JP4791765B2 - Desalination method for concrete structures - Google Patents

Desalination method for concrete structures Download PDF

Info

Publication number
JP4791765B2
JP4791765B2 JP2005156755A JP2005156755A JP4791765B2 JP 4791765 B2 JP4791765 B2 JP 4791765B2 JP 2005156755 A JP2005156755 A JP 2005156755A JP 2005156755 A JP2005156755 A JP 2005156755A JP 4791765 B2 JP4791765 B2 JP 4791765B2
Authority
JP
Japan
Prior art keywords
electrolyte solution
concrete structure
container
holding material
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005156755A
Other languages
Japanese (ja)
Other versions
JP2006327905A (en
Inventor
卓 徳光
充 猪川
博敬 松久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005156755A priority Critical patent/JP4791765B2/en
Publication of JP2006327905A publication Critical patent/JP2006327905A/en
Application granted granted Critical
Publication of JP4791765B2 publication Critical patent/JP4791765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

本発明は、鋼材を内部に含むコンクリート構造物中の塩化物イオンを電気化学的処理により除去する方法に関する。   The present invention relates to a method for removing chloride ions in a concrete structure containing a steel material by electrochemical treatment.

コンクリート中はpH12程度の強アルカリ性を保持するため、コンクリート内部に配置された鋼材の腐食を抑制する性能を持っている。そのため、コンクリート構造物は非常に耐久性のあるものと考えられてきた。   In concrete, since it maintains strong alkalinity of about pH 12, it has the performance of suppressing the corrosion of steel materials arranged inside the concrete. Therefore, concrete structures have been considered very durable.

しかしながら、コンクリート構造物中に塩化物イオンが存在したり、外部より浸透した場合においては、鋼材の腐食抑制効果が大きく低下し、耐久性の低下が問題となってくる。   However, when chloride ions are present in the concrete structure or permeate from the outside, the effect of inhibiting the corrosion of the steel material is greatly reduced, and a decrease in durability becomes a problem.

このような塩害を受けたコンクリート構造物を補修する方法として、コンクリート内部の鋼材を内部電極とし、コンクリートの表面に設置した電極を外部電極とし、外部電極の周囲に、板状成形物及び/又は布状の物質からなる電解質溶液保持材を設置し、外部電極と内部電極との間に電流を流すことにより、塩化物イオンを泳動させてコンクリート中から除去する方法(特許文献1)、コンクリート構造物の表面に有底構造の容器を設け、容器内に電解質液を満たし、電解質液中に電極を配置し、これを陽極とすると共に、コンクリート構造物中の鉄筋や鉄骨の補強材を陰極とし、両電極間に電流を通電し、コンクリート中の塩素イオンをコンクリート構造物外へ除去する方法(特許文献2)が提案されている。   As a method of repairing a concrete structure damaged by such salt damage, a steel material inside the concrete is used as an internal electrode, an electrode installed on the surface of the concrete is used as an external electrode, and a plate-like molded product and / or around the external electrode is used. An electrolytic solution holding material made of a cloth-like substance is installed, and a current is passed between the external electrode and the internal electrode, so that chloride ions are migrated and removed from the concrete (Patent Document 1), concrete structure A container with a bottomed structure is provided on the surface of the object, the container is filled with the electrolyte solution, an electrode is placed in the electrolyte solution, and this is used as the anode, and the reinforcing material for reinforcing bars and steel frames in the concrete structure is used as the cathode. There has been proposed a method (Patent Document 2) in which a current is passed between both electrodes to remove chlorine ions in the concrete from the concrete structure.

しかしながら、これらの方法では、コンクリート構造物からコアリングによって供試体を採取し、その供試体中の塩化物イオンを室内試験場で分析することにより、脱塩の進行度合いを確認する必要があった。そのため、分析結果が出るまでに長時間を要する、コンクリート構造物中の塩化物イオン濃度に分布がある場合に脱塩効果を正確に把握するには多大なる労力を費やす、コアリングはコンクリート構造物を傷める可能性があるという問題があった。   However, in these methods, it was necessary to confirm the degree of progress of desalting by collecting a specimen from a concrete structure by coring and analyzing the chloride ions in the specimen at an indoor test site. Therefore, it takes a long time for the analysis results to be obtained, and if there is a distribution of chloride ion concentration in the concrete structure, it takes a lot of effort to accurately grasp the desalination effect. There was a problem that could hurt.

特開平6−166581号公報Japanese Patent Laid-Open No. 6-166581 特開平3−93681号公報JP-A-3-93681

本発明は、コアリングを必要とせず、施工現場で簡易かつ正確に脱塩の進行度合いを確認できる脱塩方法を提供することを目的とする。   An object of this invention is to provide the desalination method which does not require a coring and can confirm the progress degree of desalination simply and correctly on a construction site.

すなわち、本発明のコンクリート構造物の脱塩方法は、コンクリート構造物内の鋼材を陰極とし、垂直面においては、電解質溶液保持材を介して設置した外部電極を陽極とし、底面においては、電解質溶液を保持する容器内に設置した外部電極を陽極とし、前記容器と前記電解質溶液保持材との間で電解質溶液を循環させながら、前記陰極と前記陽極との間に電流を流すことを特徴とする。   That is, in the method for desalinating a concrete structure of the present invention, the steel material in the concrete structure is used as a cathode, in the vertical plane, the external electrode installed via the electrolyte solution holding material is used as the anode, and in the bottom surface, the electrolyte solution An external electrode installed in a container holding the anode is used as an anode, and an electric current is passed between the cathode and the anode while circulating an electrolyte solution between the container and the electrolyte solution holding material. .

本発明によれば、電解質保持材または容器から採取した電解質溶液中の塩化物イオン濃度を測定し、その結果により脱塩の進行度合いを把握することができる。   According to the present invention, the chloride ion concentration in an electrolyte solution collected from an electrolyte holding material or a container can be measured, and the progress of desalting can be grasped based on the result.

従って、コアリングをすることなく、さらには施工現場での測定が可能なため、簡便に工程管理をすることができる。また、通電中は電解質溶液を循環させているため、採取場所にとらわれず、一定の平均的な結果が得られ、脱塩の進行度合いを正確に把握することができる。   Therefore, since the measurement at the construction site is possible without coring, the process can be easily managed. Further, since the electrolyte solution is circulated during energization, a certain average result can be obtained regardless of the collection location, and the progress of desalting can be accurately grasped.

以下、本発明を図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明を説明するための概要図である。図1において、1はコンクリート構造物、2は電解質溶液保持材、3は外部電極、4は電解質溶液を保持する容器、5は外部電極、6は循環手段、7は配管、8は表面保護材、9はアンカーボルトである。   FIG. 1 is a schematic diagram for explaining the present invention. In FIG. 1, 1 is a concrete structure, 2 is an electrolyte solution holding material, 3 is an external electrode, 4 is a container for holding an electrolyte solution, 5 is an external electrode, 6 is a circulation means, 7 is piping, and 8 is a surface protection material. , 9 are anchor bolts.

図1に示す様に、コンクリート構造物1の垂直面には、電解質溶液保持材2中に設けた外部電極3と、表面保護材8が、アンカーボルト9により固定されている。また、コンクリート構造物1の底面には、底面が浸漬されるように電解質溶液を保持する容器4が配置されており、容器4内の電解質溶液中の底面と対向する位置に外部電極5が設置されている。   As shown in FIG. 1, the external electrode 3 provided in the electrolyte solution holding material 2 and the surface protection material 8 are fixed to the vertical surface of the concrete structure 1 by anchor bolts 9. Further, a container 4 for holding the electrolyte solution is disposed on the bottom surface of the concrete structure 1 so that the bottom surface is immersed, and an external electrode 5 is installed at a position facing the bottom surface in the electrolyte solution in the container 4. Has been.

ここで、電解質溶液保持材2は、電解質溶液をコンクリート構造物1の表面に接触できるように保持できるものであれば特に限定されるものではなく、例えば、電解質溶液を吸着して保持できる材料を用いることができる。吸着材料としては、例えばパルプ、布及び不織布等の繊維状物質及びシート、ゼオライト、シラスバルーン及び、発泡ビーズ等の無機、有機の多孔質材料、吸水性の有機高分子等が挙げられる。   Here, the electrolyte solution holding material 2 is not particularly limited as long as the electrolyte solution can be held so as to be in contact with the surface of the concrete structure 1. For example, a material that can adsorb and hold the electrolyte solution is used. Can be used. Examples of the adsorbing material include fibrous materials and sheets such as pulp, cloth and non-woven fabric, inorganic and organic porous materials such as zeolite, shirasu balloon and foamed beads, and water-absorbing organic polymers.

電解質溶液保持材2として吸着材料を用いる場合には、電解質溶液の蒸発防止などのため図示のように表面保護材8によって電解質溶液保持材2を覆い、アンカーボルト9によりコンクリート構造物1に固着する。表面保護材6の材質としては、柔軟性、耐薬品性、強度などに優れたものが好ましく、例えばポリエチレン、ポリエステル、熱可塑性ポリウレタンなどのシートが好適である。   When an adsorbing material is used as the electrolyte solution holding material 2, the electrolyte solution holding material 2 is covered with a surface protection material 8 as shown in the figure to prevent evaporation of the electrolyte solution, and fixed to the concrete structure 1 with anchor bolts 9. . As the material of the surface protective material 6, a material excellent in flexibility, chemical resistance, strength, and the like is preferable. For example, a sheet of polyethylene, polyester, thermoplastic polyurethane, or the like is preferable.

電解質溶液を保持する容器4は、対象とするコンクリート構造物1の底面を浸漬し得る形状、大きさを有し、電解質溶液の漏れがないようなものであれば、その材質等には制限されない。   The container 4 for holding the electrolyte solution is not limited to the material or the like as long as it has a shape and size that can immerse the bottom surface of the target concrete structure 1 and does not leak the electrolyte solution. .

外部電極3,5は、コンクリート内部の鋼材との間に電流が正常に流れるようであれば、コンクリート表面からの距離・面積等は特に制限されない。   As long as the current flows normally between the external electrodes 3 and 5 and the steel material inside the concrete, the distance and area from the concrete surface are not particularly limited.

外部電極3,5の材質としては、耐食性の高い導電体が好適に用いられ、例えばチタン、チタン合金、白金、及び/又はそれらでメッキされた金属材料、または導電性樹脂材料などが好適である。   As the material of the external electrodes 3 and 5, a conductor having high corrosion resistance is preferably used. For example, titanium, titanium alloy, platinum, and / or a metal material plated with them, or a conductive resin material is preferable. .

外部電極3,5の形状としては、格子状、亀甲状、菱形状、リボン状、線状、棒状、シート状のいずれでも良いが、コンクリート表面全体に均等に配置されることが好ましい。   The shape of the external electrodes 3 and 5 may be any of a lattice shape, a turtle shell shape, a rhombus shape, a ribbon shape, a linear shape, a rod shape, and a sheet shape, but it is preferable that they are arranged uniformly on the entire concrete surface.

電解質溶液に含まれる電解質成分は、例えば、カルシウム、ナトリウム、リチウムなどのアルカリ金属、アルカリ土類金属の、水酸化物、塩化物、ホウ酸塩などの各種の塩が挙げられる。好ましくは水酸化カルシウム、水酸化カリウム、またはホウ酸リチウムの飽和水溶液である。   Examples of the electrolyte component contained in the electrolyte solution include various salts such as hydroxides, chlorides and borates of alkali metals such as calcium, sodium and lithium, and alkaline earth metals. Preferably, it is a saturated aqueous solution of calcium hydroxide, potassium hydroxide, or lithium borate.

本発明の脱塩方法は、コンクリート構造物1内の鋼材(図示せず)を陰極とし、外部電極3,5を陽極とし、陽極と陰極の間に電流を流すことにより、コンクリート構造物1から塩化物イオンを除去するものである。そして、通電中は、容器4と電解質溶液保持材2との間で電解質溶液を循環させている。つまり、図1に示す様に、容器4中の電解質溶液は、循環手段6により汲み上げられ、配管7を通って電解質溶液保持材2へ供給され、最終的に容器4中へと戻る。   The desalination method of the present invention uses a steel material (not shown) in the concrete structure 1 as a cathode, the external electrodes 3 and 5 as anodes, and a current is passed between the anode and the cathode, so that the concrete structure 1 It removes chloride ions. During energization, the electrolyte solution is circulated between the container 4 and the electrolyte solution holding material 2. That is, as shown in FIG. 1, the electrolyte solution in the container 4 is pumped up by the circulation means 6, supplied to the electrolyte solution holding material 2 through the pipe 7, and finally returns to the container 4.

コンクリート構造物1内の鋼材としては、鉄筋でもよく、また、特別にコンクリート中に設置された鋼材を使用することも可能である。   The steel material in the concrete structure 1 may be a reinforcing bar, or a steel material specially installed in concrete can be used.

電解質溶液を循環させる循環手段6としては、汲み上げポンプを用いることができる。汲み上げポンプは、電解質溶液を適切に汲み上げ、容器4と電解質溶液保持材2との間で電解質溶液を循環させることが出来るものであるならば、その形状・性能等には制限されない。   A pumping pump can be used as the circulating means 6 for circulating the electrolyte solution. The pump is not limited in its shape and performance as long as it can appropriately pump the electrolyte solution and circulate the electrolyte solution between the container 4 and the electrolyte solution holding material 2.

電解質溶液を循環させる配管7としては、塩ビ管・樹脂性のホース等を使用することができる。配管7は、電解質溶液を適切に循環させることが出来るものならば、その形状・材質等には制限されない。   As the pipe 7 for circulating the electrolyte solution, a polyvinyl chloride pipe, a resinous hose, or the like can be used. The pipe 7 is not limited to its shape and material as long as the electrolyte solution can be circulated appropriately.

本発明では、電解質保持材2または容器4から電解質溶液を採取し、施工現場にて電解質溶液中の塩化物イオン濃度を測定し、その測定結果により脱塩の進行度合いを把握することにより、工程管理が可能である。この際、コンクリート構造物を区分けして、各区分毎に、電解質溶液保持材2、容器4、外部電極3を分離して電解質溶液を循環させることにより、区分毎に工程管理をしてもよい。   In the present invention, an electrolyte solution is collected from the electrolyte holding material 2 or the container 4, the chloride ion concentration in the electrolyte solution is measured at the construction site, and the progress of desalting is grasped from the measurement result, Management is possible. At this time, the concrete structure may be divided, and for each section, the electrolyte solution holding material 2, the container 4, and the external electrode 3 may be separated and the electrolyte solution may be circulated to manage the process for each section. .

採取した電解質溶液中の塩化物イオン濃度を計測する機械・方法は、適切かつ簡易に計測することができるものあるならば、その性能・機器等には制限されない。   The machine / method for measuring the chloride ion concentration in the collected electrolyte solution is not limited to its performance / equipment as long as it can be measured appropriately and easily.

本発明の脱塩方法の対象となるコンクリート構造物は特に限定されないが、橋梁等の梁の様に、電解質溶液保持材を配置することが困難な底面を有し、周辺構造が複雑な垂直面を有する構造物に対して、特に効果的である。   The concrete structure that is the target of the desalination method of the present invention is not particularly limited, but has a bottom surface that is difficult to dispose the electrolyte solution holding material, such as a bridge, and has a complicated vertical structure. It is particularly effective for a structure having

本発明を説明するための概要図である。It is a schematic diagram for demonstrating this invention.

符号の説明Explanation of symbols

1 コンクリート構造物
2 電解質溶液保持材
3 外部電極
4 容器
5 外部電極
6 循環手段
7 配管
8 表面保護材
9 アンカーボルト
DESCRIPTION OF SYMBOLS 1 Concrete structure 2 Electrolyte solution holding material 3 External electrode 4 Container 5 External electrode 6 Circulation means 7 Piping 8 Surface protection material 9 Anchor bolt

Claims (4)

コンクリート構造物内の鋼材を陰極とし、垂直面においては、電解質溶液保持材を介して設置した外部電極を陽極とし、底面においては、電解質溶液を保持する容器内に設置した外部電極を陽極とし、前記容器と前記電解質溶液保持材との間で電解質溶液を循環させながら、前記陰極と前記陽極との間に電流を流すことを特徴とするコンクリート構造物の脱塩方法。   The steel material in the concrete structure is used as a cathode, the vertical electrode has an external electrode installed through an electrolyte solution holding material as the anode, and the bottom surface has an external electrode installed in a container holding the electrolyte solution as an anode. A method for desalinating a concrete structure, wherein an electric current is passed between the cathode and the anode while circulating an electrolyte solution between the container and the electrolyte solution holding material. 前記電解質保持材と前記容器の少なくとも一部を、表面保護材で覆うことを特徴とする請求項1に記載のコンクリート構造物の脱塩方法。   The method for desalinating a concrete structure according to claim 1, wherein at least a part of the electrolyte holding material and the container is covered with a surface protective material. 前記電解質保持材または前記容器から採取した電解質溶液中の塩化物イオン濃度を測定し、該測定結果により脱塩の進行度合いを把握することを特徴とする請求項1または2に記載のコンクリート構造物の脱塩方法。   3. The concrete structure according to claim 1, wherein a chloride ion concentration in the electrolyte solution collected from the electrolyte holding material or the container is measured, and the progress of desalting is grasped based on the measurement result. Desalting method. 前記コンクリート構造物が梁であることを特徴とする請求項1〜3のいずれかに記載のコンクリート構造物の脱塩方法。   The method for desalinating a concrete structure according to any one of claims 1 to 3, wherein the concrete structure is a beam.
JP2005156755A 2005-05-30 2005-05-30 Desalination method for concrete structures Active JP4791765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156755A JP4791765B2 (en) 2005-05-30 2005-05-30 Desalination method for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005156755A JP4791765B2 (en) 2005-05-30 2005-05-30 Desalination method for concrete structures

Publications (2)

Publication Number Publication Date
JP2006327905A JP2006327905A (en) 2006-12-07
JP4791765B2 true JP4791765B2 (en) 2011-10-12

Family

ID=37549988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156755A Active JP4791765B2 (en) 2005-05-30 2005-05-30 Desalination method for concrete structures

Country Status (1)

Country Link
JP (1) JP4791765B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411086B2 (en) * 2014-06-16 2018-10-24 株式会社安藤・間 Decontamination method and system for radioactively contaminated concrete
JP6586000B2 (en) * 2015-11-30 2019-10-02 デンカ株式会社 Electrochemical treatment method of reinforced concrete and electrode unit panel therefor
JP7089653B2 (en) * 2020-12-02 2022-06-23 デンカ株式会社 Electrochemical treatment system and unit panel for electrodes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526129B2 (en) * 1989-08-04 1996-08-21 宇部興産株式会社 Magneto-optical recording medium
JP3877339B2 (en) * 1994-05-25 2007-02-07 電気化学工業株式会社 How to energize concrete
JP3797677B2 (en) * 1994-05-26 2006-07-19 電気化学工業株式会社 Method for electrochemical treatment of concrete
JPH0840783A (en) * 1994-07-28 1996-02-13 Denki Kagaku Kogyo Kk Method for treating concrete utilizing electrochemical treatment
JPH07315960A (en) * 1994-05-31 1995-12-05 Denki Kagaku Kogyo Kk Electrochemical treatment of concrete
JP3400865B2 (en) * 1994-07-15 2003-04-28 電気化学工業株式会社 Electrode for concrete using conductive resin and method for repairing concrete using the same
JP3438960B2 (en) * 1994-10-05 2003-08-18 電気化学工業株式会社 How to repair concrete
JPH08119768A (en) * 1994-10-21 1996-05-14 Denki Kagaku Kogyo Kk Method for treating concrete utilizing electrochemical treatment
JP3335153B2 (en) * 1999-12-27 2002-10-15 前田工繊株式会社 External electrode structure

Also Published As

Publication number Publication date
JP2006327905A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
RU2516455C2 (en) Method of electrokinetic decontamination of hard porous medium
JP4435717B2 (en) Desalination method for concrete structures
JP4791765B2 (en) Desalination method for concrete structures
CN104964920A (en) Apparatus and method for simulating natural corrosion of reinforced concrete
SK5692003A3 (en) Cathodic protection of steel in reinforced concrete with electroosmotic treatment
Mei et al. Effects of hypochlorite exposure on the structure and electrochemical performance of ion exchange membranes in reverse electrodialysis
CN101787534B (en) BE rust inhibitor based method and device for restoring electroosmotic salt polluted buildings
EP3103770B1 (en) Brine tank, method to provide brine for regenerating an ion-exchange material and water softening method
CN2910970Y (en) Electrochemical demineralizing circulation apparatus for steel bar reinforced concrete
JP2015505583A (en) Metal wall cathode protection device against corrosion in salty environment.
Koter Ion-exchange membranes for electrodialysis-A patents review
KR100840511B1 (en) Desalter of seawater or deep sea water
CN1243850C (en) Electrolytic protection of reinforced concrete using immersion corrosion inhibitor
JP6851605B2 (en) Calibration method of pH detection electrode wire
JPH08104581A (en) Repairing method of concrete
JP3877339B2 (en) How to energize concrete
JP2009022868A (en) Method and apparatus for detecting abnormality in electrolytic treatment, and water treatment system
CN101782500B (en) Accelerated test method for simulating non-uniform corrosion of steel bar in reinforced concrete by external electrode
JP6618212B2 (en) Desalination treatment system for concrete, realkalization treatment system, and salinity sensor and pH sensor used therefor
Lima et al. The use of ultrasound to reduce cathodic incrustation
HU209897B (en) Apparatus for electrokinetic desalinizing walls
WO2018136337A2 (en) Pretreatment of diaphragms used in electrochemical processes
Martí Calatayud Study of the transport of heavy metal ions through cation-exchange membranes applied to the treatment of industrial effluents
JP7271388B2 (en) Method for removing salt from concrete structure
JPH02225350A (en) Device and method for desalting earth and sand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250