JP4790231B2 - Skin analysis method - Google Patents

Skin analysis method Download PDF

Info

Publication number
JP4790231B2
JP4790231B2 JP2004179813A JP2004179813A JP4790231B2 JP 4790231 B2 JP4790231 B2 JP 4790231B2 JP 2004179813 A JP2004179813 A JP 2004179813A JP 2004179813 A JP2004179813 A JP 2004179813A JP 4790231 B2 JP4790231 B2 JP 4790231B2
Authority
JP
Japan
Prior art keywords
skin
area
thickness
interference signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004179813A
Other languages
Japanese (ja)
Other versions
JP2006000385A (en
Inventor
哲也 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004179813A priority Critical patent/JP4790231B2/en
Publication of JP2006000385A publication Critical patent/JP2006000385A/en
Application granted granted Critical
Publication of JP4790231B2 publication Critical patent/JP4790231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

本発明は、低干渉光干渉計測法による表皮の解析方法に関する。   The present invention relates to a method for analyzing an epidermis by a low interference light interferometry method.

皮膚は、表面から順に表皮(約100〜200μm)、真皮(約2m)および皮下組織からなる。このうち表皮は約20μm厚の角層を含み、外界の影響や病態によって形態や見え方が異なる。そのため、表皮の形態は、肌の評価の一指標として使用されており、正確に計測することが必要とされている。 Skin epidermis (approximately 100-200 [mu] m) from the surface in order, consists of the dermis (about 2 m m) and subcutaneous tissues. Of these, the epidermis includes a stratum corneum having a thickness of about 20 μm, and the form and appearance differ depending on the influence of the outside world and the pathological condition. Therefore, the form of the epidermis is used as an index of skin evaluation, and it is necessary to measure it accurately.

一方、生体や物体の内部構造を無侵襲に解析する手法の一つに、可視又は近赤外領域の低コヒーレンス光を使用して試料からの反射光や散乱光の干渉計測を行い、試料の内部構造を解析する低干渉光干渉計測法(low coherence reflectometry)を測定原理とする光干渉断層撮影法(optical coherence tomography,以下OCTと略する)があり、近年、生体あるいは物体の内部構造の新たな解析手法として注目され、皮膚の測定にも利用できるように改良が進められている(特許文献1)。   On the other hand, as one of the techniques for non-invasive analysis of the internal structure of a living body or an object, interference measurement of reflected light or scattered light from the sample is performed using low coherence light in the visible or near infrared region. There is an optical coherence tomography (hereinafter abbreviated as OCT) based on the principle of low coherence reflectometry for analyzing internal structures. Has been attracting attention as a novel analysis technique and has been improved so that it can be used for skin measurement (Patent Document 1).

図14は、OCTの測定原理の説明図である。このOCT計測装置1は、波長1300nm〜1550nmの低コヒーレンス光を発する低干渉性光源2から発せられた光を光ファイバー3で導光し、カプラー4で光量を1:1に分岐し、光ファイバー3の先端のプローブ5、6をそれぞれ試料Sと参照鏡7とに当接させ、光を入射させる。ここで、参照鏡7は、試料Sの深さ方向zに移動するようになっている。試料Sからの反射光と参照鏡7からの反射光とは、それぞれプローブ5、6で受光され、分析器8に送られ、それらを合わせた反射強度が測定される。ここで、試料Sからの反射光と参照鏡7からの反射光との光路差がゼロの場合、分析器8には双方の反射光の干渉により反射強度にピーク(干渉信号)が観測される。したがって、空気の屈折率をn* と表すと、試料S内には、干渉信号が観察されたときの参照鏡7の移動距離zに対応する光学的深さn*zの位置に反射界面が存在すること、即ち、試料Sは、この光学的深さn*zの位置を界面として光学的性質の異なる2つの層を有していることがわかる。このOCT計測によれば、試料表面から深さ20μm程度から深さ数100μmまでの広い領域が測定可能となる。 FIG. 14 is an explanatory diagram of the OCT measurement principle. The OCT measurement apparatus 1 guides light emitted from a low-coherence light source 2 that emits low-coherence light having a wavelength of 1300 nm to 1550 nm through an optical fiber 3, branches the light amount into 1: 1 by a coupler 4, and The probes 5 and 6 at the tip are brought into contact with the sample S and the reference mirror 7 respectively, and light is incident thereon. Here, the reference mirror 7 moves in the depth direction z of the sample S. The reflected light from the sample S and the reflected light from the reference mirror 7 are received by the probes 5 and 6, respectively, sent to the analyzer 8, and the combined reflection intensity is measured. Here, when the optical path difference between the reflected light from the sample S and the reflected light from the reference mirror 7 is zero, a peak (interference signal) is observed in the reflection intensity in the analyzer 8 due to interference of both reflected lights. . Accordingly, when the refractive index of air and n *, the the sample S, reflective interface to the position of the optical depth n * z corresponding to the moving distance z of the reference mirror 7 when the interfering signal is observed It can be seen that the sample S has two layers having different optical properties with the position of the optical depth n * z as an interface. According to this OCT measurement, it is possible to measure a wide region from the sample surface to a depth of about 20 μm to a depth of several hundred μm.

また、OCT計測において、ある干渉信号が観察された場合に、その干渉信号の強度は、干渉信号が基づく層の光散乱強度に応じて、深さ方向zの増大に伴い、急激に減衰する。したがって、OCT計測によれば、干渉信号のピーク形状から、試料S内部の層の光散乱強度を知ることができる。即ち、分析器8で計測される干渉信号の光学厚みn*zと、その強度(反射率[dB])のプロファイルは、理論的には次式(1)で表される。 Further, when an interference signal is observed in the OCT measurement, the intensity of the interference signal rapidly attenuates as the depth direction z increases according to the light scattering intensity of the layer on which the interference signal is based. Therefore, according to the OCT measurement, the light scattering intensity of the layer inside the sample S can be known from the peak shape of the interference signal. That is, the profile of the optical thickness n * z of the interference signal measured by the analyzer 8 and its intensity (reflectance [dB]) is theoretically expressed by the following equation (1).

Figure 0004790231
Figure 0004790231

(式中、Iz:後方散乱の強度
i:入射光の強度
σb:媒体固有の後方散乱係数
σt:媒体固有の減衰係数
*s:光学厚み
k :計測条件で定まる比例定数)
(Wherein, Iz: intensity of backscattering I i: intensity of incident light sigma b: medium-specific backscattering coefficient sigma t: medium-specific attenuation coefficient n * Z s: Optical Thickness k: proportionality constant determined by the measurement conditions)

そこで、図15に示すように、光散乱強度の低い層S-1と光散乱強度の高い層S-2が積層している試料SをOCT計測すると、計測される干渉信号の光学厚みn*zと強度(反射率[dB])のプロファイルは、同図に模式的に示すように、2つのピークp1 、p2 を有するものとなる。ピークp1 は、プローブ5と光散乱強度の低い層S-1との界面反射により光学厚みn*z1 において観測されるピークであり、その光散乱強度は光の進行に伴い緩やかに減衰する。また、ピークp2 は、さらに光が深く進行した光学厚みn*z2 において、光散乱強度の低い層S-1と光散乱強度の高い層S-2との界面反射により観察されるピークであり、その光散乱強度は光の進行に伴い急激に減少する。 Therefore, as shown in FIG. 15, when the sample S in which the layer S-1 having a low light scattering intensity and the layer S-2 having a high light scattering intensity are stacked is subjected to OCT measurement, the optical thickness n * of the interference signal to be measured is measured . The profile of z and intensity (reflectance [dB]) has two peaks p1 and p2, as schematically shown in FIG. Peak p1 is the peak observed in the optical thickness n * z 1 by interfacial reflection between the lower layer S-1 of the probe 5 and the light scattering intensity, the light scattering intensity is gradually attenuated with progress of the light. The peak p2 further in the optical thickness n * z 2 where the light has progressed deeply, be a peak observed by interfacial reflection between the light lower layer of scattering intensity S-1 and high light scattering intensities layer S-2 The light scattering intensity decreases rapidly with the progress of light.

図16は、実際にヒトの皮膚(45歳、女性、右上腕内側)をOCT計測することにより得られた干渉信号の光学厚みn*zと強度(反射率[dB])のプロファイルであり、図17は、被験者の皮膚(頬)上に複数の干渉計を列設することにより皮膚の所定範囲を同時に計測できるようにし、得られた干渉信号を明度に変換することにより計測データを画像化したOCT像であり、干渉信号が強い(反射率が高い)部位は明るく、干渉信号が弱い(反射率が低い)部位は暗く表されている。図18は手の平のOCT像である。 FIG. 16 is a profile of the optical thickness n * z and intensity (reflectance [dB]) of an interference signal obtained by actually performing OCT measurement on human skin (45 years old, female, inner right upper arm). FIG. 17 shows that a predetermined range of skin can be measured simultaneously by arranging a plurality of interferometers on the subject's skin (cheek), and measurement data is imaged by converting the obtained interference signal into lightness. In the OCT image, the site where the interference signal is strong (high reflectance) is bright and the site where the interference signal is weak (low reflectance) is dark. FIG. 18 is an OCT image of the palm.

図14で説明したように、互いに接する2つの層の屈折率あるいは光散乱強度が異なる場合にOCTの計測データにピークが現れるから、図16に観察される2つのピークのうち、光学厚み0μm程度で急激に立ち上がり、徐々に減衰しているピークには、センサー先端と皮膚表面との界面によるピークと、光学厚み20μm程度にある角層と顆粒層との境界によるピークが含まれ、ここに角層と顆粒層の境界があることは、組織解剖学的にもH/E染色により淡明層として確認されている。また、光学厚み100μm程度で立ち上がり、徐々に減衰しているピークは、表皮と真皮との境界によるものと考えられている。   As described with reference to FIG. 14, when the refractive index or light scattering intensity of the two layers in contact with each other is different, a peak appears in the OCT measurement data. Of the two peaks observed in FIG. 16, the optical thickness is about 0 μm. The peak that suddenly rises and gradually attenuates includes the peak due to the interface between the sensor tip and the skin surface, and the peak due to the boundary between the stratum corneum and the granular layer having an optical thickness of about 20 μm. The presence of a boundary between the layer and the granule layer is confirmed as a light layer by H / E staining in terms of histoanatomy. Further, it is considered that the peak rising at an optical thickness of about 100 μm and gradually attenuated is due to the boundary between the epidermis and the dermis.

図16のピークは図17、図18の画像の明領域に対応するから、角層は、図18に示すように、明度が皮膚表面A1から中間明度領域A2 、暗領域A3 と単調減少した後、最初に高くなった明領域A4 の手前までであり、表皮は、図17に示すように、角層よりも深部領域で深さ方向に中間明度領域A5 、暗領域A6 、明領域A7 、暗領域A8が順次観察される場合に、明領域A7 の手前までであると考えられている。したがって、図17の暗領域A6 は表皮組織であると考えられている。なお、同図において、ラインL1 はプローブを構成するガラスであり、ラインL1 と皮膚表面A1との間は、計測時に皮膚表面に塗布したジェルである。   Since the peak in FIG. 16 corresponds to the bright region of the images in FIGS. 17 and 18, the stratum corneum is monotonically decreased from the skin surface A1 to the intermediate brightness region A2 and the dark region A3 as shown in FIG. As shown in FIG. 17, the epidermis is deeper than the stratum corneum in the depth direction in the depth direction, as shown in FIG. 17, the intermediate brightness area A5, dark area A6, bright area A7, dark When the area A8 is observed sequentially, it is considered to be before the bright area A7. Accordingly, the dark region A6 in FIG. 17 is considered to be epidermal tissue. In the figure, line L1 is a glass constituting the probe, and between line L1 and skin surface A1 is a gel applied to the skin surface during measurement.

特許3414173号公報Japanese Patent No. 3414173

しかしながら、本発明者は、OCT計測で得られた皮膚の観察結果を共焦点レーザー顕微鏡等で検証することにより、図17に観察される暗領域A6 には、真皮組織に存在する真皮乳頭があること、したがって、この暗領域A6 は表皮組織ではなく真皮組織であること、よって従来のOCT計測の解析手法では皮膚の表皮、真皮といった層構造を正確に解析できないことを見出した。   However, the present inventor verifies the observation result of the skin obtained by the OCT measurement with a confocal laser microscope or the like, so that there is a dermal papilla present in the dermal tissue in the dark region A6 observed in FIG. Therefore, it has been found that this dark region A6 is not the epidermal tissue but the dermal tissue, and therefore the conventional OCT measurement analysis method cannot accurately analyze the layer structure of the skin epidermis and dermis.

なお、従来よりOCT計測による皮膚の層構造の解析結果と、ヒトから採取した皮膚組織の顕微鏡観察とを対応させることはなされていたが、観察されたヒトの皮膚組織の多くは、皮膚に病変部を有する患者の組織であるか、死亡した乳児や老人から採取した組織であり、さらに採取後ホルマリンに浸漬保存されていたものであったため、表皮は肥厚していたり、角層が折れ曲がったり、膨潤あるいは収縮している。したがって、これらの観察から生きた組織の正確なデータを得ることはできなかったと考えられる。   Conventionally, the analysis result of the layer structure of the skin by OCT measurement and the microscopic observation of the skin tissue collected from a human have been made to correspond to each other, but most of the observed human skin tissue has a lesion on the skin. It is a tissue of a patient who has a part or a tissue collected from a dead infant or elderly person, and since it was immersed and stored in formalin after collection, the epidermis is thickened, the stratum corneum is bent, It is swollen or contracted. Therefore, it is considered that accurate data of living tissues could not be obtained from these observations.

これに対し、本発明は、OCT計測のデータから、皮膚の層構造、特に表皮厚を正確に解析できるようにすることを目的とする。   On the other hand, an object of the present invention is to make it possible to accurately analyze the layer structure of the skin, particularly the skin thickness, from the data of OCT measurement.

本発明者は、OCT計測データの干渉信号を明度に変換することにより得た画像から皮膚の層構造を解析するにあたり、角層は、従来の解析方法と同様に、光学厚み20μm程度の皮膚表面近傍において明度が皮膚表面から中間明度領域、暗領域と単調減少した後、最初に高くなった場合に、その明領域の手前までとするが、表皮は、従来と異なる特定の解析方法をとることにより正確に求められること、より具体的には、角層よりも深部領域で深さ方向に中間明度領域、暗領域及び明領域が順次観察される場合に、皮膚表面から暗領域の手前までを表皮とすると、共焦点レーザー顕微鏡を用いて健常な皮膚を無侵襲で計測した場合に得られる結果と整合することを見出した。   In analyzing the layer structure of the skin from an image obtained by converting the interference signal of the OCT measurement data into lightness, the inventor has a skin layer with an optical thickness of about 20 μm as in the conventional analysis method. When the brightness first increases after the monotonous decrease from the skin surface to the intermediate brightness area and dark area in the vicinity, it will be before the light area, but the epidermis should take a specific analysis method different from the conventional one. More specifically, when the intermediate brightness area, dark area, and bright area are observed in the depth direction in the deeper area than the stratum corneum, from the skin surface to the front of the dark area. As for the epidermis, it was found that the results obtained when a healthy skin was measured non-invasively using a confocal laser microscope were consistent with the results.

即ち、本発明は、皮膚の所定範囲を光干渉断層撮影法(OCT)で計測し、その干渉信号の光学厚みと強度のプロファイルの干渉信号強度を明度に変換することにより計測データを画像化し、得られた画像から皮膚の層構造を解析する方法であって、
前記画像において、角層よりも深部領域で深さ方向に、干渉信号プロファイルが単調に減衰する中間明度領域、干渉信号プロファイルがフラットとなる暗領域及び明領域が順次観察される場合に、皮膚表面から暗領域の手前までを表皮とする皮膚の層構造の解析方法を提供する。
That is, the present invention measures a predetermined range of skin by optical coherence tomography (OCT), converts the interference signal intensity of the optical thickness and intensity profile of the interference signal into brightness, and images the measurement data, A method for analyzing the layer structure of the skin from the obtained image,
In the image, when the intermediate brightness area where the interference signal profile monotonously attenuates in the depth direction in the deeper area than the stratum corneum, the dark area where the interference signal profile is flat, and the bright area are observed sequentially, the skin surface A method for analyzing the layer structure of the skin having the epidermis from the dark region to the front of the dark region is provided.

また、本発明は、複数の健常人について、上述の解析方法で求めた表皮厚と年齢とを関係づけたデータベースを構築し、任意の被験者について、上述の解析方法で表皮厚を求め、前記データベースに基づいて該被験者の表皮厚に対応する肌年齢を求める方法を提供する。 In addition, the present invention constructs a database that associates the skin thickness and age determined by the above-described analysis method for a plurality of healthy persons, determines the skin thickness by the above-described analysis method for any subject, and the database A method for determining the skin age corresponding to the skin thickness of the subject based on the above is provided.

特に、本発明は、上述の解析方法であって被験者への所定の処置(UV照射、化粧品、剤、乾燥、湿潤剤等)の適用前及び適用後の皮膚の所定範囲を光干渉断層撮影法で計測する方法を提供する。 In particular , the present invention provides an optical coherence tomography method for the above-described analysis method, wherein a predetermined range of the skin before and after application of a predetermined treatment (UV irradiation, cosmetics, agent, desiccant, wetting agent, etc.) to a subject is detected. Provides a method of measuring with .

本発明の解析方法によれば、生体の皮膚の層構造における表皮の厚さ、形状、分布等を無侵襲にかつ正確に求めることができる。   According to the analysis method of the present invention, the thickness, shape, distribution and the like of the epidermis in the layer structure of the skin of a living body can be obtained non-invasively and accurately.

したがって、(1)測定部位による表皮厚の違い、(2)皮丘の面積や高さ、皮溝の分布や深さ、皮膚の色等の皮膚の表面性状とその内部にある表皮との関係、(3)表皮厚の加齢変化、(4)紫外線や化粧料が表皮に及ぼす影響、等も正確に調べることができる。よって、これらに関するデータを蓄積することにより、被験者の表皮厚から該被験者の肌年齢を評価することが可能となり、また、皮膚に適用する化粧料や薬剤の評価をすることが可能となり、被験者の皮膚に対して望ましいスキンケアアドバイスを提供することが可能となる。   Therefore, (1) the difference in the skin thickness depending on the measurement site, (2) the relationship between the surface properties of the skin, such as the area and height of the cuticle, the distribution and depth of the skin groove, the color of the skin, and the epidermis inside (3) Age-related changes in skin thickness, (4) Effects of ultraviolet rays and cosmetics on the skin can be accurately examined. Therefore, by accumulating data related to these, it becomes possible to evaluate the skin age of the subject from the epidermis thickness of the subject, and it is possible to evaluate cosmetics and drugs applied to the skin. It is possible to provide desirable skin care advice for the skin.

以下、図面を参照しつつ、本発明を詳細に説明する。なお、各図中、同一符号は同一または同等の構成要素を表している。   Hereinafter, the present invention will be described in detail with reference to the drawings. In each figure, the same numerals indicate the same or equivalent components.

本発明の解析方法は、皮膚の所定範囲をOCT計測し、その干渉信号を明度に変換することにより計測データを画像化し、得られた画像から皮膚の層構造を解析する方法である。   The analysis method of the present invention is a method in which a predetermined range of skin is subjected to OCT measurement, the interference signal is converted into lightness, the measurement data is imaged, and the layer structure of the skin is analyzed from the obtained image.

ここで、OCT計測自体は、例えば、特許文献1に記載されているように、市販の装置を使用して行うことができる。また、皮膚の所定範囲を走査するようにOCT計測を行い、得られた干渉信号を明度に変換し、計測データを画像化することも、干渉計を複数列設した市販の装置を使用し、計測データを画像処理ソフトで処理することにより行うことができる。   Here, OCT measurement itself can be performed using a commercially available apparatus as described in Patent Document 1, for example. In addition, OCT measurement is performed so as to scan a predetermined range of the skin, the obtained interference signal is converted into lightness, and the measurement data is imaged using a commercially available apparatus in which a plurality of interferometers are arranged, Measurement data can be processed by image processing software.

ただし、OCT計測に使用する低コヒーレンス光の波長としては、500〜1700nmが好ましい。波長が短すぎると光が真皮まで達せず、反対に長すぎると分解能が低下し、厚さ20μm程度の角層の測定が困難となる。   However, the wavelength of low coherence light used for OCT measurement is preferably 500 to 1700 nm. If the wavelength is too short, the light does not reach the dermis, whereas if the wavelength is too long, the resolution is lowered and it becomes difficult to measure a stratum corneum having a thickness of about 20 μm.

皮膚の所定範囲をOCT計測し、干渉信号を明度に変換し、画像化することにより、前述の図17、図18のような画像を得ることができるが、本発明では、このような画像から表皮の厚さ、形状、分布等を求めるにあたり、図1に示すように、角層よりも深部領域で深さ方向に中間明度領域A5 、暗領域A6 及び明領域A7 が順次観察される場合に、皮膚表面A1 から暗領域A6 の手前までを表皮とする。したがって、真皮は暗領域A6 から下の領域となる。これに対し、角層は、図18に示したように、皮膚表面近傍で深さ方向に中間明度領域A2 、暗領域A3 、明領域A4 が順次観察される場合に、皮膚表面から明領域A4 の手前までとする。   By performing OCT measurement on a predetermined area of the skin, converting the interference signal into lightness, and imaging it, the images as shown in FIGS. 17 and 18 can be obtained. In determining the thickness, shape, distribution, etc. of the skin, as shown in FIG. 1, when the intermediate brightness area A5, dark area A6 and bright area A7 are observed in the depth direction in the deeper area than the stratum corneum. The skin surface A1 to the front of the dark area A6 is defined as the epidermis. Therefore, the dermis becomes a region below the dark region A6. On the other hand, as shown in FIG. 18, the stratum corneum is observed from the skin surface to the bright area A4 when the intermediate brightness area A2, dark area A3, and bright area A4 are sequentially observed in the depth direction near the skin surface. Until the front.

このような表皮領域あるいは角層領域の区分けを、OCT計測で得られる干渉信号の光学厚みn*zとその強度(反射率[dB])のプロファイルに対応させると、図2に示すように、光学厚み0μm程度で急激に立ち上がり、徐々に減衰しているピークに、センサーと皮膚表面との界面によるピークと、光学厚み20μm程度には角層と顆粒層との境界によるピークが含まれ、光学厚み60〜90μm前後でフラットになっている部分が、真皮乳頭のある暗領域A6 となり、光学厚み100程度で立ち上がっているピークが、その下の結合組織との境界によるものとなる。 When the division of the epidermis region or the stratum corneum region is made to correspond to the profile of the optical thickness n * z of the interference signal obtained by OCT measurement and its intensity (reflectance [dB]), as shown in FIG. The peak that rises sharply at an optical thickness of about 0 μm and gradually attenuates includes a peak due to the interface between the sensor and the skin surface, and an optical thickness of about 20 μm includes a peak due to the boundary between the stratum corneum and the granular layer. The flat portion with a thickness of about 60 to 90 μm is a dark region A6 with a dermal papilla, and the peak rising at an optical thickness of about 100 is due to the boundary with the underlying connective tissue.

図3は、表皮の干渉信号を得るため、ヒトから採取し、剥離した表皮のみの皮膚片をガラス板上に載置してOCT計測を行うことにより得たプロファイルである。同図から、皮膚表面のピークが光学厚み70μm程度まで単調に減衰し、その後フラットになっていることがわかる。したがって、最初のピークから単調に減衰している間が表皮であり、それに続くフラットな部分が真皮乳頭に対応することとなる。なお、光学厚み180μm程度にあるピークは、皮膚片とガラス板との界面によるものである。   FIG. 3 shows a profile obtained by performing OCT measurement by placing a skin piece collected only from a human and peeled off on a glass plate in order to obtain an interference signal of the epidermis. From the figure, it can be seen that the peak of the skin surface monotonously attenuates to an optical thickness of about 70 μm and then becomes flat. Accordingly, the epidermis is monotonically attenuated from the first peak, and the subsequent flat portion corresponds to the dermal papilla. The peak at an optical thickness of about 180 μm is due to the interface between the skin piece and the glass plate.

なお、図1の画像において、暗領域A6 が表皮ではなく、真皮であることは、後述の実施例で具体的に示すように、この領域の水平断面画像を共焦点レーザー顕微鏡を用いて、組織を侵襲することなく撮ると、表皮組織中に真皮乳頭の横断面が島状に観察されることから確認できる。   In the image of FIG. 1, the dark region A6 is not the epidermis but the dermis. As shown in the examples below, the horizontal cross-sectional image of this region is obtained using a confocal laser microscope. Can be confirmed by observing the cross-section of the dermal papilla in an island shape in the epidermal tissue.

図1の画像において、表皮と真皮との境界に明領域が観察されず、暗領域A6 が観察される理由は明らかではないが、真皮乳頭のある真皮領域には血管があり、血液で入射光が吸収されること、あるいは、真皮乳頭を形成する組織が光を吸収する性質を有すること等が考えられる。また、真皮乳頭のある暗領域A6 の下に明領域A7 が観察されるのは、この領域の結合組織は、その上の真皮乳頭のある領域に対して屈折率又は配向性が異なること、あるいは散乱性を有すること等が考えられる。   In the image of FIG. 1, the reason why the bright region is not observed at the boundary between the epidermis and the dermis and the dark region A6 is observed is not clear. May be absorbed, or the tissue forming the dermal papilla has the property of absorbing light. In addition, the bright region A7 is observed under the dark region A6 with the dermal papilla because the connective tissue in this region has a different refractive index or orientation with respect to the region with the dermal papilla above, or It can be considered to have scattering properties.

本発明の解析方法において、OCT計測の干渉信号を明度に変換した画像から表皮厚を求める具体的手法としては、例えば、前述の図1において、中間明度領域A5 と暗領域A6 との境界(即ち、表皮と真皮との境界)を観察者がトレースし、このトレース線と皮膚表面との間隔を複数箇所で計測し、その平均を求めればよい。その場合、皮膚表面とトレース線との間隔は、皮膚の深さ方向の距離とするよりも、各計測点で皮膚表面に垂直な方向の距離(曲線幅)とすると、計測値のばらつきを小さくすることができる。   In the analysis method of the present invention, as a specific method for obtaining the skin thickness from the image obtained by converting the interference signal of the OCT measurement into the lightness, for example, in FIG. 1, the boundary between the intermediate lightness region A5 and the dark region A6 (that is, The observer traces the boundary between the epidermis and the dermis, measures the distance between the trace line and the skin surface at a plurality of locations, and calculates the average. In that case, if the distance between the skin surface and the trace line is the distance (curve width) in the direction perpendicular to the skin surface at each measurement point, rather than the distance in the skin depth direction, the variation in the measured value is reduced. can do.

このトレース線の形状と皮溝との関係から、内部構造から皮膚表面の状態(キメやシワ)を調べることができるが、この関係を求める具体的手法としては、例えば、図4に示すように、幅100μmの窓から観察される皮溝と、上述のトレース線の形状とのパターンをA、B、Cの3種に分類し、観察部位ごとに各パターンの出現率を求めればよい。   From the relationship between the shape of the trace line and the skin groove, the state of the skin surface (texture and wrinkle) can be examined from the internal structure. As a specific method for obtaining this relationship, for example, as shown in FIG. The patterns of the skin groove observed from the window having a width of 100 μm and the shape of the trace line described above may be classified into three types A, B, and C, and the appearance rate of each pattern may be obtained for each observation site.

本発明の解析方法によれば、生体の皮膚の表皮厚や表皮形状を無侵襲に正確に計測できるので、皮膚の色、きめ、皮丘の大きさ、皮溝の分布や深さ、毛穴の目立ち具合等の皮膚の表面性状と、表皮厚、表皮形状、皮膚の肥厚の進行度合い等との関係を正確に調べることができる。   According to the analysis method of the present invention, since the skin thickness and shape of the skin of a living body can be accurately measured in a non-invasive manner, the color of the skin, the texture, the size of the skin, the distribution and depth of the cleft, the pores It is possible to accurately examine the relationship between the surface properties of the skin such as the degree of conspicuousness, the skin thickness, the skin shape, the progress of skin thickening, and the like.

したがって、多数の健常人から、本発明の解析方法により、所定の部位の皮膚の表皮厚、角層厚、表皮形状等を得ると共に、年齢、性別等の情報を得、表皮に関するデータと年齢等を関係づけたデータベースを構築しておくと、任意の被験者について、本発明の解析方法により表皮厚等を計測することにより、その被験者の肌年齢を評価することができる。   Therefore, the skin thickness, stratum corneum thickness, skin shape, etc. of the skin at a predetermined site are obtained from a large number of healthy persons by the analysis method of the present invention, and information such as age, sex, etc. is obtained. If a database is established, the skin age of any subject can be evaluated by measuring the skin thickness and the like by the analysis method of the present invention.

また、被験者の皮膚に、UV照射、乾燥、加湿、化粧品や薬剤の適用等の処置を行った前後で本発明の解析方法により表皮厚を計測すると、その処置が表皮厚に及ぼす影響を評価することができる。   Moreover, if the skin thickness is measured by the analysis method of the present invention before and after the subject's skin is subjected to treatment such as UV irradiation, drying, humidification, application of cosmetics or drugs, the effect of the treatment on the skin thickness is evaluated. be able to.

さらに、被験者が所定部位の表皮厚等を、本発明の解析方法で継続的に計測することにより、その被験者の皮膚の健康管理をすることができる。   Furthermore, when the subject continuously measures the skin thickness and the like at a predetermined site using the analysis method of the present invention, the skin health of the subject can be managed.

また、皮膚に対する所定の処置と、その処置を皮膚に行った場合の表皮厚の変化と、皮膚の色、きめ、皮丘の大きさ、皮溝の分布や深さ、毛穴の目立ち具合等の皮膚の表面性状の変化とを関連づけたデータベースを構築しておくと、任意の被験者について本発明の解析方法で表皮厚等を計測することにより、その被験者にスキンケアとしての望ましい処置を提案することができる。   Also, prescribed treatments for the skin, changes in the skin thickness when the treatment is performed on the skin, skin color, texture, size of the skin, distribution and depth of the skin groove, conspicuousness of pores, etc. By constructing a database that correlates with changes in the surface texture of the skin, it is possible to propose a desired treatment as skin care to the subject by measuring the skin thickness etc. for any subject using the analysis method of the present invention. it can.

実施例1
マイケルソン干渉計を8個並べたOCT計測装置(SkinDex300、ISIS社)を用いて、被験者の前腕内側部位をOCT計測した(計測条件:照射波長1300nm)。この場合、表面の135μ幅を5μステップ移動し、画像を取得することで総数28枚の連続切片像を得、その中から任意に3枚抽出し、測定箇所の代表とした。次いで、画像計測ソフト(Image-Pro、Media Cybernetics社)を用いて、反射率を輝度に変換するイメージング処理を行った。こうして得た画像を図5に示す。
Example 1
Using a OCT measuring device (SkinDex300, ISIS) with eight Michelson interferometers, the forearm inner part of the subject was subjected to OCT measurement (measurement condition: irradiation wavelength 1300 nm). In this case, a total of 28 consecutive slice images were obtained by moving the 135 μ width of the surface by 5 μ steps and acquiring images, and arbitrarily extracted three of them to represent the measurement points. Next, imaging processing for converting reflectance into luminance was performed using image measurement software (Image-Pro, Media Cybernetics). An image thus obtained is shown in FIG.

図5から得られた画像を目視観察することにより、皮膚表面から深さ50〜70μmのあたりに暗領域のあることを確認した。   By visually observing the image obtained from FIG. 5, it was confirmed that there was a dark region at a depth of 50 to 70 μm from the skin surface.

一方、同じ測定部位を共焦点レーザー顕微鏡(Vivscope 1000、Lucid社)(レーザー波長830nm(ガリウム-ヒ素レーザ)、出力16mW、対物レンズ30倍、観察視野450μm×400μm、垂直解像度5μm)を用いて、測定深度を皮膚表面から6.7μm間隔で207μmまでとし、各測定深度の水平断面画像を取得した。これらの画像を対比することにより、測定深度50〜70μmで、表皮組織中に真皮乳頭の横断面が島状に観察された。図6に、測定深度60μmにおける真皮乳頭の横断面画像を示す。   On the other hand, using a confocal laser microscope (Vivscope 1000, Lucid) (laser wavelength 830 nm (gallium-arsenic laser), output 16 mW, objective lens 30 times, observation field 450 μm × 400 μm, vertical resolution 5 μm), the same measurement site, The measurement depth was set to 207 μm at an interval of 6.7 μm from the skin surface, and horizontal cross-sectional images at each measurement depth were acquired. By comparing these images, the cross section of the dermal papilla was observed in an island shape in the epidermal tissue at a measurement depth of 50 to 70 μm. FIG. 6 shows a cross-sectional image of the dermal papilla at a measurement depth of 60 μm.

したがって、前述のイメージングにより得た画像中の暗領域は、真皮乳頭の存在する真皮であることが確認できた。   Therefore, it was confirmed that the dark region in the image obtained by the above-described imaging is the dermis where the dermal papilla exists.

実施例2
OCT計測装置(SkinDex300、ISIS社)を用い、実施例1と同様の測定条件で、成人男性5名、成人女性5名の前腕内側の同一部位をそれぞれ5回OCT計測し、画像計測ソフト(Image-Pro、Media Cybernetics社)を用いて、反射率を輝度に変換するイメージング処理を行った。
Example 2
Using the OCT measuring device (SkinDex300, ISIS), under the same measurement conditions as in Example 1, OCT measurement was performed 5 times for the same part inside the forearm of 5 adult men and 5 adult women, respectively. -Pro, Media Cybernetics, Inc.) was used to perform the imaging process to convert the reflectance into luminance.

得られた画像を目視観察することにより、皮膚表面と真皮の境界をトレースし、表皮厚として、図7に示すように、トレース線L3 と皮膚表面との垂直幅HT及び曲線幅CTの2通りを、それぞれ各被験者について無作為に200箇所で自動計測し、各被験者の変動係数CV(=標準偏差/平均値)と全被験者についての変動係数CVを求めた。結果を表1に示す。   By visually observing the obtained image, the boundary between the skin surface and the dermis is traced, and as the skin thickness, as shown in FIG. 7, there are two types of vertical width HT and curve width CT between the trace line L3 and the skin surface. Were automatically measured at 200 locations at random for each subject, and the coefficient of variation CV (= standard deviation / average value) for each subject and the coefficient of variation CV for all subjects were determined. The results are shown in Table 1.

Figure 0004790231
Figure 0004790231

表1から、前腕内側の表皮厚は、垂直幅HT61.7〜77.8μm又は曲線幅CT56.7〜70.4μmであり、従来、約100〜200μmであるとされていた表皮厚よりも低く計測されていることがわかる。   From Table 1, the skin thickness on the inner side of the forearm is vertical width HT61.7-77.8μm or curve width CT56.7-70.4μm, which is measured lower than the skin thickness that was conventionally about 100-200μm. You can see that

また、垂直幅HTよりも曲線幅CTの方が、変動係数が低いことがわかる。したがって、以降の実施例では、表皮厚として曲線幅を測定した。   It can also be seen that the curve width CT has a smaller variation coefficient than the vertical width HT. Therefore, in the following examples, the curve width was measured as the skin thickness.

実施例3:部位ごとの表皮厚の加齢変化
首都圏在住の10代〜60代の女性116名(各年代約20名)を被験者とし、実施例2と同様にOCT計測し、イメージング処理を行い、得られた画像における角層または表皮の曲線幅CTから各被験者の角層厚と表皮厚を求めた。この場合、測定部位は、図8の通り、額、頬、上腕内側、前腕内側、前腕外側、手の甲、腹部、背部、大腿内側、下腿内側、脛とし、全て本人の右側を計測した。なお、図8において、矢印は、イメージング処理により得た断層像の方向を示している。各測定部位について3回計測を行い、その平均を角層厚あるいは表皮厚とした。結果を表2、表3、図9、図10に示す。
Example 3: Age-related change in epidermis thickness for each part 116 females in their teens to 60s living in the Tokyo metropolitan area (approximately 20 each age) were subjects, and OCT measurement was performed in the same manner as in Example 2 to perform imaging processing. The horny layer thickness and the skin thickness of each subject were determined from the curve width CT of the horny layer or the epidermis in the obtained image. In this case, as shown in FIG. 8, the measurement site was the forehead, cheek, inner upper arm, inner forearm, outer forearm, back of hand, abdomen, back, inner thigh, inner lower leg, and shin. In FIG. 8, the arrow indicates the direction of the tomographic image obtained by the imaging process. Each measurement site was measured three times, and the average was taken as the stratum corneum thickness or skin thickness. The results are shown in Table 2, Table 3, FIG. 9 and FIG.

また、頬と上腕内側については、被験者の年齢と計測された表皮厚とをプロットした。結果を図11、図12に示す。   For the cheeks and the inner side of the upper arm, the age of the subject and the measured epidermis thickness were plotted. The results are shown in FIGS.

Figure 0004790231

Figure 0004790231

Figure 0004790231
Figure 0004790231

これらの結果から、本実施例によれば、従来、約100〜200μmであるとされていた表皮厚が約60〜100μmと、従来よりも低い値に計測されていることがわかる。   From these results, it can be seen that according to this example, the skin thickness, which was conventionally about 100 to 200 μm, was measured to be about 60 to 100 μm, which is lower than the conventional value.

また、手の甲・腹部・背部以外は、表皮厚と年齢に相関性のあることがわかる。   In addition to the back of the hand, abdomen, and back, it can be seen that there is a correlation between the skin thickness and age.

実施例4:紫外線照射の表皮厚への影響
成人男性12名を被験者とし、紫外線(UV-B)を皮膚に照射した場合の照射後の日数と表皮厚との関係を調べた。
Example 4: Effect of UV irradiation on skin thickness Using 12 adult men as subjects, the relationship between the number of days after irradiation and skin thickness when UV (B-B) was irradiated on the skin was examined.

この場合、照射部位は前腕外側、上腕内側、腹部、背部、大腿内側とし、照射面積は1箇所あたり10mm×0.5mmとした。照射エネルギーは20〜200mJの範囲で2MEDが得られるように調整した。   In this case, the irradiation site was the outer forearm, the inner upper arm, the abdomen, the back, and the inner thigh, and the irradiation area was 10 mm × 0.5 mm per location. The irradiation energy was adjusted so that 2 MED was obtained in the range of 20 to 200 mJ.

照射後0日、1日、2日、3日、7日、10日、20日、30日、40日、50日に、実施例2と同様にOCT計測を行い、表皮厚と角層厚を求めた。   On the 0th day, 1st day, 2nd day, 3rd day, 7th day, 10th day, 20th day, 30th day, 40th day and 50th day after the irradiation, OCT measurement was carried out in the same manner as in Example 2, and the skin thickness and stratum corneum thickness were measured. Asked.

その結果、紫外線照射後3〜4日で皮膚の赤みが消えた後も、図13に示すように、紫外線照射後5〜7日までは表皮厚は厚くなること、したがってこの方法で表皮厚を求めることにより、外見上わからない表皮の変化を追跡できることがわかる。   As a result, even after the skin redness disappeared 3 to 4 days after the ultraviolet irradiation, as shown in FIG. 13, the skin thickness increased until 5 to 7 days after the ultraviolet irradiation. It can be seen that the change in the epidermis can be traced by looking for it.

なお、角層も紫外線照射により肥厚したが、部位によっては照射後3〜4日で剥離し、最終的に角層厚は照射前と同程度となった。   In addition, although the stratum corneum was thickened by ultraviolet irradiation, depending on the part, it peeled off 3 to 4 days after irradiation, and finally the stratum corneum thickness was about the same as before irradiation.

本発明の評価方法は、皮膚の層構造の解析や、UV照射、乾燥、加湿、化粧品や薬剤の適用等が皮膚に及ぼす影響の評価等の分野で有用となる。   The evaluation method of the present invention is useful in fields such as analysis of the layer structure of the skin, evaluation of the effects of UV irradiation, drying, humidification, application of cosmetics and drugs, etc. on the skin.

OCT計測の干渉信号を明度に変換することにより得た画像から表皮領域を求める方法の説明図である。It is explanatory drawing of the method of calculating | requiring a skin area | region from the image obtained by converting the interference signal of OCT measurement into the brightness. 干渉信号のプロファイルである。It is a profile of an interference signal. 干渉信号のプロファイルである。It is a profile of an interference signal. 表皮と真皮との境界をトレースした線の形状と皮溝とのパターンの説明図である。It is explanatory drawing of the shape of the line which traced the boundary of an epidermis and a dermis, and the pattern of a skin groove. OCT計測値のイメージングにより得た画像である(実施例1)。(Example 1) which is the image obtained by imaging the OCT measurement value. 共焦点レーザー顕微鏡を用いて撮った、皮膚の水平断面の画像である(実施例1)。(Example 1) which is the image of the horizontal cross section of the skin taken using the confocal laser microscope. 皮膚の表皮厚(垂直幅、曲線幅)の計測方法の説明図である(実施例2)。(Example 2) which is explanatory drawing of the measuring method of skin epidermis thickness (vertical width, curve width). 測定部位の説明図である(実施例3)。(Example 3) which is explanatory drawing of a measurement site | part. 各測定部の角層厚を示した図である(実施例3)。It is the figure which showed the stratum corneum thickness of each measurement part (Example 3). 各測定部の表皮厚を示した図である(実施例3)。It is the figure which showed the skin thickness of each measurement part (Example 3). 年齢と頬の表皮厚との関係図である(実施例3)。(Example 3) which is a relationship figure of age and the epidermis thickness of a cheek. 年齢と上腕内側の表皮厚との関係図である(実施例3)。FIG. 6 is a diagram showing the relationship between age and epidermis thickness inside the upper arm (Example 3). 紫外線照射後の表皮厚の経日変化を表した図である(実施例4)。It is a figure showing the daily change of the skin thickness after ultraviolet irradiation (Example 4). OCTの測定原理の説明図である。It is explanatory drawing of the measurement principle of OCT. 干渉信号のプロファイルの説明図である。It is explanatory drawing of the profile of an interference signal. OCT計測による、ヒトの皮膚の光学厚みと干渉信号の強度(反射率)のプロファイルである。It is a profile of the optical thickness of human skin and the intensity (reflectance) of an interference signal by OCT measurement. 皮膚(頬)のOCT像である。It is an OCT image of skin (cheek). 皮膚(手の平)のOCT像である。It is an OCT image of skin (palm).

符号の説明Explanation of symbols

1 計測装置
2 低干渉性光源
3 光ファイバー
4 カプラー
5 プローブ
6 プローブ
7 参照鏡
8 分析器
A1 皮膚表面
A2 中間明度領域
A3 暗領域
A4 明領域
A5 中間明度領域
A6 暗領域
A7 明領域
A8 暗領域
S 試料
S-1 光散乱強度の低い層
S-2 光散乱強度の高い層
z 試料の深さ方向
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Low coherence light source 3 Optical fiber 4 Coupler 5 Probe 6 Probe 7 Reference mirror 8 Analyzer A1 Skin surface A2 Medium brightness area A3 Dark area A4 Bright area A5 Intermediate brightness area A6 Dark area A7 Bright area A8 Dark area S Sample S-1 Layer with low light scattering intensity S-2 Layer with high light scattering intensity z Depth direction of sample

Claims (4)

皮膚の所定範囲を光干渉断層撮影法で計測し、その干渉信号の光学厚みと強度のプロファイルの干渉信号強度を明度に変換することにより計測データを画像化し、得られた画像から皮膚の層構造を解析する方法であって、
前記画像において、角層よりも深部領域で深さ方向に、干渉信号プロファイルが単調に減衰する中間明度領域、干渉信号プロファイルがフラットとなる暗領域及び明領域が順次観察される場合に、皮膚表面から暗領域の手前までを表皮とする皮膚の層構造の解析方法。
Measurement of the predetermined range of the skin by optical coherence tomography, converting the interference signal intensity of the optical thickness and intensity profile of the interference signal into lightness, and imaging the measurement data from the obtained image, the layer structure of the skin Is a method of analyzing
In the image, when the intermediate brightness area where the interference signal profile monotonously attenuates in the depth direction in the deeper area than the stratum corneum, the dark area where the interference signal profile is flat, and the bright area are observed sequentially, the skin surface To analyze the layer structure of the skin with the epidermis from the dark area to the front of the dark area.
皮膚表面近傍で深さ方向に、前記中間明度領域、暗領域、明領域が順次観察される場合に、皮膚表面から明領域の手前までを角層とし、角層よりも深部領域で深さ方向に中間明度領域、暗領域及び明領域が順次観察される場合の前記皮膚表面から暗領域の手前までの表皮とする領域で干渉信号強度が単調に減衰している請求項1記載の解析方法。 When the intermediate brightness area, dark area, and bright area are observed in the depth direction near the skin surface, the stratum from the skin surface to the front of the bright area is the stratum corneum, and the depth direction is deeper than the stratum corneum. The analysis method according to claim 1, wherein the interference signal intensity is monotonously attenuated in an area that is an epidermis from the skin surface to the front of the dark area when an intermediate brightness area, a dark area, and a bright area are sequentially observed. 所定の処置の適用前及び適用後の皮膚の所定範囲を光干渉断層撮影法で計測する請求項1記載の解析方法。   The analysis method according to claim 1, wherein a predetermined range of the skin before and after application of the predetermined treatment is measured by optical coherence tomography. 複数の健常人について、請求項1記載の解析方法で求めた表皮厚と年齢とを関係づけたデータベースを構築し、任意の被験者について、請求項1記載の解析方法で表皮厚を求め、前記データベースに基づいて該被験者の表皮厚に対応する肌年齢を求める方法。   A database in which the skin thickness and age determined by the analysis method according to claim 1 are related for a plurality of healthy persons is constructed, and the skin thickness is determined by the analysis method according to claim 1 for any subject, and the database The skin age corresponding to the skin thickness of the subject is determined based on the above.
JP2004179813A 2004-06-17 2004-06-17 Skin analysis method Expired - Fee Related JP4790231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179813A JP4790231B2 (en) 2004-06-17 2004-06-17 Skin analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179813A JP4790231B2 (en) 2004-06-17 2004-06-17 Skin analysis method

Publications (2)

Publication Number Publication Date
JP2006000385A JP2006000385A (en) 2006-01-05
JP4790231B2 true JP4790231B2 (en) 2011-10-12

Family

ID=35769278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179813A Expired - Fee Related JP4790231B2 (en) 2004-06-17 2004-06-17 Skin analysis method

Country Status (1)

Country Link
JP (1) JP4790231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190991A1 (en) 2012-06-18 2013-12-27 富士フイルム株式会社 Skin evaluation method and skin evaluation device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454030B2 (en) * 2006-02-21 2010-04-21 国立大学法人 筑波大学 Image processing method for three-dimensional optical tomographic image
CN102089444A (en) 2008-05-14 2011-06-08 德玛泰克国际公司 Diagnosis of melanoma and solar lentigo by nucleic acid analysis
EP2293714B1 (en) 2008-06-02 2014-08-13 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
JP5298703B2 (en) * 2008-08-26 2013-09-25 コニカミノルタ株式会社 Sweat measurement method
EP2977469A1 (en) * 2008-08-28 2016-01-27 Dermtech International Determining age ranges of skin samples
JP5323600B2 (en) * 2009-07-17 2013-10-23 花王株式会社 Measuring method of stratum corneum thickness
JP5635762B2 (en) * 2009-11-11 2014-12-03 ポーラ化成工業株式会社 Method for calculating nipple shape or collagen-like structure
JP5978599B2 (en) * 2011-11-17 2016-08-24 花王株式会社 Method for evaluating makeup skin
JP5770684B2 (en) * 2012-06-29 2015-08-26 富士フイルム株式会社 Optical simulation apparatus and method, and program
JP6200207B2 (en) * 2013-05-27 2017-09-20 ポーラ化成工業株式会社 Skin age estimation method
GB2515761A (en) * 2013-07-02 2015-01-07 Michelson Diagnostics Ltd Processing optical coherence tomography scans of a subject's skin
JP6184905B2 (en) * 2014-01-31 2017-08-23 富士フイルム株式会社 Optical tomographic imaging apparatus and human skin measurement method using optical tomographic imaging apparatus
JP6310792B2 (en) * 2014-06-30 2018-04-11 株式会社トプコン Skin property evaluation device
JP6378776B2 (en) * 2014-10-27 2018-08-22 富士フイルム株式会社 Optical penetration depth evaluation method, performance inspection method using the evaluation method, and optical tomographic imaging apparatus
KR101641268B1 (en) 2015-03-20 2016-07-20 엘지전자 주식회사 Skin detecting device and method for controlling the skin detecting device
EP3752645A4 (en) 2018-02-14 2022-04-13 Dermtech, Inc. Novel gene classifiers and uses thereof in non-melanoma skin cancers
US11578373B2 (en) 2019-03-26 2023-02-14 Dermtech, Inc. Gene classifiers and uses thereof in skin cancers
CN111007062B (en) * 2019-10-24 2022-03-15 杭州捷诺飞生物科技股份有限公司 OCT real-time nondestructive monitoring method in tissue engineering skin construction process
JP7468617B2 (en) * 2020-03-19 2024-04-16 日本電気株式会社 Light measurement method, light measurement device, and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240538A (en) * 2000-03-01 2001-09-04 Kanebo Ltd Formulation for improving aged skin
JP2004155068A (en) * 2002-11-07 2004-06-03 Kose Corp Characteristics display tool for examinee and counseling method using that

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190991A1 (en) 2012-06-18 2013-12-27 富士フイルム株式会社 Skin evaluation method and skin evaluation device
US10383567B2 (en) 2012-06-18 2019-08-20 Fujifilm Corporation Skin evaluation method and skin evaluation device

Also Published As

Publication number Publication date
JP2006000385A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP4790231B2 (en) Skin analysis method
Pierce et al. Advances in optical coherence tomography imaging for dermatology
Kim et al. Functional optical coherence tomography: principles and progress
Brusselaers et al. Burn scar assessment: a systematic review of objective scar assessment tools
Welzel Optical coherence tomography in dermatology: a review
Häusler et al. " Coherence radar" and" spectral radar"-new tools for dermatological diagnosis
Nakagawa et al. Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro
Leahy et al. Biophotonic methods in microcirculation imaging
Ponticorvo et al. Evaluating clinical observation versus spatial frequency domain imaging (SFDI), laser speckle imaging (LSI) and thermal imaging for the assessment of burn depth
CN108478192B (en) Measuring system for estimating skin tissue micro-vessel depth
Chen et al. Monte Carlo investigation of optical coherence tomography retinal oximetry
CN108135477A (en) Handle optical coherence tomography
Liu et al. Penetration-enhanced optical coherence tomography angiography with optical clearing agent for clinical evaluation of human skin
Alex et al. 3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers
Kozlovska et al. Optoelectronic means for diagnosing of human pathologies
Setchfield et al. Effect of skin color on optical properties and the implications for medical optical technologies: a review
Zakharov et al. Full-field optical coherence tomography for the rapid estimation of epidermal thickness: study of patients with diabetes mellitus type 1
Welzel et al. OCT in dermatology
Li et al. Quantitative assessment of skin swelling using optical coherence tomography
Park Skin-layer analysis using optical coherence tomography (OCT)
Saiko et al. Real-time optical monitoring of capillary grid spatial pattern in epithelium by spatially resolved diffuse reflectance probe
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
RU2368310C1 (en) Method of dactylagraphic identification of human personality
Zhang et al. Depth compensation based fractal analysis of human microvasculature
Yu et al. High‐Resolution Optical Coherence Tomography (OCT) for Skin Imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101005

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4790231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees