JP4791642B2 - Cutting method for machine tools, etc., and their combined equipment - Google Patents

Cutting method for machine tools, etc., and their combined equipment Download PDF

Info

Publication number
JP4791642B2
JP4791642B2 JP2001076975A JP2001076975A JP4791642B2 JP 4791642 B2 JP4791642 B2 JP 4791642B2 JP 2001076975 A JP2001076975 A JP 2001076975A JP 2001076975 A JP2001076975 A JP 2001076975A JP 4791642 B2 JP4791642 B2 JP 4791642B2
Authority
JP
Japan
Prior art keywords
oil
venturi
oil tank
tank
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001076975A
Other languages
Japanese (ja)
Other versions
JP2002273641A (en
Inventor
晴夫 伊藤
真一 斎藤
兼二 吉田
Original Assignee
Taco株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taco株式会社 filed Critical Taco株式会社
Priority to JP2001076975A priority Critical patent/JP4791642B2/en
Publication of JP2002273641A publication Critical patent/JP2002273641A/en
Application granted granted Critical
Publication of JP4791642B2 publication Critical patent/JP4791642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

【0001】
【発明の属する技術分野】
本発明は、主として工作機械等の切削加工、研削加工、ドリル加工等に使用され、切削面の劣化や焼き付きを防止し、加工能率の向上と工具寿命を延ばすセミドライ加工用の霧化装置に供される切削加工方法の改良に関し、更に詳しくは、微量の油霧を単位時間当たり一定量を長期間に亘って供給し続けたり、ベンチュリ機構での油吸引用の差圧を無くして霧化を停止させることで、刃具の種類や加工条件に応じて油量を増減することができる有用な切削加工方法とその複合装置に存する。
【0002】
【従来の技術】
従来、セミドライ加工用霧化装置は、霧化に供する油量を油供給ポンプの作動頻度の増減を制御することにより、発生油霧の増減を行っている。更に、油量を増減する場合は、ベンチュリ(霧化機構)を通過する圧縮空気量と、それに伴う油吸引用の差圧との発生度合いに因っており、通過する圧縮空気量は、工作機械の使用する刃具の油穴の大きさ、長さにかかる抵抗によって決定されている。
【0003】
特に、実加工では、仮令、同じ条件の刃具であっても、加工条件によって、セミドライ加工の有効な効果を得るために油量を増減する必要が出てくるものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の霧化装置では、油霧を多くする場合、油供給ポンプの作動頻度を増やすことになるが、3ポート電磁弁の応答性による制約及び寿命により作動頻度を増やすことに問題があり、油霧発生量を多くすることができない。
【0005】
また、従来の霧化装置(システム)では、刃具の油穴だけによって設定される圧縮空気量を基本因子とするため、刃具の種類や加工条件に応じて油量を増減させることができないといった問題を有する。
【0006】
本発明はこのような従来の問題点に鑑みてなされたもので、微量の油霧を単位時間当たり一定量を長期間に亘って供給し続けたり、ベンチュリ機構での油吸引用の差圧を無くして霧化を停止させることで、刃具の種類や加工条件に応じて油量を増減することができる有用な切削加工方法とその複合装置を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
上述の如き従来の問題点を解決し、所期の目的を達成するため本発明の要旨とする構成は、濾過及び/又は圧力調整後の圧縮空気を供給する少なくとも2ポート以上の空気切換弁の下流側を二つに分岐した後、その一方をベンチュリ機構に、他方を定量油供給ポンプにそれぞれ供給する工程と、圧縮空気がベンチュリ機構を通過する際に、サイトドーム室内の圧力と加圧油槽側の圧力との差圧によって加圧油槽に流入する工程と、潤滑油が定量油供給ポンプから定量油供給ラインを経てサイトドームに供給された後、サイトドーム室からベンチュリ機構の中心部に滴下する工程と、斯かる滴下油をベンチュリ機構を流れる圧縮空気と混合させて油霧化する工程と、加圧油槽内へ噴霧される際に、比較的粒径の大きな油霧が凝結されて加圧油槽の下部に滴下する工程と、油霧が油霧選別空間に流入し、この空間内に滞留中に油粒の大きな油霧のみを自重で降下させて加圧油槽の下部に貯留する工程と、微細な油霧を加圧油槽から吐出させて刃具等の潤滑目的に噴霧する工程とを有する工作機械等の切削加工方法において、加圧油槽の下部に貯留する油を、圧縮空気が前記ベンチュリ機構を通過する際に発生する加圧油槽側の圧力とサイトドーム室内の圧力との差圧により、加圧油槽の底部に開口した油還流ラインから前記ベンチュリ機構の還流油流入室内に強制的に戻しながら連続的に霧化する工程と、加圧油槽の底部と大気圧油槽とを油返送ポンプ及び油返送ラインを介して連通すると共に、前記油返送ポンプを駆動する3ポート電磁弁等の空気切替弁のOUT側を空気供給ラインを介して前記サイトドーム室内に連通し、前記油返送ポンプの駆動で大気圧油槽に油を返送する工程と、サイトドーム室内に供給圧を導入することで、ベンチュリ機構での油吸上げの差圧を無くして霧化を停止する工程とを有することを特徴とする工作機械等の切削加工方法に存する。
【0008】
また、延いては、空気切換弁の下流側で分岐した他方の圧縮空気を、プランジャポンプ作動用の3ポート電磁弁に導入し、3ポート電磁弁のオン/オフ操作による圧縮空気でプランジャポンプを作動させた後、油槽から油槽内に設けられた油用フィルタで清浄された定量の油を吸い上げる工程と、定量油供給ラインを経てサイトドーム室に一定量の油を送給する工程と、サイトドーム室をベンチュリホルダの頂面により還流油流入室と区分せしめ、かつ、同頂面に少なくとも一以上の油通路を介してサイトドーム室に滴下する潤滑油を還流油流入室に流下させる工程と、還流油流入室に流下する油と油還流ラインからの還流油とを合流させる工程とを有するのが良い。
【0009】
一方、この方法を実施するための切削加工における複合装置は、濾過及び/又は圧力調整後の圧縮空気をオン/オフする少なくとも2ポート以上の空気切換弁と、該空気切換弁の一方側の支流に配設される油霧発生装置と、同空気切換弁の他方側の支流に配設される定量油供給ポンプとを備えてなり、かつ、前記油霧発生装置は、加圧油槽の上位に取り付けられた油滴下監視用のサイトドームと、該サイトドームの下位に取り付けられたベンチュリ機構と、前記加圧油槽の底部に溜まった油を、再度、前記ベンチュリ機構に還流せしめる油還流ラインとを備えてなり、かつ、前記加圧油槽の底部と大気圧油槽とを連通する油返送ラインと、該油返送ラインに介在された油返送ポンプと、該油返送ポンプを駆動するための3ポート電磁弁等の空気切替弁と、該空気切替弁のOUT側の圧縮空気を前記サイトドーム室内に連通せしめる空気供給ラインとを備えるのが良い。
【0010】
また、前記空気供給ラインには、オリフィス、逆止弁を介在しても良く、更に、前記ベンチュリ機構は、サイトドーム室内に連通する少なくとも一以上の油通路を有するベンチュリホルダと、前記油通路に連通すべく同ベンチュリホルダ内に形成された還流油流入室と、該還流油流入室の下位に組み付けられたベンチュリ本体と、前記還流油流入室と油還流ラインとを連通せしめるベンチュリ上部通路とを備えてるのが良い。
【0011】
更に、前記定量油供給ポンプは、油槽と連通されたプランジャポンプと、空気切換弁に連通された3ポート電磁弁とからなり、該3ポート電磁弁のオン/オフ操作による圧縮空気でプランジャポンプを作動させ、油槽から油槽内に設けられた油用フィルタで清浄された定量の油を吸い上げ、定量油供給ラインを経てサイトドームに一定量の油を供給するのが良い。
【0012】
このように構成される本発明の工作機械等の切削加工方法及び切削加工の複合装置は、圧縮空気がベンチュリ本体内を流れることで発生する差圧力を利用して、加圧油槽の底部に貯留している油(以下、単に貯留油という)を油還流ラインで吸い上げて還流油流入室に戻し、再度、ベンチュリ本体の中央に通過させることにより(加圧油槽内に貯留油があり、かつ、圧縮空気が供給されている間)、霧化が連続して行われることとなる。
【0013】
換言すれば、ベンチュリ機構で霧化される油は、一度で全量が霧化されずに、一部は加圧油槽の下部に油として貯留するが、この貯留油を油環流ラインを介してベンチュリ機構の吸引力で吸い上げ霧化することを繰り返し循環させることで、油供給ポンプの作動頻度を低くすることが可能となり、3ポート電磁弁の応答性による制約及び寿命の問題を解消し、刃具への供給油量を増加し得ることととなる。
【0014】
また、油供給ポンプでの供給油量が多い場合は、加圧油槽の底部に貯留油が多くなるが、加工条件により更に刃具への油量を低減したい場合は、加圧油槽の底部より油返送ポンプを介して大気圧油槽に油返送ラインで連通すると共に、油返送ポンプを駆動する空気切替弁(例えば、3ポート空気電磁弁)のOUT側を、空気供給ラインを介してサイトドーム室内に連通せしめているため、油返送ポンプの駆動で大気圧油槽に貯留油を返送し、かつ、サイトドーム室内に供給圧を導入することで、ベンチュリ機構での油吸い上げの差圧を無くし、霧化を停止し得ることとなる。
【0015】
【発明の実施の形態】
以下、本発明に係る工作機械等の切削加工方法について詳しく説明する。まず、濾過及び/又は圧力調整後の圧縮空気を供給する少なくとも2ポート以上の空気切換弁の下流側を二つに分岐した後、その一方をベンチュリ機構に、他方を定量油供給ポンプにそれぞれ供給する。
【0016】
具体的には、図1及び図2に示すように、空気源からの圧縮空気をフィルタ・レギュレータ1を通過させることにより、空気の濾過と圧力調整を行い、然る後、2ポート電磁弁等の空気切換弁2より二つの通路3,4に分岐させるのが良い。
【0017】
また、フィルタ/レギュレータ1は、エアの濾過供給と圧力調整をなすもので、インポートから供給される清浄な圧力エアを、適宜圧力(MPa)に調圧するものであることは云うまでもない。
【0018】
次に、圧縮空気は、前記ベンチュリ機構を通過する際に、加圧油槽側の圧力とサイトドーム室内の圧力とに差圧を発生させ、加圧油槽に流入される。具体的には、前記一方の通路3を霧化装置のベンチュリ機構5に直接的に連通し、斯かる通路3から送給される圧縮空気を後述する狭路のベンチュリ本体5cに通過させることにより、その空気流速が増加する結果、サイトドーム室6a内の圧力を低下せしめるのである。
【0019】
次に、潤滑油は、定量油供給ポンプ、定量油供給ラインを介してサイトドームに供給させた後、サイトドーム室からベンチュリ機構の中心部に滴下させる。換言すれば、油槽9内の潤滑油(オイル)10は、定量油供給ポンプ12から定量油供給ライン13を経てサイトドーム6に供給させ、サイトドーム6の頂部からベンチュリ本体5cの中心部に滴下させるのが良い。
【0020】
定量油供給ポンプとしては、例えば、3ポート電磁弁のオン/オフ操作による圧縮空気で作動するプランジャポンプが挙げられる。
【0021】
また、油槽からの定量油は、プランジャポンプ12aが作動することにより、油槽9内に設けられた油用フィルタ11を介して清浄された油10のみを定量に吸い上げ、配管17、定量油供給ポンプ12、定量油供給ライン13を経てサイトドーム6に供給できるようにシステム化するのが良い。
【0022】
次に、サイトドーム室に滴下する油をベンチュリ機構を流れる圧縮空気と混合させることにより油霧に変性する。ベンチュリ本体5cを流れる圧縮空気と効率よく混合させることが大事であり、油霧としてダイレクトに加圧油槽8内に噴霧させるのが良い。
【0023】
次に、油霧が油霧選別空間に流入し、この空間内に滞留中に油粒の大きな油霧のみを自重で降下させて加圧油槽の下部に貯留させる。具体的には、油霧を油霧選別空間8aに流下させ、この空間8a内に滞留中に油粒の大きな油霧を自重で降下せしめて加圧油槽8の下部に貯留させるのが良い。
【0024】
次に、加圧油槽の下部に貯留する油を、圧縮空気が前記ベンチュリ機構を通過する際に発生する、加圧油槽側の圧力とサイトドーム室内の圧力との差圧により、加圧油槽の底部に開口した油還流ラインから前記ベンチュリ機構の還流油流入室内に強制的に戻しながら連続的に霧化する。
【0025】
例えば、加圧油槽8の下部に貯留された油10aを、圧縮空気がベンチュリ機構5内を流れることで発生する差圧力により、加圧油槽8の底部に向けて開口した油還流ライン15、メタリングオリフィス16、ベンチュリ上部通路5dの順で吸い上げるのが良い(還流油)。
【0026】
尚、前記メタリングオリフィス16は、ベンチュリ5の吸引能力に応じたオリフィスサイズであるが、このオリフィス(小孔)に限らず、内径の小さなチューブであっても可能である。
【0027】
そして、斯かる還流油をベンチュリ上部通路5dを経て還流油流入室5bへと強制的に戻し、再びベンチュリ本体5cの中央を通過させることで、無駄なく連続的に霧化するのが良い(図2参照)。
【0028】
また、サイトドーム室6aは、ベンチュリホルダ5aの頂面(上蓋)により還流油流入室5bと区分し、同頂面に複数個の油通路5a1 ,5a1 を設け、サイトドーム室6aに滴下する潤滑油は、斯かる油通路5a1 ,5a1 を経て還流油流入室5bに流下し、還流油と合流してベンチュリ本体5c内に流入、霧化される。
【0029】
その結果、定量油供給ライン13から供給された潤滑油は、噴霧潤滑装置Bの運転条件、又は油固有の霧化率等に関係なく100%霧化され、2次側へと吐出されるのである。
【0030】
従って、ベンチュリ機構5が正常に作動している限り、潤滑対象に送り込まれる潤滑油の絶対量は、定量油供給ポンプ12からの供給量に等しいことになる。
【0031】
因に、定量油供給ポンプ12の作動が正常であるか否かは、サイトドーム6内を滴下する油滴をセンサ(光センサ)等の常套手段により容易に監視できることは云うまでもない。
【0032】
更に、油通路5a1 ,5a1 は、下端側がベンチュリ本体5cの中心に向かうように傾斜させることにより、サイトドーム室6aに滴下する潤滑油が、斯かる油通路5a1 ,5a1 を経て還流油流入室5bに流下し、還流油と効率良く合流すべくベンチュリ本体5cの中心に案内される。
【0033】
また、一度、定量油供給ライン13を経てサイトドーム6内に供給された潤滑油は、前述のような循環通路(油還流ライン15、メタリングオリフィス16、ベンチュリ上部通路5d)により(加圧油槽8内に吸い上げる油がある限り)、霧化が連続的に行われるのである。
【0034】
換言すれば、圧縮空気がベンチュリ本体5c内を流れることで発生する差圧力を利用して、加圧油槽8の底部に貯留している油を油還流ライン15で強制的に吸い上げて還流油流入室5bに戻し、再度、ベンチュリ本体5cの中央を通過させる還流方式で、霧化が連続して行われることになり、加圧油槽内に貯留油がある限り、油霧を供給し続けることができ、従来法の如く油霧供給ポンプの作動頻度に対応した油霧の供給だけではなく、供給油霧量の増加を図ることができるのである。
【0035】
次に、微細な油霧のみを潤滑装置から吐出させて潤滑目的に噴霧する。前記油霧選別空間8a内では、微細な油霧だけが空気流によって潤滑装置の微細油霧吐出口14aから吐出され、潤滑目的へと供給される。
【0036】
更に、本発明方法では、加圧油槽の貯留油を大気圧油槽に戻す油返送手段を付加している。具体的には加圧油槽8の底部と大気圧油槽9とを油返送ポンプ30及び油返送ライン34,35を介して連通せしめている。油返送ポンプ30は、プランジャポンプ30aと、該ポンプ30aを駆動するための3ポート電磁弁30bとを備えてなるものであり、オリフィス31、逆止弁(チェックバルブ)32を介して空気供給ライン33とも連通されている。
【0037】
従って、定量油供給ポンプ12での供給油量が多い場合は、加圧油槽8の底部に貯留油10aが多くなるが、その際は、斯かる油返送ポンプ30の駆動で、大気圧油槽9に貯留油10aを返送することができる。
【0038】
また、加工条件により更に潤滑目的(例えば、刃具)への油量を低減したい場合は、サイトドーム6室内に空気供給ライン33を介して供給圧を導入することで、ベンチュリ機構5での油吸い上げの差圧を無くし、霧化を停止することができる。
【0039】
このように構成される本発明方法では、従来油霧量を変化させるためにポンプの滴下数を変えていたが、油霧の噴霧時間を変えることで油霧量を変えることができる。具体的には、切削加工が10秒間行われた場合で、油霧量を減少させたい場合は、5秒間油霧を流し、5秒間エアだけを流すことになる。
【0040】
反対に油霧量を増加させたい場合は、10秒間、油霧を流すことになるが油霧を流す時間とエアだけ流す時間のパターンは多種行えることは云うまでもない。尚、前記オリフィス31を可変にすることで、循環油量を可変することも可能である。
【0041】
また、加圧油槽8には、切削加工時に消費される以上の油量をレベルスイッチ18の信号で自動的に定量油供給ポンプ12を作動させて自動的に供給するものである。
【0042】
更に、切削加工では、例えば、小さな刃具(TOOL)、中間刃具、大きな刃具など種々なサイズがあるが、その刃具に応じたエア量と油霧量を供給する必要があり、そのために排気弁、バイパス弁を装備し対応している(図3参照)。
【0043】
具体的には、小さな刃具の場合、刃具内の油穴が小さくエアの通過流量が少ないため、ベンチュリ機構5での差圧が小さく油を油霧化できないため、排気弁(図示せず)をONし、エアを大気に放出しベンチュリ5の差圧を増やし油霧化を行う。
【0044】
逆に、大きな刃具の場合は、バイパス弁(図示せず)をONし、刃具側へ圧縮空気を供給する。中間の刃具は、排気弁(図示せず)をバイパス弁ともOFFし、ベンチュリ機構5のみを通過した圧縮空気で行うようにしている。
【0045】
以上のように、従来の潤滑霧化装置では、3パターンで対応しているが、本発明方法では、図3に示すように、排気弁とバイパス弁を共通化し、弁の固定方法、換言すれば、電磁弁の向きを変えることで排気弁2個だけの潤滑装置、バイパス弁2個の潤滑装置などに変更可能であり、より広範囲な刃具に一台のセミドライ潤滑装置で対応することができるのである。
【0046】
次に、本発明に係る工作機械等の切削加工における複合装置の実施の一例を図1〜図2を参照しながら説明する。図中Aは、本発明に係る切削加工の複合装置であり、この複合装置Aは、図1に示すように、空気を濾過及び圧力調整するフィルタ/レギュレータ1と、圧縮空気をオン/オフする2ポート電磁弁等の空気切換弁2と、該空気切換弁2の一方側の通路3に連通される油霧発生装置Bと、前記空気切換弁2の他方側の通路4に配設される定量油供給ポンプ12とを備えている。
【0047】
フィルタ/レギュレータ1は、前述したように、エアの濾過供給と圧力調整をなすもので、インポートから供給される清浄な圧力エアを、適宜圧力(MPa)に調圧するものである。
【0048】
油霧発生装置Bは、加圧油槽8の上位に取り付けられた油滴下監視用のサイトドーム6と、該サイトドーム6の下位に取り付けられたベンチュリ機構5と、前記加圧油槽8内の底部に取り付けられたレベルスイッチ18と、加圧油槽8の底部に溜まった油を、再度、前記ベンチュリ機構5に還流せしめる油還流ライン15とを備えている。
【0049】
また、前記ベンチュリ機構5は、図2に拡大して示すように、サイトドーム室6a内に連通する少なくとも一以上の油通路5a1 ,5a1 を有するベンチュリホルダ5aと、前記油通路5a1 ,5a1 に連通すべく同ベンチュリホルダ5a内に形成された還流油流入室5bと、該還流油流入室5bの下位に組み付けられたベンチュリ本体5cと、前記還流油流入室5bと油還流ライン15とを連通せしめるベンチュリ上部通路5dとを備えている。
【0050】
更に、前記定量油供給ポンプ12は、油槽9と連通されたプランジャポンプ12aと、空気切換弁2に連通された3ポート電磁弁12bとからなり、該3ポート電磁弁12bのオン/オフ操作による圧縮空気でプランジャポンプ12aを作動させ、油槽9から油用フィルタ11を介して清浄された定量の油10を吸い上げ、定量油供給ライン13を経てサイトドーム6に一定量の油を供給するものである。
【0051】
また、前記加圧油槽8には、レベルスイッチ18が付設されており、ベンチュリ機構5に自動的に油を供給することができる。
【0052】
更に、前記加圧油槽8の底部と大気圧油槽9とを油返送ポンプ30及び油返送ライン34,35を介して連通している。油返送ポンプ30は、プランジャポンプ30aと、該プランジャポンプ30aを駆動するための3ポート電磁弁30bとからなり、かつ、該電磁弁30bOUT側の圧縮空気を前記サイトドーム室6a内に連通せしめる空気供給ライン33を備えている。
【0053】
また、前記空気供給ライン33には、オリフィス31、逆止弁(チェックバルブ)32が介在されている。
【0054】
このように構成される本発明の複合装置は、ベンチュリ機構5で霧化される油は、前述したように、一度で全量が霧化されずに、一部は加圧油槽8の下部に貯留されるが、斯かる貯留油10aを油環流ライン15を介してベンチュリ機構5の吸引力で吸い上げ霧化することを繰り返し循環させること並びにレベルスイッチ18の信号により油槽9からベンチュリ機構5に自動的に油を供給することで、刃具への供給油量を最適化することができる。
【0055】
反対に、加工条件により更に刃具への油量を低減したい場合は、油返送ポンプ30を駆動させて加圧油槽8の底部より大気圧油槽9に油を戻し、かつ、ベンチュリ室6aに供給圧を導入することで、ベンチュリ機構5での油吸い上げの差圧を無くし霧化を停止することができる。
【0056】
従って、従来では油霧量を変化させるためにポンプの滴下数を変えていたが、本装置では、油霧の噴霧時間を変えることで油霧量を変えることができる。具体的には、切削加工が10秒間行われた場合で油霧量を減少させたい場合、5秒間油霧を流し、5秒間エアだけを流すことになる。油霧量を増加させたい場合は、10秒間、油霧を流すことになる。当然のことながら、油霧を流す時間とエアだけ流す時間のパターンは多種行えることとなる。尚、オリフィス31を可変にすることで、循環油量を可変することも可能である。
【0057】
また、 切削加工では、▲1▼小さな刃具(TOOL)、▲2▼中間刃具、▲3▼大きな刃具など種々なサイズがあるが、その刃具に応じたエア量と油霧量を供給する必要があり、そのために排気弁、バイパス弁を装備し対応している(図3参照)。
【0058】
具体的には、▲1▼小さな刃具の場合、刃具内の油穴が小さくエアの通過流量が少ないため、ベンチュリ機構5での差圧が小さく油を油霧化できないため、排気弁(図示せず)をONし、エアを大気に放出しベンチュリ機構5の差圧を増やし油霧化を行う。
【0059】
また、▲2▼中間の刃具の場合、排気弁(図示せず)をバイパス弁(図示せず)ともOFFし、ベンチュリ機構5のみを通過した圧縮空気で行うようにしており、▲3▼大きな刃具の場合は、バイパス弁をONし、刃具側へ圧縮空気を供給する。
【0060】
以上のように、従来までの潤滑装置では、この3パターン(▲1▼▲2▼▲3▼)で対応しているが、本発明の複合装置では、図3(C)に示すように、排気弁とバイパス弁を共通化し、弁の固定方法を変える(向きを変える)ことで排気弁2個だけの潤滑装置、バイパス弁2個の潤滑装置などに変更可能であり、より広範囲な刃具に一台のセミドライ潤滑装置で対応できるものである。
【0061】
尚、本発明に係る切削加工の複合装置Aは、本実施例に限定されることなく、本発明の目的の範囲内で自由に設計変更し得るものであり、本発明はそれらの全てを包摂するものである。
【0062】
また、油定量吐出ポンプ12から供給される油は、油還流ライン15と合流する前に(油のみで空気との混入が無い状態で)サイトドーム室6aで滴下するため、このサイトドーム6に滴下検出用センサ(図示せず)を設置することで、油定量吐出ポンプ12の作動を確認しても良い。
【0063】
【発明の効果】
本発明は上述のように構成され、圧縮空気がベンチュリ内を流れることで発生する差圧力を利用して、加圧油槽の底部に貯留している油を油還流ラインで強制的に吸い上げて還流油流入室に戻し、再度、ベンチュリの中央を通過させる還流方式で、霧化が連続して行われることにより、加圧油槽内に貯留油がある限り、油霧を供給し続けることができるため、刃具への供給油量を増加でき、また、油供給ポンプでの供給油量が多い場合、換言すれば、加工条件により更に刃具への油量を低減したい場合は、油返送ポンプの駆動で加圧油槽内の貯留油を大気圧油槽に返送し、かつ、サイトドーム室内に供給圧を導入することで、ベンチュリ機構での油吸い上げの差圧を無くし、霧化を停止させることができるといった優れた効果を奏するものである。
【0064】
このように本発明に係る切削加工方法及び切削加工の複合装置は、微量の油霧を単位時間当たり一定量を長期間に亘って供給し続けたり、ベンチュリ機構での油吸引用の差圧を無くして霧化を停止させることで(刃具の種類や加工条件に応じて)油量を増減することができるものであり、また、構成が単純であるため大量生産に適し、価格も低廉なものとして需要者に提供できるなど、本発明を実施することはその実益的価値が甚だ大である。
【図面の簡単な説明】
【図1】本発明に係る工作機械等の切削加工における複合装置の説明図である。
【図2】同の複合装置のベンチュリ機構部分を示す拡大図である。
【図3】図3(a)は排気弁が2個の場合、図3(b)はバイパス弁が2個の場合、図3(c)は通常の場合を示す説明図である。
【符号の説明】
A 切削加工複合装置
B 油霧発生装置
1 フィルタ・レギュレータ
2 2ポート電磁弁
3 通路
4 通路
5 ベンチュリ機構
5a べンチュリホルダ
5a1 油通路
5b 還流油流入室
5c ベンチュリ本体
5d ベンチュリ上部通路
6 サイトドーム
6a サイトドーム室
7 油霧衝突機構
8 加圧油槽
8a 油霧選別空間
9 油槽
10 潤滑油(オイル)
10a 貯留油
11 油濾過用フィルタ
12 定量油供給ポンプ
12a プランジャポンプ
12b 3ポート電磁弁
13 定量油供給ライン
14 油霧搬送ライン
14a 微細油霧吐出口
15 油還流ライン
16 メタリングオリフィス
17 配管
18 レベルスイッチ
19 エアバイパス調整ニードル
30 油返送ポンプ
30a プランジャポンプ
30b 3ポート電磁弁
31 オリフィス
32 逆止弁(チェックバルブ)
33 空気供給ライン
34 油返送ライン
35 油返送ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly used for cutting, grinding, drilling and the like of machine tools and the like, and is used for an atomizing device for semi-dry processing that prevents deterioration and seizure of the cutting surface, improves processing efficiency, and extends tool life. More specifically, with regard to the improvement of the cutting method, a small amount of oil mist is continuously supplied over a long period of time, or atomization is eliminated by eliminating the differential pressure for oil suction in the venturi mechanism. A useful cutting method that can increase or decrease the amount of oil according to the type of cutting tool and the processing conditions, and the composite device thereof, by stopping.
[0002]
[Prior art]
Conventionally, the atomizer for semi-dry processing has increased or decreased the generated oil mist by controlling the increase or decrease of the operation frequency of the oil supply pump for the amount of oil to be used for atomization. Furthermore, when increasing or decreasing the amount of oil, the amount of compressed air passing through the venturi (atomization mechanism) and the resulting differential pressure for suctioning the oil are determined. It is determined by the resistance on the size and length of the oil hole of the cutting tool used by the machine.
[0003]
In particular, in actual machining, even if it is a tentative tool and a cutting tool under the same conditions, it is necessary to increase or decrease the amount of oil in order to obtain an effective effect of semi-dry machining depending on the machining conditions.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional atomizer, when the oil mist is increased, the operation frequency of the oil supply pump is increased. However, there is a problem in that the operation frequency is increased due to the limitation due to the responsiveness and life of the three-port solenoid valve. And the amount of oil mist generated cannot be increased.
[0005]
Moreover, in the conventional atomizer (system), since the amount of compressed air set only by the oil hole of a blade is a basic factor, the amount of oil cannot be increased or decreased depending on the type of blade or processing conditions. Have
[0006]
The present invention has been made in view of such conventional problems, and continues to supply a small amount of oil mist over a long period of time or a differential pressure for oil suction in a venturi mechanism. It is an object of the present invention to provide a useful cutting method that can increase or decrease the amount of oil according to the type of cutting tool and the processing conditions by stopping atomization and a composite device thereof.
[0007]
[Means for Solving the Problems]
In order to solve the conventional problems as described above and achieve the intended purpose, the structure of the present invention includes an air switching valve having at least two ports for supplying compressed air after filtration and / or pressure adjustment. After bifurcating the downstream side, supplying one to the venturi mechanism and the other to the metering oil supply pump, and when the compressed air passes through the venturi mechanism, By the differential pressure between the pressure of the oil tank and the pressure on the pressurized oil tank A step of flowing into the pressurized oil tank, a step of dropping lubricating oil from the site dome chamber to the center of the venturi mechanism after the lubricating oil is supplied from the metered oil supply pump to the site dome via the metered oil supply line, and Mixing with compressed air flowing through the venturi mechanism to make oil atomized, and when spraying into the pressurized oil tank, the oil mist having a relatively large particle size is condensed and dripped at the lower part of the pressurized oil tank The oil mist flows into the oil mist sorting space, and while it is staying in this space, only the oil mist with large oil particles is lowered by its own weight and stored in the lower part of the pressurized oil tank, and the fine oil mist is added. In a cutting method such as a machine tool having a step of discharging from a pressure oil tank and spraying for the purpose of lubrication of a cutting tool or the like, oil stored in a lower part of the pressure oil tank is generated when the compressed air passes through the venturi mechanism. Do Pressurized oil tank Side pressure and sight dome Indoor By the pressure difference between the oil recirculation line opened at the bottom of the pressurized oil tank and continuously atomizing while forcibly returning to the reflux oil inflow chamber of the venturi mechanism, and the bottom of the pressurized oil tank The atmospheric pressure oil tank communicates with the oil return pump and the oil return line, and the OUT side of the air switching valve such as a 3-port solenoid valve for driving the oil return pump communicates with the site dome chamber via the air supply line. The step of returning the oil to the atmospheric oil tank by driving the oil return pump and the introduction of the supply pressure into the sight dome chamber eliminates the differential pressure of the oil suction in the venturi mechanism and stops the atomization. The present invention resides in a cutting method for a machine tool or the like characterized by having a process.
[0008]
In addition, the other compressed air branched downstream of the air switching valve is introduced into the 3-port solenoid valve for operating the plunger pump, and the plunger pump is operated by the compressed air generated by the on / off operation of the 3-port solenoid valve. After being operated, a step of sucking a fixed amount of oil cleaned from an oil tank with an oil filter provided in the oil tank, a step of feeding a certain amount of oil to the site dome chamber via a fixed oil supply line, and a site Separating the dome chamber from the reflux oil inflow chamber by the top surface of the venturi holder, and causing the lubricating oil dripped into the site dome chamber to flow down to the reflux oil inflow chamber via at least one oil passage on the top surface; And a step of joining the oil flowing down to the reflux oil inflow chamber and the reflux oil from the oil reflux line.
[0009]
On the other hand, a composite apparatus in cutting for carrying out this method includes an air switching valve having at least two ports for turning on / off compressed air after filtration and / or pressure adjustment, and a tributary on one side of the air switching valve. An oil mist generating device and a metering oil supply pump disposed in a branch on the other side of the air switching valve, and the oil mist generating device is disposed above the pressurized oil tank. An attached oil sight monitoring dome, a venturi mechanism attached below the sight dome, and an oil return line for returning the oil accumulated at the bottom of the pressurized oil tank to the venturi mechanism again. An oil return line that communicates between the bottom of the pressurized oil tank and the atmospheric pressure oil tank, an oil return pump interposed in the oil return line, and a three-port electromagnetic for driving the oil return pump. Valve empty A switching valve, is good and a air supply line allowed to communicate compressed air OUT side of the air switching valve to the site dome chamber.
[0010]
In addition, an orifice and a check valve may be interposed in the air supply line, and the venturi mechanism further includes a venturi holder having at least one oil passage communicating with the inside of the site dome chamber, and the oil passage. A reflux oil inflow chamber formed in the venturi holder for communication, a venturi main body assembled below the reflux oil inflow chamber, and a venturi upper passage for connecting the reflux oil inflow chamber and the oil return line. Good to have.
[0011]
Further, the metering oil supply pump is composed of a plunger pump communicated with the oil tank and a 3-port solenoid valve communicated with the air switching valve, and the plunger pump is operated by compressed air by ON / OFF operation of the 3-port solenoid valve. It is preferable that a fixed amount of oil is sucked up from the oil tank and cleaned with an oil filter provided in the oil tank, and a certain amount of oil is supplied to the sight dome through the fixed oil supply line.
[0012]
The cutting method of the machine tool and the like according to the present invention configured as described above and the combined machine for cutting work are stored at the bottom of the pressurized oil tank by utilizing the differential pressure generated by the flow of compressed air in the venturi body. Sucking up the oil (hereinafter simply referred to as “retained oil”) in the oil recirculation line, returning it to the recirculation oil inflow chamber, and passing it again through the center of the venturi body (there is reserving oil in the pressurized oil tank, and While the compressed air is supplied), the atomization is performed continuously.
[0013]
In other words, the oil atomized by the venturi mechanism is not atomized all at once, and a part of the oil is stored as oil in the lower part of the pressurized oil tank. This stored oil is ventilated via the oil circulation line. By repeatedly circulating the suction and atomization by the suction force of the mechanism, it is possible to reduce the frequency of operation of the oil supply pump, eliminating the limitations due to the responsiveness of the 3-port solenoid valve and the problem of life, and to the cutting tool Therefore, the amount of oil supplied can be increased.
[0014]
In addition, when the amount of oil supplied by the oil supply pump is large, the amount of stored oil increases at the bottom of the pressurized oil tank. However, if you want to reduce the amount of oil to the cutting tool further depending on the processing conditions, the oil from the bottom of the pressurized oil tank The oil return line communicates with the atmospheric pressure oil tank via the return pump, and the OUT side of the air switching valve (for example, a 3-port air solenoid valve) that drives the oil return pump is connected to the site dome chamber via the air supply line. Because it is connected, the oil return pump returns to the atmospheric pressure oil tank by driving the oil return pump, and the supply pressure is introduced into the sight dome chamber, eliminating the differential pressure of oil suction in the venturi mechanism and atomizing. Will be able to stop.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a cutting method for a machine tool or the like according to the present invention will be described in detail. First, after bifurcating the downstream side of an air switching valve with at least two ports that supply compressed air after filtration and / or pressure adjustment, one of them is supplied to the venturi mechanism and the other is supplied to the metering oil supply pump. To do.
[0016]
Specifically, as shown in FIGS. 1 and 2, the compressed air from the air source is allowed to pass through the filter / regulator 1 so that the air is filtered and the pressure is adjusted. The air switching valve 2 may be branched into two passages 3 and 4.
[0017]
Further, the filter / regulator 1 performs air filtration supply and pressure adjustment, and it goes without saying that clean pressure air supplied from the import is appropriately adjusted to a pressure (MPa).
[0018]
Next, when the compressed air passes through the venturi mechanism, Pressurized oil tank Side pressure and sight dome Indoor A pressure difference is generated between the pressure and the pressure oil tank. Specifically, the one passage 3 is directly communicated with the venturi mechanism 5 of the atomizing device, and the compressed air supplied from the passage 3 is passed through a narrow passage venturi body 5c described later. As a result of the increase of the air flow velocity, the pressure in the site dome chamber 6a is lowered.
[0019]
Next, the lubricating oil is supplied to the sight dome via a metered oil supply pump and a metered oil supply line, and then dropped from the sight dome chamber to the center of the venturi mechanism. In other words, the lubricating oil (oil) 10 in the oil tank 9 is supplied from the metered oil supply pump 12 to the site dome 6 via the metered oil supply line 13 and dropped from the top of the site dome 6 to the center of the venturi body 5c. It is good to let it.
[0020]
Examples of the metering oil supply pump include a plunger pump that operates with compressed air by an on / off operation of a three-port solenoid valve.
[0021]
In addition, when the plunger pump 12a is operated, the metered oil from the oil tank sucks only the oil 10 that has been cleaned through the oil filter 11 provided in the oil tank 9, and the pipe 17, the metered oil supply pump 12. It is good to systematize so that it can supply to the site dome 6 through the fixed quantity oil supply line 13.
[0022]
Next, the oil dripped in the sight dome chamber is mixed with the compressed air flowing through the venturi mechanism to denature it into an oil mist. It is important to mix efficiently with the compressed air flowing through the venturi body 5c, and it is preferable to spray the oil directly into the pressurized oil tank 8 as an oil mist.
[0023]
Next, the oil mist flows into the oil mist sorting space, and only the oil mist having large oil particles is lowered by its own weight while being retained in the space, and stored in the lower portion of the pressurized oil tank. Specifically, the oil mist is allowed to flow down into the oil mist sorting space 8a, and the oil mist having large oil particles is lowered by its own weight while being retained in the space 8a and stored in the lower portion of the pressurized oil tank 8.
[0024]
Next, the oil stored in the lower part of the pressurized oil tank is generated when the compressed air passes through the venturi mechanism. , Pressurized oil tank Side pressure and sight dome Indoor Is continuously atomized while forcibly returning from the oil reflux line opened at the bottom of the pressurized oil tank into the reflux oil inflow chamber of the venturi mechanism.
[0025]
For example, the oil 10a stored in the lower part of the pressurized oil tank 8 is fed into the oil reflux line 15, which is opened toward the bottom of the pressurized oil tank 8 due to the differential pressure generated when the compressed air flows through the venturi mechanism 5, It is preferable to suck up the ring orifice 16 and the venturi upper passage 5d in this order (reflux oil).
[0026]
The metering orifice 16 has an orifice size corresponding to the suction capability of the venturi 5, but is not limited to this orifice (small hole), and may be a tube having a small inner diameter.
[0027]
Then, the reflux oil is forcibly returned to the reflux oil inflow chamber 5b through the venturi upper passage 5d and again passed through the center of the venturi main body 5c, so that it can be continuously atomized without waste (see FIG. 2).
[0028]
The site dome chamber 6a is separated from the reflux oil inflow chamber 5b by the top surface (upper cover) of the venturi holder 5a, and a plurality of oil passages 5a are formed on the top surface. 1 , 5a 1 The lubricating oil dripping into the site dome chamber 6a is provided in the oil passage 5a. 1 , 5a 1 And then flows down to the reflux oil inflow chamber 5b, merges with the reflux oil, flows into the venturi body 5c, and is atomized.
[0029]
As a result, the lubricating oil supplied from the metering oil supply line 13 is atomized 100% regardless of the operating conditions of the spray lubrication device B or the atomization rate specific to the oil, and is discharged to the secondary side. is there.
[0030]
Therefore, as long as the venturi mechanism 5 is operating normally, the absolute amount of lubricating oil sent to the lubrication target is equal to the supply amount from the metering oil supply pump 12.
[0031]
Needless to say, whether the operation of the metering oil supply pump 12 is normal or not can be easily monitored by conventional means such as a sensor (light sensor).
[0032]
Furthermore, the oil passage 5a 1 , 5a 1 The lower end side is inclined so as to be directed toward the center of the venturi main body 5c, so that the lubricating oil dripping into the site dome chamber 6a is allowed to flow into the oil passage 5a. 1 , 5a 1 Then, it flows down to the reflux oil inflow chamber 5b and is guided to the center of the venturi main body 5c so as to efficiently join the reflux oil.
[0033]
Further, the lubricating oil once supplied into the sight dome 6 through the fixed amount oil supply line 13 is (pressure oil tank) through the circulation passages (oil return line 15, metering orifice 16, venturi upper passage 5d) as described above. As long as there is oil to be siphoned in 8), the atomization takes place continuously.
[0034]
In other words, the oil stored in the bottom of the pressurized oil tank 8 is forcibly sucked up by the oil recirculation line 15 using the differential pressure generated by the compressed air flowing in the venturi body 5c, and the recirculated oil flows in. Returning to the chamber 5b, the atomization is continuously performed in a reflux system that passes through the center of the venturi main body 5c again, and as long as there is stored oil in the pressurized oil tank, the oil mist can be continuously supplied. In addition to the supply of the oil mist corresponding to the operation frequency of the oil mist supply pump as in the conventional method, the amount of the supplied oil mist can be increased.
[0035]
Next, only fine oil mist is discharged from the lubricating device and sprayed for lubrication purposes. In the oil mist sorting space 8a, only the fine oil mist is discharged from the fine oil mist discharge port 14a of the lubricating device by the air flow and supplied for the purpose of lubrication.
[0036]
Furthermore, in the method of the present invention, an oil return means for returning the stored oil in the pressurized oil tank to the atmospheric pressure oil tank is added. Specifically, the bottom of the pressurized oil tank 8 and the atmospheric pressure oil tank 9 are communicated with each other via an oil return pump 30 and oil return lines 34 and 35. The oil return pump 30 includes a plunger pump 30a and a three-port solenoid valve 30b for driving the pump 30a. An air supply line is provided via an orifice 31 and a check valve (check valve) 32. 33 is also communicated.
[0037]
Therefore, when the amount of oil supplied from the metering oil supply pump 12 is large, the amount of stored oil 10a increases at the bottom of the pressurized oil tank 8. In this case, the oil return pump 30 is driven and the atmospheric pressure oil tank 9 is driven. The stored oil 10a can be returned.
[0038]
Further, when it is desired to further reduce the amount of oil for the purpose of lubrication (for example, a cutting tool) depending on the processing conditions, oil is sucked up by the venturi mechanism 5 by introducing supply pressure into the chamber of the site dome 6 via the air supply line 33. Thus, the atomization can be stopped.
[0039]
In the method of the present invention configured as described above, the number of drops of the pump is conventionally changed to change the amount of oil mist, but the amount of oil mist can be changed by changing the spray time of the oil mist. Specifically, when cutting is performed for 10 seconds and it is desired to reduce the amount of oil mist, the oil mist is allowed to flow for 5 seconds and only air is allowed to flow for 5 seconds.
[0040]
On the contrary, when it is desired to increase the amount of oil mist, oil mist is allowed to flow for 10 seconds, but it is needless to say that various patterns of time for flowing oil mist and time for flowing only air can be performed. Note that the amount of circulating oil can be varied by making the orifice 31 variable.
[0041]
The pressurized oil tank 8 is automatically supplied with the amount of oil that is consumed at the time of cutting by automatically operating the metering oil supply pump 12 in response to a signal from the level switch 18.
[0042]
Furthermore, in the cutting process, for example, there are various sizes such as a small cutting tool (TOOL), an intermediate cutting tool, a large cutting tool, and it is necessary to supply an air amount and an oil mist amount according to the cutting tool. It is equipped with a bypass valve (see Fig. 3).
[0043]
Specifically, in the case of a small cutting tool, since the oil hole in the cutting tool is small and the flow rate of air is small, the differential pressure in the venturi mechanism 5 is small and oil cannot be atomized. Turns ON, releases air to the atmosphere, increases the differential pressure of the venturi 5 and performs oil atomization.
[0044]
Conversely, in the case of a large cutting tool, a bypass valve (not shown) is turned on to supply compressed air to the cutting tool side. In the intermediate cutting tool, the exhaust valve (not shown) is turned off together with the bypass valve, and compressed air that has passed only through the venturi mechanism 5 is used.
[0045]
As described above, the conventional lubrication atomization apparatus supports three patterns. However, in the method of the present invention, as shown in FIG. 3, the exhaust valve and the bypass valve are shared, and the valve fixing method, in other words, For example, by changing the direction of the solenoid valve, it can be changed to a lubrication device with only two exhaust valves, a lubrication device with two bypass valves, etc., and a single semi-dry lubrication device can handle a wider range of cutting tools. It is.
[0046]
Next, an example of the implementation of the composite apparatus in the cutting process of a machine tool or the like according to the present invention will be described with reference to FIGS. In the drawing, A is a composite device for cutting according to the present invention. As shown in FIG. 1, this composite device A turns on / off compressed air and a filter / regulator 1 that filters and adjusts air pressure. The air switching valve 2 such as a two-port solenoid valve, the oil fog generator B communicated with the passage 3 on one side of the air switching valve 2, and the passage 4 on the other side of the air switching valve 2 are disposed. A metering oil supply pump 12 is provided.
[0047]
As described above, the filter / regulator 1 performs air filtration supply and pressure adjustment, and appropriately adjusts clean pressure air supplied from the import to a pressure (MPa).
[0048]
The oil fog generator B includes a site dome 6 for monitoring oil dripping attached to the upper part of the pressurized oil tank 8, a venturi mechanism 5 attached to the lower part of the site dome 6, and a bottom part in the pressurized oil tank 8. And an oil recirculation line 15 for recirculating the oil accumulated at the bottom of the pressurized oil tank 8 to the venturi mechanism 5 again.
[0049]
The venturi mechanism 5 includes at least one oil passage 5a communicating with the inside of the site dome chamber 6a as shown in an enlarged view in FIG. 1 , 5a 1 A venturi holder 5a having the oil passage 5a 1 , 5a 1 A recirculating oil inflow chamber 5b formed in the venturi holder 5a, a venturi main body 5c assembled under the recirculating oil inflow chamber 5b, the recirculating oil inflow chamber 5b, and the oil recirculation line 15. And a venturi upper passage 5d for communication.
[0050]
Further, the metering oil supply pump 12 comprises a plunger pump 12a communicated with the oil tank 9, and a 3-port solenoid valve 12b communicated with the air switching valve 2, and the three-port solenoid valve 12b is turned on / off. The plunger pump 12a is operated by compressed air, and a fixed amount of oil 10 is sucked from the oil tank 9 through the oil filter 11, and a fixed amount of oil is supplied to the site dome 6 through the fixed oil supply line 13. is there.
[0051]
The pressurized oil tank 8 is provided with a level switch 18 and can automatically supply oil to the venturi mechanism 5.
[0052]
Further, the bottom of the pressurized oil tank 8 and the atmospheric pressure oil tank 9 are communicated with each other via an oil return pump 30 and oil return lines 34 and 35. The oil return pump 30 includes a plunger pump 30a and a three-port electromagnetic valve 30b for driving the plunger pump 30a, and air that allows compressed air on the electromagnetic valve 30bOUT side to communicate with the sight dome chamber 6a. A supply line 33 is provided.
[0053]
Further, an orifice 31 and a check valve (check valve) 32 are interposed in the air supply line 33.
[0054]
In the composite apparatus of the present invention configured as described above, the oil atomized by the venturi mechanism 5 is not atomized all at once as described above, and a part of the oil is stored in the lower part of the pressurized oil tank 8. However, it is repeatedly circulated that the stored oil 10a is sucked and atomized by the suction force of the venturi mechanism 5 through the oil circulation line 15 and the level switch. 18 By automatically supplying oil from the oil tank 9 to the venturi mechanism 5 in response to the signal, the amount of oil supplied to the cutting tool can be reduced. optimisation can do.
[0055]
Conversely, when it is desired to further reduce the amount of oil to the cutting tool depending on the processing conditions, the oil return pump 30 is driven to return the oil from the bottom of the pressurized oil tank 8 to the atmospheric pressure oil tank 9, and the supply pressure to the venturi chamber 6a. By introducing, the differential pressure of the oil suction in the venturi mechanism 5 can be eliminated and the atomization can be stopped.
[0056]
Therefore, conventionally, the number of drops of the pump is changed to change the amount of oil mist, but in this apparatus, the amount of oil mist can be changed by changing the spray time of oil mist. Specifically, when cutting is performed for 10 seconds and it is desired to reduce the amount of oil mist, the oil mist is caused to flow for 5 seconds and only air is allowed to flow for 5 seconds. When it is desired to increase the amount of oil mist, the oil mist is allowed to flow for 10 seconds. As a matter of course, various patterns of the time for flowing the oil mist and the time for flowing only the air can be performed. Note that the amount of circulating oil can be varied by making the orifice 31 variable.
[0057]
In cutting, there are various sizes such as (1) small cutting tool (TOOL), (2) intermediate cutting tool, and (3) large cutting tool, but it is necessary to supply the amount of air and oil mist according to the cutting tool. For this purpose, an exhaust valve and a bypass valve are provided for this purpose (see FIG. 3).
[0058]
Specifically, (1) in the case of a small cutting tool, since the oil hole in the cutting tool is small and the flow rate of air is small, the differential pressure in the venturi mechanism 5 is small and oil cannot be atomized. ON), air is discharged to the atmosphere, the pressure difference of the venturi mechanism 5 is increased, and oil atomization is performed.
[0059]
Further, in the case of (2) intermediate cutting tool, the exhaust valve (not shown) is also turned off with the bypass valve (not shown), and the operation is performed with compressed air that has passed only through the venturi mechanism 5, and (3) large. In the case of a blade, the bypass valve is turned on and compressed air is supplied to the blade.
[0060]
As described above, the conventional lubrication apparatus corresponds to these three patterns ((1), (2), (3)), but in the composite apparatus of the present invention, as shown in FIG. By using a common exhaust valve and bypass valve and changing the valve fixing method (changing the direction), it can be changed to a lubrication device with only two exhaust valves or a lubrication device with two bypass valves. One semi-dry lubricator can be used.
[0061]
The cutting composite apparatus A according to the present invention is not limited to this embodiment, and can be freely designed and modified within the scope of the object of the present invention. The present invention includes all of them. To do.
[0062]
In addition, the oil supplied from the oil metering discharge pump 12 is dropped in the site dome chamber 6a before joining the oil recirculation line 15 (in a state where only oil is mixed with air). The operation of the oil metering discharge pump 12 may be confirmed by installing a drip detection sensor (not shown).
[0063]
【The invention's effect】
The present invention is configured as described above, and uses the differential pressure generated when compressed air flows in the venturi to forcibly suck up the oil stored in the bottom of the pressurized oil tank through the oil reflux line and return it. By returning to the oil inflow chamber and again passing through the center of the venturi, the atomization is continuously performed, so that the oil mist can continue to be supplied as long as there is stored oil in the pressurized oil tank. If the amount of oil supplied to the cutting tool can be increased and the amount of oil supplied by the oil supply pump is large, in other words, if it is desired to further reduce the amount of oil to the cutting tool depending on the processing conditions, drive the oil return pump. By returning the stored oil in the pressurized oil tank to the atmospheric pressure oil tank and introducing the supply pressure into the site dome chamber, the differential pressure of oil suction in the venturi mechanism can be eliminated and atomization can be stopped. It has an excellent effect That.
[0064]
As described above, the cutting method and the combined machine for cutting according to the present invention continuously supply a small amount of oil mist over a long period of time or a differential pressure for oil suction by the venturi mechanism. It is possible to increase or decrease the amount of oil (depending on the type of cutting tool and processing conditions) by eliminating the atomization without using it, and the simple structure is suitable for mass production and is inexpensive. The practical value of implementing the present invention is extremely large.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a composite apparatus in cutting processing of a machine tool or the like according to the present invention.
FIG. 2 is an enlarged view showing a venturi mechanism portion of the composite apparatus.
FIG. 3 (a) is an explanatory view showing a case where there are two exhaust valves, FIG. 3 (b) is a case where there are two bypass valves, and FIG. 3 (c) is an explanatory view showing a normal case.
[Explanation of symbols]
A Cutting complex device
B Oil fog generator
1 Filter / Regulator
2 2-port solenoid valve
3 passage
4 passage
5 Venturi mechanism
5a Venturi holder
5a 1 Oil passage
5b Reflux oil inflow chamber
5c Venturi body
5d Venturi upper passage
6 Site Dome
6a Site dome room
7 Oil fog collision mechanism
8 Pressurized oil tank
8a Oil mist sorting space
9 Oil tank
10 Lubricating oil
10a Oil storage
11 Oil filter
12 Metering oil supply pump
12a Plunger pump
12b 3 port solenoid valve
13 Metering oil supply line
14 Oil fog transport line
14a Fine oil mist outlet
15 Oil reflux line
16 Metering orifice
17 Piping
18 Level switch
19 Air bypass adjustment needle
30 Oil return pump
30a Plunger pump
30b 3 port solenoid valve
31 Orifice
32 Check valve
33 Air supply line
34 Oil return line
35 Oil return line

Claims (6)

濾過及び/又は圧力調整後の圧縮空気を供給する少なくとも2ポート以上の空気切換弁の下流側を二つに分岐した後、その一方をベンチュリ機構に、他方を定量油供給ポンプにそれぞれ供給する工程と、
圧縮空気がベンチュリ機構を通過する際に、サイトドーム室内の圧力と加圧油槽側の圧力との差圧によって加圧油槽に流入する工程と、
潤滑油が定量油供給ポンプから定量油供給ラインを経てサイトドームに供給された後、サイトドーム室からベンチュリ機構の中心部に滴下する工程と、
斯かる滴下油をベンチュリ機構を流れる圧縮空気と混合させて油霧化する工程と、
加圧油槽内へ噴霧される際に、比較的粒径の大きな油霧が凝結されて加圧油槽の下部に滴下する工程と、
油霧が油霧選別空間に流入し、この空間内に滞留中に油粒の大きな油霧のみを自重で降下させて加圧油槽の下部に貯留する工程と、
微細な油霧を加圧油槽から吐出させて刃具等の潤滑目的に噴霧する工程とを有する工作機械等の切削加工方法において、
加圧油槽の下部に貯留する油を、圧縮空気が前記ベンチュリ機構を通過する際に発生する加圧油槽側の圧力とサイトドーム室内の圧力との差圧により、加圧油槽の底部に開口した油還流ラインから前記ベンチュリ機構の還流油流入室内に強制的に戻しながら連続的に霧化する工程と、
加圧油槽の底部と大気圧油槽とを油返送ポンプ及び油返送ラインを介して連通すると共に、前記油返送ポンプを駆動する3ポート電磁弁等の空気切替弁のOUT側を空気供給ラインを介して前記サイトドーム室内に連通し、前記油返送ポンプの駆動で大気圧油槽に油を返送する工程と、
サイトドーム室内に供給圧を導入することで、ベンチュリ機構での油吸上げの差圧を無くして霧化を停止する工程と、
を有することを特徴とする工作機械等の切削加工方法。
A step of bifurcating the downstream side of an air switching valve having at least two ports for supplying compressed air after filtration and / or pressure adjustment, and supplying one to a venturi mechanism and the other to a metering oil supply pump When,
When compressed air passes through the venturi mechanism, the step of flowing into the pressurized oil tank by the differential pressure between the pressure in the sight dome chamber and the pressure oil tank;
After the lubricating oil is supplied from the metered oil supply pump to the site dome via the metered oil supply line, the step of dropping from the site dome chamber to the center of the venturi mechanism;
Mixing such dripped oil with compressed air flowing through the venturi mechanism to atomize the oil;
When sprayed into the pressurized oil tank, a process in which an oil mist having a relatively large particle size is condensed and dripped at the lower part of the pressurized oil tank;
Oil mist flows into the oil mist sorting space, and during the stay in this space, only the oil mist with large oil particles is lowered by its own weight and stored in the lower part of the pressurized oil tank,
In a cutting method such as a machine tool having a step of discharging a fine oil mist from a pressurized oil tank and spraying it for the purpose of lubrication of a blade or the like,
The oil stored in the lower part of the pressurized oil tank is opened at the bottom of the pressurized oil tank due to the differential pressure between the pressure on the pressurized oil tank side generated when compressed air passes through the venturi mechanism and the pressure in the sight dome chamber . Continuously atomizing while forcibly returning from the oil reflux line to the reflux oil inflow chamber of the venturi mechanism;
The bottom of the pressurized oil tank and the atmospheric pressure oil tank are communicated via an oil return pump and an oil return line, and the OUT side of an air switching valve such as a 3-port solenoid valve that drives the oil return pump is connected via an air supply line. Communicating with the site dome chamber and returning the oil to the atmospheric pressure oil tank by driving the oil return pump;
By introducing the supply pressure into the site dome chamber, the step of stopping atomization by eliminating the differential pressure of oil suction in the venturi mechanism,
A cutting method for a machine tool or the like, comprising:
空気切換弁の下流側で分岐した他方の圧縮空気を、プランジャポンプ作動用の3ポート電磁弁に導入し、3ポート電磁弁のオン/オフ操作による圧縮空気でプランジャポンプを作動させた後、油槽から油槽内に設けられた油用フィルタで清浄された定量の油を吸い上げる工程と、定量油供給ラインを経てサイトドーム室に一定量の油を送給する工程と、サイトドーム室をベンチュリホルダの頂面により還流油流入室と区分せしめ、かつ、同頂面に少なくとも一以上の油通路を介してサイトドーム室に滴下する潤滑油を還流油流入室に流下させる工程と、還流油流入室に流下する油と油還流ラインからの還流油とを合流させる工程とを有する請求項1に記載の工作機械等の切削加工方法。The other compressed air branched on the downstream side of the air switching valve is introduced into the 3-port solenoid valve for operating the plunger pump, and the plunger pump is operated with the compressed air by the on / off operation of the 3-port solenoid valve. A step of sucking a fixed amount of oil cleaned by an oil filter provided in the oil tank, a step of supplying a certain amount of oil to the sight dome chamber via a quantified oil supply line, and a site dome chamber of the venturi holder. A step of separating the lubricant oil from the reflux oil inflow chamber by the top surface and flowing down the lubricant oil dripping into the site dome chamber through the at least one oil passage on the top surface into the reflux oil inflow chamber; The cutting method for a machine tool or the like according to claim 1, further comprising a step of joining the oil flowing down and the reflux oil from the oil reflux line. 濾過及び/又は圧力調整後の圧縮空気をオン/オフする少なくとも2ポート以上の空気切換弁と、該空気切換弁の一方側の支流に配設される油霧発生装置と、同空気切換弁の他方側の支流に配設される定量油供給ポンプとを備えてなり、かつ、前記油霧発生装置は、加圧油槽の上位に取り付けられた油滴下監視用のサイトドームと、該サイトドームの下位に取り付けられたベンチュリ機構と、前記加圧油槽の底部に溜まった油を、再度、前記ベンチュリ機構に還流せしめる油還流ラインとを備えてなり、かつ、前記加圧油槽の底部と大気圧油槽とを連通する油返送ラインと、該油返送ラインに介在された油返送ポンプと、該油返送ポンプを駆動するための3ポート電磁弁等の空気切替弁と、該空気切替弁のOUT側の圧縮空気を前記サイトドーム室内に連通せしめる空気供給ラインとを備えてなることを特徴とする工作機械等の切削加工における複合装置。An air switching valve having at least two ports for turning on / off the compressed air after filtration and / or pressure adjustment, an oil fog generating device disposed in a branch on one side of the air switching valve, The oil mist generating device is provided with a fixed oil supply pump disposed in a branch on the other side; A venturi mechanism attached at a lower level, and an oil return line for returning the oil accumulated at the bottom of the pressurized oil tank to the venturi mechanism again, and the bottom of the pressurized oil tank and the atmospheric pressure oil tank An oil return line communicating with the oil return line, an oil return pump interposed in the oil return line, an air switching valve such as a three-port solenoid valve for driving the oil return pump, and an OUT side of the air switching valve Compressed air Composite device in cutting such a machine tool, characterized by comprising an air supply line allowed to communicate with the beam chamber. 前記空気供給ラインには、オリフィス、逆止弁が介在されることを特徴とする請求項3に記載の工作機械等の切削加工における複合装置。The composite apparatus in cutting processing of a machine tool or the like according to claim 3, wherein an orifice and a check valve are interposed in the air supply line. 前記ベンチュリ機構は、サイトドーム室内に連通する少なくとも一以上の油通路を有するベンチュリホルダと、前記油通路に連通すべく同ベンチュリホルダ内に形成された還流油流入室と、該還流油流入室の下位に組み付けられたベンチュリ本体と、前記還流油流入室と油還流ラインとを連通せしめるベンチュリ上部通路とを備えてなることを特徴とする請求項3に記載の工作機械等の切削加工における複合装置。The venturi mechanism includes a venturi holder having at least one oil passage communicating with the site dome chamber, a reflux oil inflow chamber formed in the venturi holder so as to communicate with the oil passage, and the reflux oil inflow chamber. The compound apparatus in the cutting process of a machine tool or the like according to claim 3, comprising a venturi main body assembled at a lower level, and a venturi upper passage for communicating the reflux oil inflow chamber and the oil reflux line. . 前記定量油供給ポンプは、油槽と連通されたプランジャポンプと、空気切換弁に連通された3ポート電磁弁とからなり、該3ポート電磁弁のオン/オフ操作による圧縮空気でプランジャポンプを作動させ、油槽から油槽内に設けられた油用フィルタで清浄された定量の油を吸い上げ、定量油供給ラインを経てサイトドームに一定量の油を供給することを特徴とする請求項3に記載の工作機械等の切削加工における複合装置。The metering oil supply pump includes a plunger pump communicated with an oil tank and a 3-port solenoid valve communicated with an air switching valve. The plunger pump is operated by compressed air by ON / OFF operation of the 3-port solenoid valve. 4. A machine tool according to claim 3, wherein a fixed amount of oil cleaned by an oil filter provided in the oil tank is sucked up from the oil tank and a fixed amount of oil is supplied to the sight dome through a fixed oil supply line. A compound device for cutting machines.
JP2001076975A 2001-03-16 2001-03-16 Cutting method for machine tools, etc., and their combined equipment Expired - Lifetime JP4791642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076975A JP4791642B2 (en) 2001-03-16 2001-03-16 Cutting method for machine tools, etc., and their combined equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076975A JP4791642B2 (en) 2001-03-16 2001-03-16 Cutting method for machine tools, etc., and their combined equipment

Publications (2)

Publication Number Publication Date
JP2002273641A JP2002273641A (en) 2002-09-25
JP4791642B2 true JP4791642B2 (en) 2011-10-12

Family

ID=18933808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076975A Expired - Lifetime JP4791642B2 (en) 2001-03-16 2001-03-16 Cutting method for machine tools, etc., and their combined equipment

Country Status (1)

Country Link
JP (1) JP4791642B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349642A1 (en) * 2003-10-21 2005-05-19 Bielomatik Leuze Gmbh + Co Kg Device for aerosol generation and injector unit
JP2005144565A (en) * 2003-11-11 2005-06-09 Makino J Kk Deep hole processing method and device
JP4619009B2 (en) * 2004-02-10 2011-01-26 株式会社安永 Oil mist generator
CN105834826B (en) * 2016-04-26 2017-10-20 江苏大学 A kind of lubricating system with trace amount device
JP7304217B2 (en) * 2019-06-21 2023-07-06 オークマ株式会社 Cutting fluid supply and recovery device in the spindle of a machine tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490649B2 (en) * 1999-09-10 2004-01-26 タコ株式会社 Circulation type fixed discharge spray lubrication method and its fixed discharge spray lubrication system

Also Published As

Publication number Publication date
JP2002273641A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
US5086878A (en) Tool and workplace lubrication system having a modified air line lubricator to create and to start the delivery of a uniformly flowing pressurized air flow with oil, to deliver the oil continuously and uniformly where a metal part is being formed
CN207080795U (en) Micro lubricating mist of oil supply system for machining
KR20070051918A (en) Mist generation device
CN106885122A (en) For the micro lubricating mist of oil supply system being machined
CN109731705A (en) A kind of minimum quantity lubrication device and its application method
JP4791642B2 (en) Cutting method for machine tools, etc., and their combined equipment
US20090301960A1 (en) System for Filtering a Liquid
CN205402199U (en) Atomized lubrication ware system
JP3335145B2 (en) Trace oil supply unit
CN1107190C (en) Device to produce fine oil mist
JP4986352B2 (en) Oil mist supply system
US20020084146A1 (en) Method of atomizing lubricant at a constant rate in lubricant atomizer and circulating type of constant-rated lubricant atomizer
EP2006597B1 (en) Mist feeder
CN106838590A (en) High-pressure pneumatic pulse micro lubricant mist supply system
US5725071A (en) Machine cutting tool selective lubricator with air blow-off
JP3490649B2 (en) Circulation type fixed discharge spray lubrication method and its fixed discharge spray lubrication system
CN100376315C (en) Oil film water drop generating and mixing device
CN209779200U (en) Automatic lubricating device for rotating shuttle of embroidery machine
CN111022899B (en) Micro-lubricating oil mist supply system
CN2243349Y (en) Adjustable oil sprayer
JP2580280Y2 (en) Spray refueling device
KR20200012139A (en) Oil mist air supply device
CN1583284A (en) Spraying method with controllable spraying amount
JP2561219Y2 (en) Refueling device
JPH07222942A (en) Liquid spraying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term