するため、蓋をして、半密閉状態にすることが好ましい。
原水の入口部分は、送液ポンプから配管を多数分岐し、各ラインに流量計を設置した流量調節が可能構造とし(図3)、更に、槽内の入口部分には整流部を設け、浄化試験槽を流れる水(以下、「流水」という)が偏流しないようにすることが望ましい(図5)。整流部は、珪砂、砂利、ガラスビーズ、フィルター(ガラス及びステンレス等)で構成することが好ましい。送液ポンプは、浄化試験槽が500L程度の場合、5〜60mL/分程度の流量範囲のポンプで安定した流量の送液ができるものが好ましい。
また、出口部分も整流部を設け、出口配管も多数設け槽内を流水が偏流しないようにすることが望ましい(図5)。
該出口配管は、全部を一旦同じ高さまで、上げてから排出するようにすると、槽内の水位をその高さに調整することができる(図4)。
更に、浄化試験槽には、モニタリング(サンプリング)井戸を設け、流水を採取してもよい。該井戸管の内径は 20〜30mmで側面に多数の穴を開けてあり、管内を流水が流れる構造にしたものが好ましい。また、該井戸管の側面に多数の穴を空ける以外に、管の必要な部分をメッシュにしたり、スリット構造としてもよい。
Purification test tank The purification test tank is a tank for investigating the ability of microorganisms in the test soil to decompose the organic chemical substances, the environment of the microorganisms, and the like.
The purification test tank and the pipe are made of a material that does not adsorb the organic chemical substance to be tested (preferably stainless steel, fluororesin, etc.).
Although the magnitude | size of a tank is not specifically limited, About 200L-12000L is preferable and the intensity | strength which can be endured even if it fills with soil is required. In addition, it is desirable to keep the temperature in the tank constant, and therefore, it is preferable to provide a water jacket or the like. Moreover, in order to prevent volatilization of organic chemical substances, it is preferable to put a lid and make it semi-sealed.
The raw water inlet section has a structure that can adjust the flow rate by branching a number of pipes from the feed pump and installing a flow meter in each line (Fig. 3). It is desirable that water flowing through the test tank (hereinafter referred to as “flowing water”) does not drift (FIG. 5). The rectifying unit is preferably composed of silica sand, gravel, glass beads, and a filter (such as glass and stainless steel). In the case where the purification test tank is about 500 L, it is preferable that the liquid feed pump is capable of feeding a stable flow rate with a pump having a flow rate range of about 5 to 60 mL / min.
Moreover, it is desirable to provide a rectification | straightening part also in an exit part and to provide many exit piping, and to prevent flowing water from drifting in a tank (FIG. 5).
If all the outlet pipes are once raised to the same height and then discharged, the water level in the tank can be adjusted to that height (FIG. 4).
Furthermore, the purification test tank may be provided with a monitoring (sampling) well to collect running water. The inner diameter of the well tube is preferably 20 to 30 mm, and a large number of holes are formed on the side surface, and a structure in which running water flows in the tube is preferable. Further, in addition to making a large number of holes on the side surface of the well pipe, a necessary part of the pipe may be meshed or may have a slit structure.

浄化試験槽からの流出水は、曝気槽等により処理してから排水することが環境上好ましい。   It is environmentally preferable to discharge the effluent from the purification test tank after treating it in an aeration tank or the like.

実施例1
図6に示す土壌の浄化試験装置を作成し、試験に供した。
本土壌浄化試験装置は、有機化学物質添加装置と、該有機化学物質と水とを攪拌混合する溶解槽と、溶解槽で得られた混合液を貯留する原水タンクと、該原水タンク中の原水を通過させる土壌を入れる浄化試験槽を有し、かつ溶解槽に供給する水の溶存酸素を調整するための溶存酸素濃度調整槽を溶解槽の上流に有する。
Example 1
A soil purification test apparatus shown in FIG. 6 was prepared and used for the test.
The soil purification test apparatus includes an organic chemical substance addition apparatus, a dissolution tank that stirs and mixes the organic chemical substance and water, a raw water tank that stores a mixed liquid obtained in the dissolution tank, and raw water in the raw water tank. And a purification test tank for containing soil to pass through, and a dissolved oxygen concentration adjusting tank for adjusting the dissolved oxygen concentration of water supplied to the dissolving tank is provided upstream of the dissolving tank.

有機化学物質添加装置
ここで用いる有機化学物質は、ベンゼン10重量%、トルエン80重量%及びキシレン10重量%の割合で混合した混合物(BTX)である。
有機化学物質添加装置は、このBTXを入れた有機化学物質槽、循環ポンプ、6方バルブ、検量管(容量0.3mL)及び配管で構成される。
先ず、BTXを循環ポンプにより、有機化学物質槽、6方バルブ、検量管、再び6方バルブ、有機化学物質槽の順に循環させる。
そして、センサーからの信号により6方バルブが切り替わり、空気により検量管中の有機化学物質を押し出され、溶解槽へ送られる。検量管中の有機化学物質がガスで完全に置換された後、6方バルブが元に戻り、再び循環状態となる。
このような、6方バルブの切り替えは、溶解槽や原水タンクの液高センサー等からの信号により、自動的に行った。すなわち、原水タンクの容量は20Lであるが、その一割の2L減ると原水を調製し原水タンクに供給した。
Organic Chemical Substance Adder The organic chemical substance used here is a mixture (BTX) mixed at a ratio of 10% by weight of benzene, 80% by weight of toluene and 10% by weight of xylene.
The organic chemical substance adding device is composed of an organic chemical substance tank containing the BTX, a circulation pump, a six-way valve, a calibration pipe (capacity 0.3 mL) and a pipe.
First, BTX is circulated in the order of an organic chemical tank, a 6-way valve, a calibration tube, a 6-way valve, and an organic chemical tank by a circulation pump.
Then, the 6-way valve is switched by a signal from the sensor, and the organic chemical substance in the calibration tube is pushed out by air and sent to the dissolution tank. After the organic chemicals in the calibration tube are completely replaced with gas, the 6-way valve returns to its original state and enters the circulation state again.
Such switching of the 6-way valve was automatically performed by a signal from a liquid height sensor of a dissolution tank or a raw water tank. That is, the capacity of the raw water tank is 20L, but when it is reduced by 10%, raw water is prepared and supplied to the raw water tank.

ここで、有機化学物質槽は、4℃の恒温槽とした。また、6方バルブと検量管は、高速液体クロマトグラフィーでの試料注入に用いられているもの(電装産業株式会社製UV6162S)を使用した。   Here, the organic chemical substance tank was a constant temperature bath of 4 ° C. The 6-way valve and the calibration tube used were those used for sample injection in high performance liquid chromatography (UV 6162S manufactured by Denso Sangyo Co., Ltd.).

溶解槽
溶解槽は、図6のような2L容の槽で直径60mmの攪拌羽を有する。
先ず、水2Lに対し、有機化学物質を300μLを上記有機化学物質添加装置により自動添加した。
次いで、攪拌羽で600rpm、10分間攪拌し原水を得た。原水中のBTXの濃度は100mg/Lに自動調製された。
Dissolution tank The dissolution tank is a 2 L tank as shown in FIG. 6 and has stirring blades having a diameter of 60 mm.
First, 300 μL of an organic chemical substance was automatically added to 2 L of water using the organic chemical substance addition apparatus.
Next, the mixture was stirred with a stirring blade at 600 rpm for 10 minutes to obtain raw water. The concentration of BTX in the raw water was automatically adjusted to 100 mg / L.

原水タンク
溶解槽で得られた原水は、溶解槽下部の電磁弁を開いて原水タンクに送られた。原水タンクの内容量は20Lである。また、原水槽は浄化試験温度(20℃)に制御された恒温槽である。
タンク内の原水量が1割(2L)減ると、上記のとおり原水が調製され、直ちにタンクに補給される。
以上のように生産された原水は、1日80Lであった。
Raw water tank The raw water obtained in the dissolution tank was sent to the raw water tank by opening the solenoid valve at the bottom of the dissolution tank. The internal capacity of the raw water tank is 20L. The raw water tank is a thermostatic tank controlled to a purification test temperature (20 ° C.).
When the amount of raw water in the tank decreases by 10% (2 L), raw water is prepared as described above and immediately supplied to the tank.
The raw water produced as described above was 80 L per day.

溶存酸素濃度調整槽
3Lの水槽を用いた。水の溶存酸素量を減らすため、窒素ガスのバブリングをした。
Dissolved oxygen concentration adjusting tank A 3 L water tank was used. Nitrogen gas was bubbled to reduce the amount of dissolved oxygen in the water.

浄化試験槽
浄化試験槽としては、内容積540L、内寸(mm)1500W×600D×600Hのステンレス製の水槽を用いた。槽内はウオータージャケットにより恒温(20℃)にした。この中に土壌を約700kg入れた。
原水の入口部分は、ポンプから配管を4つに分岐し、各ラインに流量計を設置し、流量調節が可能な構造とした(図3)、更に、槽内の入口部分には整流部を設け(図5)、槽内を流水が偏流しないようにした。整流部は、1号珪砂を浄化試験槽の原水流入側面全体に厚さ15cmで充填することで設けた。
また、出口部分もは整流部を設け、出口配管を9本設け槽内を流水が偏流しないようにした。該出口配管は、全部を一旦同じ高さまで、上げてから排出するようにし(図4)、槽内の水位をその高さに調整した。
浄化試験槽内の流水の流量は80L/日とした。
更に、浄化試験槽には、サンプリング井戸を設けた。該井戸管の内径は27.6mmで側面に多数の穴を開けてあり、管内を流水が流れる構造にした。
Purification test tank As a purification test tank, a stainless steel water tank having an internal volume of 540 L and an internal size (mm) of 1500 W × 600 D × 600 H was used. The inside of the tank was kept at a constant temperature (20 ° C.) with a water jacket. About 700 kg of soil was put in this.
The raw water inlet section is divided into four pipes from the pump, and a flow meter is installed in each line so that the flow rate can be adjusted (Fig. 3). Provided (FIG. 5), so that running water does not drift in the tank. The rectifying unit was provided by filling No. 1 silica sand with a thickness of 15 cm over the entire raw water inflow side of the purification test tank.
Also, the outlet portion is provided with a rectifying portion, and nine outlet pipes are provided so that running water does not drift in the tank. All the outlet pipes were once raised to the same height and then discharged (FIG. 4), and the water level in the tank was adjusted to that height.
The flow rate of running water in the purification test tank was 80 L / day.
Furthermore, a sampling well was provided in the purification test tank. The inner diameter of the well tube was 27.6 mm, and a large number of holes were made on the side surface, so that running water flowed through the tube.

浄化試験槽からの流出水は、曝気槽等により処理してから排水した。   The effluent from the purification test tank was treated with an aeration tank and then drained.

原水調製結果
上記実施例の装置を用い原水を調製した。自動で1日に約40回の原水の調製を行い、原水タンクへ供給された。1日1回、 原水タンクからサンプリングして、BTXの濃度を測定した結果を表1に示す。
Raw water preparation results Raw water was prepared using the apparatus of the above example. The raw water was automatically prepared about 40 times a day and supplied to the raw water tank. Table 1 shows the results of measuring the concentration of BTX by sampling from the raw water tank once a day.

実施例2
酸素を浄化試験槽の中央部から通気し、原水中のBTX濃度は75mg/Lとした以外は実施例1と同じ方法で、試験を行った。比較として、従来のカラムに土壌を詰めた試験装置を用いた試験も行った。これらの結果を図7に示す。酸素の通気条件は、外径1.6mm、内径0.8mmのステンレス管6本を浄化試験槽内の流水が流れる土壌中へ挿入し、各々から5mL/分の流量で流水へ酸素ガスを供給しバブリングするという条件とした。
この結果から、従来のカラム試験装置では、酸素が供給できず、BTXは、ほとんど浄化されていないことが判る。また、この土壌中の微生物は、BTX分解能を発揮するためには酸素が必要なことが判る。
Example 2
Oxygen was vented from the center of the purification test tank, and the test was performed in the same manner as in Example 1 except that the BTX concentration in the raw water was 75 mg / L. As a comparison, a test using a test apparatus in which soil was packed in a conventional column was also conducted. These results are shown in FIG. Oxygen ventilation conditions are as follows: Six stainless steel tubes with an outer diameter of 1.6 mm and an inner diameter of 0.8 mm are inserted into the soil in which the flowing water flows in the purification test tank, and oxygen gas is supplied to the flowing water at a flow rate of 5 mL / min. And bubbling.
From this result, it can be seen that the conventional column test apparatus cannot supply oxygen and BTX is hardly purified. Moreover, it turns out that the microorganisms in this soil require oxygen in order to exhibit BTX resolution.

本発明によれば、安定した濃度の原水が供給されるため、信頼性の高いデータが得られる。   According to the present invention, since raw water having a stable concentration is supplied, highly reliable data can be obtained.

本発明の浄化試験装置の概要を示す図である。It is a figure which shows the outline | summary of the purification test apparatus of this invention. 有機化学物質添加装置を示す図である。It is a figure which shows an organic chemical substance addition apparatus. 浄化試験槽の入口部分を示す図である。It is a figure which shows the entrance part of a purification test tank. 浄化試験槽の出口部分を示す図である。It is a figure which shows the exit part of a purification test tank. 浄化試験槽の平面図である。It is a top view of a purification test tank. 実施例の浄化試験装置を示す図である。It is a figure which shows the purification test apparatus of an Example. 浄化試験結果を示す図である。It is a figure which shows a purification test result.

Claims (4)

検量管及び有機化学物質槽間で有機化学物質を6方バルブを介して循環させ、該6方バルブを切り替えることにより、検量管内の一定量の有機化学物質をガスで押し出し溶解槽に送液する工程と
該溶解槽中で該有機化学物質と水とを攪拌混合し混合液中の有機化学物質濃度を所定濃度に調整する工程と
得られた模擬汚染地下水を模擬汚染地下水タンクに貯留する工程と
模擬汚染地下水タンク内の模擬汚染地下水の液高を調整する工程と
該模擬汚染地下水タンク中の模擬汚染地下水を被検土壌を入れた浄化試験槽に供給する工程と
該土壌の通過液を評価する工程
を備え、
液高を調整する工程において、模擬汚染地下水タンク内の模擬汚染地下水が所定量減少したことを検知すると、溶解槽で模擬汚染地下水を調製し、溶解槽から模擬汚染地下水タンクへ模擬汚染地下水を所定量補給して液高を調整することを特徴とする土壌の浄化試験方法。
The organic chemical substance is circulated through the 6-way valve between the calibration tube and the organic chemical substance tank, and by switching the 6-way valve, a certain amount of the organic chemical substance in the calibration tube is extruded with gas and sent to the dissolution tank . Process ,
A step of stirring and mixing the organic chemical substance and water in the dissolution tank to adjust the concentration of the organic chemical substance in the mixed solution to a predetermined concentration ;
A step of storing the simulated contaminated groundwater resulting in simulated groundwater contaminated tank,
Adjusting the liquid level of the simulated contaminated groundwater in the simulated contaminated groundwater tank ;
A step of supplying the simulated groundwater contamination of the simulated polluted ground water tank during cleaning test bath containing test soil,
A step of evaluating the fluid passing through the soil
With
In the process of adjusting the liquid height, when it is detected that the amount of simulated contaminated groundwater in the simulated contaminated groundwater tank has decreased, a simulated contaminated groundwater is prepared in the dissolution tank, and the simulated contaminated groundwater is placed from the dissolution tank to the simulated contaminated groundwater tank. A soil remediation test method characterized by adjusting the liquid level by quantitative replenishment .
溶解槽に供給される水が、溶存酸素濃度が調整されたものである請求項記載の土壌の浄化試験方法。 Water supplied to the dissolving tank is clean test methods soil according to claim 1, wherein in which the dissolved oxygen concentration has been adjusted. 有機化学物質槽と、有機化学物質を循環させるポンプと、検量管と、6方バルブを有し、検量管及び有機化学物質槽間で有機化学物質を6方バルブを介して循環させ、該6方バルブを切り替えることにより、検量管内の一定量の有機化学物質をガスで押し出し溶解槽に送液する有機化学物質添加装置と、
該有機化学物質と水とを攪拌混合し混合液中の有機化学物質濃度を所定濃度に調整する溶解槽と、
溶解槽で得られた混合液を貯留する模擬汚染地下水タンクと、
模擬汚染地下水タンク内の模擬汚染地下水の液高を調整する液高調整手段と、
該模擬汚染地下水タンク中の模擬汚染地下水を通過させる被検土壌を入れる浄化試験槽
を備え、
液高調整手段は、模擬汚染地下水タンク内の模擬汚染地下水が所定量減少したことを検知すると、溶解槽で模擬汚染地下水を調製し、溶解槽から模擬汚染地下水タンクへ模擬汚染地下水を所定量補給して液高を調整するものであることを特徴とする土壌の浄化試験装置。
An organic chemical substance tank, a pump for circulating the organic chemical substance, a calibration pipe, and a six-way valve are provided, and the organic chemical substance is circulated between the calibration pipe and the organic chemical substance tank via the six-way valve. An organic chemical substance addition device that pushes out a certain amount of organic chemical substance in the calibration tube with gas and sends it to the dissolution tank by switching the direction valve,
A dissolution tank for stirring and mixing the organic chemical substance and water to adjust the concentration of the organic chemical substance in the mixed solution to a predetermined concentration ;
A simulated contaminated groundwater tank for storing the mixed liquid obtained in the dissolution tank;
Liquid level adjusting means for adjusting the liquid level of the simulated contaminated groundwater in the simulated contaminated groundwater tank;
Purification test tank for storing the test soil through which the simulated contaminated groundwater in the simulated contaminated groundwater tank passes.
With
When the liquid level adjustment means detects that the simulated contaminated groundwater in the simulated contaminated groundwater tank has decreased by a predetermined amount, it prepares the simulated contaminated groundwater in the dissolution tank and replenishes the simulated contaminated groundwater from the dissolution tank to the simulated contaminated groundwater tank. Then , a soil purification test apparatus characterized in that the liquid height is adjusted .
さらに、溶解槽に供給する水の溶存酸素濃度をバブリングにより調整する溶存酸素濃度調整槽を有する請求項記載の土壌の浄化試験装置。 Furthermore, the soil purification test apparatus of Claim 3 which has a dissolved oxygen concentration adjustment tank which adjusts the dissolved oxygen concentration of the water supplied to a dissolution tank by bubbling.
JP2005215329A 2005-07-26 2005-07-26 Contaminated soil purification test method and contaminated soil purification test apparatus Active JP4791775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215329A JP4791775B2 (en) 2005-07-26 2005-07-26 Contaminated soil purification test method and contaminated soil purification test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215329A JP4791775B2 (en) 2005-07-26 2005-07-26 Contaminated soil purification test method and contaminated soil purification test apparatus

Publications (2)

Publication Number Publication Date
JP2007033166A JP2007033166A (en) 2007-02-08
JP4791775B2 true JP4791775B2 (en) 2011-10-12

Family

ID=37792620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215329A Active JP4791775B2 (en) 2005-07-26 2005-07-26 Contaminated soil purification test method and contaminated soil purification test apparatus

Country Status (1)

Country Link
JP (1) JP4791775B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819559A (en) * 1981-07-27 1983-02-04 Shikoku Electric Power Co Inc Method of and apparatus for detecting gas in oil for oil-filled equipment
JPH04128644A (en) * 1990-09-19 1992-04-30 Sumitomo Light Metal Ind Ltd Measuring device for hydrogen concentration in molten metal and method for inspecting operation of measuring device for hydrogen concentration in metal bath water
JP3273474B2 (en) * 1993-01-11 2002-04-08 株式会社日立製作所 Gas analyzer

Also Published As

Publication number Publication date
JP2007033166A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
Klenk et al. Transverse vertical dispersion in groundwater and the capillary fringe
Duran et al. Impact of suspended solids on the activated sludge non-newtonian behaviour and on oxygen transfer in a bubble column
Snyder et al. Endocrine disruptors and pharmaceuticals: implications for water sustainability
Pan et al. Unravelling the spatial variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment plant
CN204116335U (en) Soil pollutant Transport And Transformation analogue experiment installation
Seki et al. Moderate bioclogging leading to preferential flow paths in biobarriers
Donaldson et al. Development and testing of a kinetic model for oxygen transport in porous media in the presence of trapped gas
Atasoy et al. The estimation of NMVOC emissions from an urban-scale wastewater treatment plant
Cornwell et al. Quantifying sediment nitrogen releases associated with estuarine dredging
Karakurt-Fischer et al. Developing a novel biofiltration treatment system by coupling high-rate infiltration trench technology with a plug-flow porous-media bioreactor
Wilson et al. A method for passive release of solutes from an unpumped well
US9328005B2 (en) Denitrification process
Leung et al. Air/water oxygen transfer in a biological aerated filter
Sheridan et al. Turning wine (waste) into water: toward technological advances in the use of constructed wetlands for winery effluent treatment
Angradi et al. An application of the plaster dissolution method for quantifying water velocity in the shallow hyporheic zone of an Appalachian stream system
JP4791775B2 (en) Contaminated soil purification test method and contaminated soil purification test apparatus
Viana et al. Comparison of direct benthic flux to ebullition-facilitated flux of polycyclic aromatic hydrocarbons and heavy metals measured in the field
JP2003166987A (en) Soil-filled column testing system
Jin et al. Density effects on solute release from streambeds
US5605634A (en) Treatment of contaminated groundwater
Balcke et al. Nitrogen as an indicator of mass transfer during in-situ gas sparging
Struse Mass transport of potassium permanganate in low permeability media and matrix interactions
Nemade et al. Residence time distribution and oxygen transfer in a novel constructed soil filter
Wardencki et al. Sampling water and aqueous solutions
Seagren et al. An integrated evaluation of bioenhanced in situ LNAPL dissolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4791775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250