JP4790206B2 - Prefilter manufacturing method - Google Patents

Prefilter manufacturing method Download PDF

Info

Publication number
JP4790206B2
JP4790206B2 JP2003138481A JP2003138481A JP4790206B2 JP 4790206 B2 JP4790206 B2 JP 4790206B2 JP 2003138481 A JP2003138481 A JP 2003138481A JP 2003138481 A JP2003138481 A JP 2003138481A JP 4790206 B2 JP4790206 B2 JP 4790206B2
Authority
JP
Japan
Prior art keywords
filter medium
outer frame
prefilter
ratio
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003138481A
Other languages
Japanese (ja)
Other versions
JP2004337759A (en
Inventor
敏孔 戸澗
弘 堀上
拓哉 堂元
敏 馬場
文男 中島
仁 新沼
克博 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Nippon Muki Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2003138481A priority Critical patent/JP4790206B2/en
Publication of JP2004337759A publication Critical patent/JP2004337759A/en
Application granted granted Critical
Publication of JP4790206B2 publication Critical patent/JP4790206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は中・高性能フィルタのプレフィルタの製造方法に関し、特に、ガスタービン用吸気フィルタに使用されるプレフィルタの製造方法に関する。
【0002】
【従来の技術】
従来において、図5に示すように、中・高性能フィルタのプレフィルタとして、長尺帯状の濾材11に補強体12を接着して波形状に折り畳んだ積層濾材13の上下2箇所に、くし歯状間隔保持部14B,17Bを設けた一対のくし歯状スタビライザ14,17を流出側及び流入側のそれぞれに設け、波形状の間隔を保持した前記積層濾材13を、前後面に所要形状の複数の開口15dを形成する開口面サポート部15cを形成した紙製の箱状外枠15,16内に収容固定したプレフィルタ10が使用されている(特許文献1参照)。
【0003】
【特許文献1】
特開2000−117034号公報(第3頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、前記特許文献1のプレフィルタは、積層濾材の上下2箇所に一対のスタビライザを設けて積層濾材の波形状の間隔を保持しているため、積層濾材の変形が少ないという利点を有するものの、通常、ガスタービン吸気フィルタの1次フィルタとして用いられる大きさのプレフィルタ内に収容される波形状の積層濾材の折山数は22程度であり、濾材面積が小さく、プレフィルタの粉塵保持量がそれほど大きくないため、フィルタ寿命が短寿命であるという問題があった。
また、前後面に形成した開口面サポート部と前記くし歯状スタビライザによりデッドスペースが形成され、空気が通過する有効面積が小さくなり、結果としてプレフィルタの濾材の利用率が低下し、濾材の実際面積から想定されるよりも圧力損失が大きくなり、フィルタ寿命が短くなるという問題があった。
そこで、本発明は、前記叙述の問題点に鑑みて、プレフィルタの濾材の有効面積を拡大して、フィルタの長寿命化が可能なプレフィルタの製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明のガスタービン用吸気フィルタに使用されるプレフィルタの製造方法は、前記目的を達成するべく、請求項1に記載の通り、前後面に所要形状の開口を備える開口面サポートをそれぞれ形成して成る外枠内に、長尺帯状の厚さが4〜8mmの不織布濾材の一面に補強体を添設して波形状に折り畳んだ積層濾材が固定収容されたガスタービン用吸気フィルタに使用されるプレフィルタの製造方法において、前記外枠の横寸法を(A)とし、奥行寸法を(H)とし、横断面積を(AH)とした場合の、前記濾材の長さ(L)と前記外枠の横断面積(AH)との比(L/AH)が78〜95m-1 、前記開口面サポートの開口率が80〜90%、前記外枠の横断面積が横寸法594〜610mm×奥行寸法70〜120mm、前記積層濾材の折山数(正数)が24〜28であるようにすることを特徴とする
【0006】
【発明の実施の形態】
本発明の製造方法によるプレフィルタ1は、図1に示すように、前後面に所要形状の開口を備える開口面サポートをそれぞれ形成して成る外枠5,6内に、長尺帯状の濾材2の一面に補強体3を添設して波形状に折り畳んだ積層濾材4が固定収容されており、前記濾材2の長さと前記外枠5,6の横断面積との比が78〜95m−1と成っている。
前記外枠5,6によって外形が構成されるプレフィルタ1の横寸法を(A)とし、奥行寸法を(H)とし、波形状の積層濾材4の一山の片側の長さを(Lo)とした場合、濾材の長さ(L)は、(1)式によって表され、濾材の長さ(L)に対する外枠5,6の横断面積(AH)との比は(2)式によって表される。
L=Lo ×2×積層濾材の山数 (1)
濾材の長さに対する外枠の横断面積の比=L/AH (2)
積層濾材は、プレフィルタの流入側から流出側に亘るように折り畳まれて波形状に形成されるため、濾材の長さと外枠の横断面積との比を規定することにより、プレフィルタの圧力損失が大きくなるという問題を生じることなく、粉塵保持量を大きくすることができる適当な範囲内で濾材面積を拡大することができ、圧力損失の増大によって生じるプレフィルタの短寿命化を防止することができる。
プレフィルタの濾材の長さと外枠の横断面積との比を78〜95m−1としたのは、前記比が78m−1未満であると、外枠内に波形状に折り畳んで収納する濾材の濾材面積を拡大することができず、プレフィルタの粉塵保持量が少なくなるという問題があり、前記比が95を超えると、波形状の積層濾材が密になりすぎて、プレフィルタの圧力損失が大きくなるという問題があるからである。
具体的には、例えば、外枠の横断面積が横寸法594〜610mm×奥行寸法70〜120mmの場合、濾材の長さと外枠の横断面積との比を78〜95m−1とするためには、該外枠内に収納する濾材の最適長さは、3.24〜6.95mとなる。また、空気の流入側から流出側に亘るように前記濾材を波形状に折り畳んだ場合、一山の底辺に対して高さ(外枠の奥行寸法)が十分に大きいため、一山の片側の長さ(Lo)は、前記外枠の奥行寸法に近似して計算することができ、前記寸法の外枠に最適な長さの前記濾材を波形状に折り畳んだ場合の積層濾材の折山数(正数)は、24〜28となる。
【0007】
前記濾材2としては、不織強化綿(コットン)とポリエステル繊維等の合成繊維の混合不織布や合成繊維単独の不織布を使用できる。
前記濾材2は、厚さが4〜8mmであることが好ましい。濾材2の厚さが4mm未満では、粉塵保持量が少ないのでプレフィルタの長寿命化が図れないからである。また濾材2の厚さが8mmを超えるとフィルタの圧力損失が高くなる問題があるからである。
【0008】
前記補強体3としては、亜鉛メッキ鉄線等の金網、トリカルネット等の合成樹脂製網、不織布等が使用できる。特に補強体が合成樹脂製網や、不織布とすれば、焼却減容して廃棄することも可能である。
【0009】
前記濾材2と前記補強体3は、波形状にプリーツ加工する前に濾材2の流出側に補強体3を接着剤により積層固定している。
【0010】
前記外枠5,6としては、飲料水パック等に使用される耐水性紙、コートボール紙(片面を樹脂コートした板紙2枚を樹脂コート面が外側となるように接着積層して耐水性としたものが特によい)等が使用できる。その他アルミ、ステンレス等の金属板等を用いることができる。また、外枠5,6は流入側、流出側共に積層濾材4をサポートするように菱形等の所望形状の開口を複数備えた開口面サポート部5c(6c)から成る開口面サポートが設けられている。
【0011】
図2は、プレフィルタ1の外枠5(6)の展開図であり、外枠5(6)は、コートボール紙製の一枚板を折り曲げ加工することにより形成している。即ち、前記一枚板の隣接する2角のコーナ5b(6b)を矩形状に切り欠き、他の2角のコーナに、該コーナ部分を折り曲げ可能とする耳部5a(6a)を形成し、コーナとコーナの間の辺を垂直に折り曲げ加工して壁部とし、一面が解放した状態の箱形状の外枠5(6)を形成している。前記耳部5a(6a)は、隣接した前記壁部に重ね合わされるように折り曲げている。二つの箱形状の外枠5(6)の解放面同士を対向させると共に、二つの外枠5(6)の耳部5a(6a)が非対称となるように、外枠5(6)を組み合わせて、内部に濾材が収納可能となる箱状の外枠5(6)を形成している。尚、耳部5a(6a)が非対称となるように外枠5(6)を組み合わせたのは、エアリークを防止するためである。
【0012】
外枠5(6)を形成する一枚板の中央面には、空気を通過させるための開口5d(6d)を形成しており、開口5d(6d)は、前記外枠5(6)内に収容した濾材の破損を防ぐ開口面サポート部5c(6c)を設けた開口面サポートとなっている。
【0013】
外枠5(6)の開口面サポートは、開口率が80〜90%となるように形成している。開口面サポートの開口率が80%未満であると、濾材2に空気が通過しないデッドスペースが大きくなり、外枠5(6)内に収容した濾材2の利用率が低下し、濾材2の実際面積から想定されるよりも圧力損失が大きくなるからである。また、開口面サポートの開口率が90%を超えると、外枠5(6)内に収容した積層濾材4をサポートすることができず、濾材2に破損を生じるおそれがあるからである。
【0014】
開口面サポートの開口率を80〜90%とするために、前記図2に示すように、箱状の外枠5(6)の対向する隅角部と隅角部を結ぶ二つの対角線状の開口面サポート部5c(6c)を設けることが好ましい。その他、例えば図3に示すように、外枠を構成する一辺の略中央部から隣接する他の一辺の略中央部に向けて四つの斜線状の開口面サポート部5c’(6c’)を設けることが好ましい。尚、開口面サポート部の形状は、濾材のサポート性、枠強度、濾過面積確保等を考慮し、開口面サポートの開口率が80〜90%であれば、前記図示の例に限らない。また、外枠は、コートボール紙、アルミ、ステンレス等の金属板等を用いることが好ましい。
【0015】
図1に示すように、プレフィルタ1は、長尺帯状の濾材2と補強体3とを接着し、一定の折山高さ、所定の折山数となるよう波形状に折り畳まれた積層濾材4を前記外枠5(6)内に収容し、前記積層濾材4と外枠5(6)とは、互いにデンプンのり等の接着剤により接着して気密にシールされている。
【0016】
前記積層濾材4の波形状の間隔を保持するために、波形状の積層濾材4の頂部全体を帯状にサポートする帯状サポート部14A(17A)と、該積層濾材4の折り畳まれた間隔を保持するくし歯状間隔保持部14B(17B)とから形成される紙製スタビライザ14(17)を、積層濾材4の流入側或いは流出側にそれぞれ設けることも可能である。前記スタビライザ14(17)には、前記外枠5(6)と同様に、飲料水パック等に使用される耐水性紙、コートボール等を使用できる。その他アルミ、ステンレス等の金属板等を使用することができる。スタビライザ14(17)を用いる場合であっても、外枠5(6)の開口面サポートの開口率が80〜90%を満たしていることが好ましい。図4に示す紙製スタビライザ14(17)は、左右対称な形状に打ち抜いた一枚板を対角線からV字状に二つ折りにしたものを使用している。尚、スタビライザ14(17)のくし歯状間隔保持部14B(17B)の歯高さ14b(17b)、歯間隔14c(17c)、歯底部幅14d(17d)、歯上部幅14e(17e)は、積層濾材4のジグザグ状の間隔を保持可能となるように、積層濾材4の波形状に合わせて適宜設定している。スタビライザ14(17)は、積層濾材4及び外枠5(6)に接着剤により接着固定することが可能である。
【0017】
【実施例】
次に、本発明プレフィルタの製造方法の実施例1〜8及び比較例1〜6について説明する。尚、本発明はこの実施例に限定されるものではない。
(実施例1)
厚さ1mmのコートボール紙製の縦寸法594mm×横寸法594mm×奥行寸法95mmの大きさの箱状の外枠に、ポリエステル繊維製の長尺帯状の濾材と亜鉛メッキ鉄線製の金網から成る補強体を接着剤で接着して厚さ7mmとし、折山高さが95mmとなるように波形状に折り畳んだ積層濾材を収容固定してプレフィルタを形成した。前記濾材の長さと外枠の横断面積との比を80m−1とした。また、積層濾材の折山数は24であった。前記プレフィルタの開口面サポートは、図5に示す構造と同様に、基本開口が菱形となる開口面サポート部を設け、積層濾材の上下2箇所に、くし歯状間隔保持部を備えた一対のくし歯状スタビライザを流出側及び流入側のそれぞれに設けた。前記プレフィルタの開口面サポートの開口率は60%である。
【0018】
(実施例2〜4)
濾材の長さと外枠の横断面積との比を84m-1とし、前記外枠内に収容した積層濾材の折山数が25となる以外は実施例1と同様のものを実施例2とし、濾材の長さと外枠の横断面積との比を87m-1とし、前記外枠内に収容した積層濾材の折山数が26となる以外は実施例1と同様のものを実施例3とし、濾材の長さと外枠の横断面積との比を94m-1とし、前記外枠内に収容した積層濾材の折山数が28となるもの以外は実施例1と同様のものを実施例4とした。
【0019】
(実施例5)
開口面サポートとして、図1及び図2に示す構造と同様に、外枠の対向する隅角部と隅角部を結ぶ二つの対角線状の開口面サポート部を設けたものを用いた以外は、実施例1と同様の厚み及び大きさの外枠内に、実施例1と同様の積層濾材を収容固定してプレフィルタを形成した。前記濾材の長さと外枠の横断面積との比を80m-1とした。前記大きさの外枠に前記長さの濾材を波形状に折り畳んで収納すると、積層濾材の折山数は24となった。前記プレフィルタの開口面サポートの開口率は83%である。尚、本実施例のプレフィルタはスタビライザを用いていない。
【0020】
(実施例6〜8)
濾材の長さと外枠の横断面積との比を84m-1とし、前記外枠内に収容した積層濾材の折山数が25となる以外は実施例5と同様のものを実施例6とし、濾材の長さと外枠の横断面積との比を87m-1とし、前記外枠内に収容した積層濾材の折山数が26となる以外は実施例5と同様のものを実施例7とし、濾材の長さと外枠の横断面積との比を94m-1とし、前記外枠内に収容した積層濾材の折山数が28となるもの以外は実施例5と同様のものを実施例8とした。
【0021】
(比較例1〜3)
濾材の長さと外枠の横断面積との比は、前記比が78m-1未満となる74m-1とし、前記外枠内に収容した積層濾材の折山数が22となる以外は、実施例1と同様のものを比較例1とし、濾材の長さと外枠の横断面積との比が78m-1未満となる77m-1とし、前記外枠内に収容した積層濾材の折山数が23となる以外は、実施例1と同様のものを比較例2とし、濾材の長さと外枠の横断面積との比が95m-1を超える101m-1とし、前記外枠内に収容した積層濾材の折山数が30となる以外は、実施例1と同様のものを比較例3とした。
【0022】
(比較例4〜6)
濾材の長さと外枠の横断面積との比は、前記比が78m-1未満となる74m-1とし、前記外枠内に収容した積層濾材の折山数が22となる以外は、実施例5と同様のものを比較例4とし、濾材の長さと外枠の横断面積との比が78m-1未満となる77m-1とし、前記外枠内に収容した積層濾材の折山数が23となる以外は、実施例5と同様のものを比較例5とし、濾材の長さと外枠の横断面積との比が95m-1を超える101m-1とし、前記外枠内に収容した積層濾材の折山数が30となる以外は、実施例5と同様のものを比較例6とした。
【0023】
次に、このようにして得られた実施例1〜8及び比較例1〜6のプレフィルタの圧力損失と粉塵保持量を評価した。結果を表1に示す。
[粉塵保持量]
JIS B 9908(形式2)により、各プレフィルタに、風量56m3/minで、JIS15種粉体を半年〜1年間通過させた時の初期から前記期間経過後の各プレフィルタの粉塵保持量(g/台)を粉塵保持容量試験装置により測定した。
判定基準:粉塵保持量が600g/台以上の場合を○、粉塵保持量が600g/台未満の場合を×とした。
[圧力損失]
JIS B 9908(形式2)により、各プレフィルタに、風量56m3/minで、空気を通過させた時の各プレフィルタの圧力損失を粉塵保持容量試験装置により測定した。
判定基準:圧力損失が60Pa以下の場合を○、圧力損失が61〜65Paの場合を△、圧力損失が65Paを超えた場合を×とした。
[総体評価]
判定基準:粉塵保持量及び圧力損失が共に○の場合を優良◎、粉塵保持量が○且つ圧力損失が△の場合を良○、粉塵保持量又は圧力損失のどちらか一方が×の場合を否×とした。
【0024】
【表1】

Figure 0004790206
【0025】
表1に示す結果から以下のことが分かった。
実施例1〜8の濾材の長さと外枠の横断面積との比(L/AH)が78〜95m-1を満たす各プレフィルタは、圧力損失が65Pa以下と小さく、粉塵保持量が600g/台と大きく、圧力損失及び粉塵保持量が共に良好であり、総体評価が良○又は優良◎であった。前記結果から一定の横断面積を有する外枠内に、前記比を満たす長さの濾材を波形状の折り畳んで収容すると、プレフィルタの圧力損失が大きくなるという問題を生じることなく、濾材面積を拡大することができ、粉塵保持量を増大してプレフィルタの長寿命化を図ることが可能であることが確認できた。
前記実施例1〜4と実施例5〜8について、濾材の長さと外枠の横断面積との比が同じプレフィルタごとに、開口率が60%であるプレフィルタと開口率が83%であるプレフィルタを比較すると、開口率が83%と大きいプレフィルタの方が、開口率が60%と小さいプレフィルタよりも圧力損失が小さく、粉塵保持量が大きくなっていた。この結果により、濾材長さと外枠の横断面積との比が同一である場合に、開口面サポートの開口率を80〜90%と大きくした場合は、空気を通過させる有効面積を拡大することができ、濾材の利用率を向上して、圧力損失の上昇を抑えることが可能であることが確認できた。
比較例1、2、4、5のように、濾材の長さと外枠の横断面積との比が78m-1未満のプレフィルタは、圧力損失が66Pa以下であるものの、塵埃保持量が550g/台以下と低く、総体評価が否×であった。この結果から、前記比が78m-1未満のプレフィルタは、濾材面積が小さいため、粉塵保持量が低くなり、フィルタの長寿命化が困難であることが確認できた。
また、比較例3、6のように、濾材の長さと外枠の横断面積との比が95m-1を超えているプレフィルタは、塵埃保持量が750台/g以上と大きいものの、圧力損失が67Pa以上と大きく、総体評価が否×であった。この結果から、前記比が95m-1を超えているプレフィルタは、積層濾材の波形状の間隔が密になりすぎて圧力損失が大きくなり、フィルタの長寿命化が困難であることが確認できた。
【0026】
【発明の効果】
本発明のプレフィルタの製造方法は、以下の効果を有している。
(1)本発明のプレフィルタの製造方法は、濾材の長さと外枠の横断面積との比が78〜95m−1となるようにしたため、圧力損失を大きくすることなく、粉塵保持量を大きくすることができる適当な範囲内で濾材面積を拡大することができ、フィルタ寿命を従来のプレフィルタの半年間から1年間に長寿命化することができる。
(2)また、濾材の長さと外枠の横断面積との比が同一であるプレフィルタにおいて、前記プレフィルタの開口面サポートの開口率が80〜90%と、開口面サポートの開口率を大きくした場合には、従来のプレフィルタよりも空気が通過しないデッドスペースを少なくすることができ、濾材の有効活用により、プレフィルタの圧力損失の上昇を押さえることができる。
(3)更に、本発明のプレフィルタの製造方法は長寿命化を実現したため、使用済みプレフィルタ(産業廃棄物)の量を低減することができ、プレフィルタの交換費用を低減することができる。
【図面の簡単な説明】
【図1】 本発明の製造方法によるプレフィルタの一部破断部を含む斜視図。
【図2】 外枠の展開図。
【図3】 他の外枠の実施例を示す展開図。
【図4】 スタビライザの展開図。
【図5】 従来のプレフィルタの一部破断部を含む斜視図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a prefilter for a medium / high performance filter, and more particularly to a method for manufacturing a prefilter used for an intake filter for a gas turbine.
[0002]
[Prior art]
Conventionally, as shown in FIG. 5, as a pre-filter of a medium / high performance filter, comb teeth are formed at two upper and lower portions of a laminated filter medium 13 that is bonded to a long band-shaped filter medium 11 and folded into a wave shape. A pair of comb-shaped stabilizers 14 and 17 provided with the shape interval holding portions 14B and 17B are provided on the outflow side and the inflow side, respectively, and the laminated filter medium 13 holding the wave-like interval is provided with a plurality of required shapes on the front and rear surfaces. A prefilter 10 is used that is housed and fixed in a paper box-like outer frame 15 or 16 in which an opening surface support portion 15c for forming an opening 15d is formed (see Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-117034 (3rd page, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, although the prefilter of Patent Document 1 has a pair of stabilizers at two upper and lower portions of the laminated filter medium and maintains the interval between the wave shapes of the laminated filter medium, it has the advantage that the deformation of the laminated filter medium is small. Usually, the number of folds of the corrugated laminated filter medium accommodated in the prefilter of the size used as the primary filter of the gas turbine intake filter is about 22, the filter medium area is small, and the dust holding amount of the prefilter is small. Since it is not so large, there is a problem that the filter life is short.
In addition, a dead space is formed by the opening surface support portions formed on the front and rear surfaces and the comb-shaped stabilizer, and the effective area through which air passes is reduced. As a result, the utilization rate of the filter medium of the prefilter is reduced, and the actual condition of the filter medium is reduced. There was a problem that the pressure loss was larger than expected from the area, and the filter life was shortened.
In view of the above-described problems, an object of the present invention is to provide a method for manufacturing a prefilter capable of extending the effective area of the filter material of the prefilter and extending the life of the filter .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a prefilter used for a gas turbine intake filter according to the present invention forms an opening surface support having openings of a required shape on the front and rear surfaces, respectively. Is used for a gas turbine intake filter in which a laminated filter medium is fixed and accommodated in a corrugated shape by attaching a reinforcing body to one surface of a non-woven filter medium having a long belt thickness of 4 to 8 mm. In the method for manufacturing a prefilter, the length (L) of the filter medium and the outer dimension when the lateral dimension of the outer frame is (A), the depth dimension is (H), and the cross-sectional area is (AH). The ratio (L / AH) to the cross-sectional area (AH) of the frame is 78 to 95 m −1 , the aperture ratio of the opening support is 80 to 90%, and the cross-sectional area of the outer frame is the horizontal dimension 594 to 610 mm × depth dimension. 70-120mm, folding of the laminated filter media The number (positive number) is characterized in that so is 24-28.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the prefilter 1 according to the manufacturing method of the present invention has a long belt-like filter medium 2 in outer frames 5 and 6 each formed with an opening surface support having openings of a required shape on the front and rear surfaces. A laminated filter medium 4 that is folded in a wave shape with a reinforcing body 3 attached to one surface is fixedly accommodated, and the ratio of the length of the filter medium 2 to the cross-sectional area of the outer frames 5 and 6 is 78 to 95 m −1. It consists of.
The lateral dimension of the pre-filter 1 whose outer shape is constituted by the outer frames 5 and 6 is (A), the depth dimension is (H), and the length of one side of the peak of the corrugated laminated filter medium 4 is (Lo). In this case, the length (L) of the filter medium is expressed by the expression (1), and the ratio of the cross-sectional area (AH) of the outer frames 5 and 6 to the length (L) of the filter medium is expressed by the expression (2). Is done.
L = Lo x 2 x number of layers of laminated filter media (1)
Ratio of cross-sectional area of outer frame to length of filter medium = L / AH (2)
Since the laminated filter medium is folded into a wave shape from the inflow side to the outflow side of the prefilter, the pressure loss of the prefilter can be determined by defining the ratio between the length of the filter medium and the cross-sectional area of the outer frame. The filter medium area can be expanded within an appropriate range in which the amount of retained dust can be increased without causing the problem of increasing the size of the filter, and the prefilter can be prevented from shortening its life due to increased pressure loss. it can.
The ratio of the cross-sectional area of the length and the outer frame of the filter medium of the prefilter was 78~95M -1, the ratio is less than 78m -1, the filter medium for storing folded into a wave shape in an outer frame There is a problem that the filter medium area cannot be expanded and the amount of dust retained in the prefilter is reduced. When the ratio exceeds 95, the corrugated laminated filter medium becomes too dense, and the pressure loss of the prefilter increases. This is because there is a problem of becoming larger.
Specifically, for example, when the cross-sectional area of the outer frame is a horizontal dimension of 594 to 610 mm x a depth dimension of 70 to 120 mm, in order to set the ratio of the length of the filter medium and the cross-sectional area of the outer frame to 78 to 95 m −1 The optimum length of the filter medium housed in the outer frame is 3.24 to 6.95 m. In addition, when the filter medium is folded into a wave shape so as to extend from the air inflow side to the outflow side, the height (depth dimension of the outer frame) is sufficiently large with respect to the bottom of the mountain, so The length (Lo) can be calculated by approximating the depth dimension of the outer frame, and the number of folds of the laminated filter medium when the filter medium having the optimum length for the outer frame of the dimension is folded into a wave shape. (Positive number) is 24 to 28.
[0007]
As the filter medium 2, a mixed nonwoven fabric of synthetic fibers such as non-woven reinforced cotton (cotton) and polyester fibers or a nonwoven fabric composed of synthetic fibers alone can be used.
The filter medium 2 preferably has a thickness of 4 to 8 mm. This is because if the thickness of the filter medium 2 is less than 4 mm, the amount of dust retained is small, so that the life of the prefilter cannot be extended. Further, if the thickness of the filter medium 2 exceeds 8 mm, there is a problem that the pressure loss of the filter increases.
[0008]
As the reinforcing body 3, a wire net such as galvanized iron wire, a synthetic resin net such as tricarnet, a non-woven fabric, or the like can be used. In particular, if the reinforcing body is made of a synthetic resin net or a non-woven fabric, the volume can be reduced by incineration and discarded.
[0009]
The filter medium 2 and the reinforcing body 3 are laminated and fixed with an adhesive on the outflow side of the filter medium 2 before pleating into a wave shape.
[0010]
As the outer frames 5 and 6, water-resistant paper used for drinking water packs, coated cardboard (two paperboards coated with resin on one side are bonded and laminated so that the resin-coated surface is on the outside and water-resistant Can be used). Other metal plates such as aluminum and stainless steel can be used. The outer frames 5 and 6 are provided with an opening surface support composed of an opening surface support portion 5c (6c) having a plurality of openings of a desired shape such as a rhombus so as to support the laminated filter medium 4 on both the inflow side and the outflow side. Yes.
[0011]
FIG. 2 is a development view of the outer frame 5 (6) of the pre-filter 1. The outer frame 5 (6) is formed by bending a single coated cardboard sheet. That is, the adjacent corners 5b (6b) of the single plate are cut out in a rectangular shape, and the corners 5a (6a) are formed in the other corners so that the corners can be bent. A side wall between the corners is bent vertically to form a wall portion, and a box-shaped outer frame 5 (6) in a state where one surface is released is formed. The ear portion 5a (6a) is bent so as to overlap the adjacent wall portion. Combine the outer frames 5 (6) so that the release surfaces of the two box-shaped outer frames 5 (6) face each other and the ears 5a (6a) of the two outer frames 5 (6) are asymmetric. Thus, a box-shaped outer frame 5 (6) that can accommodate the filter medium is formed inside. The reason why the outer frame 5 (6) is combined so that the ear portion 5a (6a) is asymmetric is to prevent air leakage.
[0012]
An opening 5d (6d) for allowing air to pass through is formed in the central surface of the single plate forming the outer frame 5 (6). The opening 5d (6d) is formed in the outer frame 5 (6). It is an opening surface support provided with an opening surface support portion 5c (6c) that prevents the filter medium accommodated in the container from being damaged.
[0013]
The opening surface support of the outer frame 5 (6) is formed so that the opening ratio is 80 to 90%. When the aperture ratio of the opening surface support is less than 80%, a dead space in which air does not pass through the filter medium 2 becomes large, the utilization rate of the filter medium 2 accommodated in the outer frame 5 (6) decreases, and the filter medium 2 is actually used. This is because the pressure loss is larger than expected from the area. Further, if the opening ratio of the opening surface support exceeds 90%, the laminated filter medium 4 accommodated in the outer frame 5 (6) cannot be supported, and the filter medium 2 may be damaged.
[0014]
In order to set the aperture ratio of the opening surface support to 80 to 90%, as shown in FIG. 2, two diagonal lines connecting the corner portions of the box-shaped outer frame 5 (6) are opposed to each other. It is preferable to provide the opening surface support part 5c (6c). In addition, for example, as shown in FIG. 3, four oblique opening surface support portions 5c ′ (6c ′) are provided from a substantially central portion of one side constituting the outer frame toward a substantially central portion of the other adjacent side. It is preferable. The shape of the opening surface support portion is not limited to the example shown in the drawings as long as the opening ratio of the opening surface support is 80 to 90% in consideration of the supportability of the filter medium, the frame strength, the filtration area securing, and the like. The outer frame is preferably a coated cardboard, a metal plate such as aluminum or stainless steel, or the like.
[0015]
As shown in FIG. 1, a prefilter 1 is a laminated filter medium 4 in which a long band-shaped filter medium 2 and a reinforcing body 3 are bonded and folded into a wave shape so as to have a constant fold height and a predetermined number of folds. In the outer frame 5 (6), and the laminated filter medium 4 and the outer frame 5 (6) are adhered to each other with an adhesive such as starch paste and hermetically sealed.
[0016]
In order to maintain the wavy interval of the laminated filter medium 4, the band-shaped support part 14 </ b> A (17 </ b> A) that supports the entire top of the wave-shaped laminated filter medium 4 in a band shape and the folded interval of the laminated filter medium 4 are maintained. It is also possible to provide a paper stabilizer 14 (17) formed from the comb-like interval holding portion 14B (17B) on the inflow side or the outflow side of the laminated filter medium 4, respectively. As the stabilizer 14 (17), water-resistant paper used for drinking water packs, court balls, and the like can be used similarly to the outer frame 5 (6). Other metal plates such as aluminum and stainless steel can be used. Even when the stabilizer 14 (17) is used, it is preferable that the opening ratio of the opening surface support of the outer frame 5 (6) satisfies 80 to 90%. The paper stabilizer 14 (17) shown in FIG. 4 uses a single plate punched into a symmetrical shape and folded in half from a diagonal line into a V shape. The tooth height 14b (17b), tooth spacing 14c (17c), tooth bottom width 14d (17d), and tooth top width 14e (17e) of the comb-like interval holding portion 14B (17B) of the stabilizer 14 (17) are as follows. The laminated filter medium 4 is appropriately set according to the wave shape of the laminated filter medium 4 so that the zigzag interval of the laminated filter medium 4 can be maintained. The stabilizer 14 (17) can be bonded and fixed to the laminated filter medium 4 and the outer frame 5 (6) with an adhesive.
[0017]
【Example】
Next, Examples 1 to 8 and Comparative Examples 1 to 6 of the method for producing a prefilter of the present invention will be described. In addition, this invention is not limited to this Example.
Example 1
Reinforcement consisting of a long belt-like filter medium made of polyester fiber and a wire mesh made of galvanized iron wire on a box-like outer frame made of coated cardboard with a thickness of 1 mm, a vertical dimension of 594 mm, a horizontal dimension of 594 mm, and a depth dimension of 95 mm The body was bonded with an adhesive to a thickness of 7 mm, and a pre-filter was formed by accommodating and fixing the laminated filter medium folded into a wave shape so that the fold height was 95 mm. The ratio of the length of the filter medium to the cross-sectional area of the outer frame was 80 m −1 . Moreover, the number of folds of the laminated filter medium was 24. As in the structure shown in FIG. 5, the prefilter opening surface support is provided with a pair of opening surface support portions provided with rhomboid basic openings and provided with comb-like spacing holding portions at two upper and lower portions of the laminated filter medium. Comb-shaped stabilizers were provided on each of the outflow side and the inflow side. The aperture ratio of the opening surface support of the prefilter is 60%.
[0018]
(Examples 2 to 4)
The ratio between the length of the filter medium and the cross-sectional area of the outer frame is 84 m −1, and the same number as that of Example 1 is set to Example 2 except that the number of folds of the laminated filter medium accommodated in the outer frame is 25. The ratio between the length of the filter medium and the cross-sectional area of the outer frame is 87 m −1, and the same number as that of Example 1 is set to Example 3 except that the number of folds of the laminated filter medium accommodated in the outer frame is 26. Example 4 is the same as Example 1 except that the ratio of the length of the filter medium to the cross-sectional area of the outer frame is 94 m -1 and the number of folds of the laminated filter medium accommodated in the outer frame is 28. did.
[0019]
(Example 5)
Like the structure shown in FIG.1 and FIG.2 as an opening surface support, except using what provided the two diagonal opening surface support parts which connect the corner part which the outer frame opposes, and a corner part, A prefilter was formed by accommodating and fixing the same laminated filter medium as in Example 1 in an outer frame having the same thickness and size as in Example 1. The ratio between the length of the filter medium and the cross-sectional area of the outer frame was 80 m −1 . When the filter medium of the length was folded into a wave shape and stored in the outer frame of the size, the number of folds of the laminated filter medium was 24. The aperture ratio of the opening surface support of the prefilter is 83%. Note that the prefilter of this embodiment does not use a stabilizer.
[0020]
(Examples 6 to 8)
The ratio between the length of the filter medium and the cross-sectional area of the outer frame is 84 m −1, and the same number as that of Example 5 is set to Example 6 except that the number of folds of the laminated filter medium accommodated in the outer frame is 25. The ratio between the length of the filter medium and the cross-sectional area of the outer frame is 87 m −1, and the same number as that of Example 5 is set to Example 7 except that the number of folds of the laminated filter medium accommodated in the outer frame is 26. Example 8 is the same as Example 5 except that the ratio of the length of the filter medium to the cross-sectional area of the outer frame is 94 m -1 and the number of folds of the laminated filter medium accommodated in the outer frame is 28. did.
[0021]
(Comparative Examples 1-3)
The ratio between the length of the filter medium and the cross-sectional area of the outer frame is 74 m −1 where the ratio is less than 78 m −1, and the number of folds of the laminated filter medium accommodated in the outer frame is 22, 1 is set as Comparative Example 1, the ratio of the length of the filter medium to the cross-sectional area of the outer frame is set to 77 m −1 which is less than 78 m −1, and the number of folds of the laminated filter medium accommodated in the outer frame is 23. the addition made, as Comparative example 2 the same as in example 1, and 101 m -1 the ratio of the cross-sectional area of the length of the filter media and the outer frame is greater than 95 m -1, the laminated filter material which is accommodated in the outer frame Comparative Example 3 was the same as Example 1 except that the number of folds was 30.
[0022]
(Comparative Examples 4-6)
The ratio between the length of the filter medium and the cross-sectional area of the outer frame is 74 m −1 where the ratio is less than 78 m −1, and the number of folds of the laminated filter medium accommodated in the outer frame is 22, 5 is set as Comparative Example 4, the ratio of the length of the filter medium to the cross-sectional area of the outer frame is set to 77 m −1 which is less than 78 m −1, and the number of folds of the laminated filter medium accommodated in the outer frame is 23 the addition made, as Comparative example 5 the same as in example 5, and 101 m -1 the ratio of the cross-sectional area of the length of the filter media and the outer frame is greater than 95 m -1, the laminated filter material which is accommodated in the outer frame Comparative Example 6 was the same as Example 5 except that the number of folds was 30.
[0023]
Next, the pressure loss and dust holding amount of the prefilters of Examples 1 to 8 and Comparative Examples 1 to 6 thus obtained were evaluated. The results are shown in Table 1.
[Dust retention]
According to JIS B 9908 (Type 2), the amount of dust retained in each pre-filter after the passage of the period from the initial stage when JIS 15 seed powder is passed through each pre-filter at an air volume of 56 m 3 / min for half a year to one year ( g / unit) was measured with a dust holding capacity tester.
Judgment criteria: A case where the dust holding amount was 600 g / unit or more was evaluated as “◯”, and a case where the dust holding amount was less than 600 g / unit was evaluated as “X”.
[Pressure loss]
According to JIS B 9908 (Type 2), the pressure loss of each prefilter when air was passed through each prefilter at an air volume of 56 m 3 / min was measured with a dust holding capacity tester.
Judgment criteria: ◯ when the pressure loss is 60 Pa or less, Δ when the pressure loss is 61 to 65 Pa, and x when the pressure loss exceeds 65 Pa.
[Overall evaluation]
Judgment criteria: Excellent when the dust holding amount and pressure loss are both ◎ Excellent, when the dust holding amount is ◯ and the pressure loss is △, and when either the dust holding amount or the pressure loss is × X.
[0024]
[Table 1]
Figure 0004790206
[0025]
The results shown in Table 1 revealed the following.
Each prefilter in which the ratio (L / AH) of the length of the filter medium of Examples 1 to 8 and the cross-sectional area of the outer frame satisfies 78 to 95 m −1 has a small pressure loss of 65 Pa or less, and the dust holding amount is 600 g / The table was large, both the pressure loss and the amount of dust retained were good, and the overall evaluation was good or excellent. From the above results, when a filter medium having a length satisfying the above ratio is accommodated in an outer frame having a constant cross-sectional area, the filter medium area is expanded without causing a problem that the pressure loss of the prefilter increases. It was confirmed that it was possible to increase the dust holding amount and extend the life of the prefilter.
For Examples 1-4 and Examples 5-8, for each prefilter having the same ratio of the length of the filter medium and the cross-sectional area of the outer frame, the prefilter with an aperture ratio of 60% and the aperture ratio is 83%. When comparing the prefilters, the prefilter having a large aperture ratio of 83% had a smaller pressure loss and a larger dust holding amount than the prefilter having a small aperture ratio of 60%. As a result, when the ratio of the length of the filter medium and the cross-sectional area of the outer frame is the same, when the aperture ratio of the aperture support is increased to 80 to 90%, the effective area through which air can pass can be expanded. It was confirmed that it was possible to improve the utilization rate of the filter medium and suppress the increase in pressure loss.
As in Comparative Examples 1, 2, 4, and 5, the prefilter having a ratio of the length of the filter medium to the cross-sectional area of the outer frame of less than 78 m −1 has a pressure loss of 66 Pa or less, but has a dust holding amount of 550 g / It was as low as below the table, and the overall evaluation was no. From this result, it was confirmed that the pre-filter having the ratio of less than 78 m −1 has a small filter medium area, so that the dust holding amount is low and it is difficult to extend the life of the filter.
Further, as in Comparative Examples 3 and 6, the prefilter in which the ratio of the length of the filter medium to the cross-sectional area of the outer frame exceeds 95 m −1 has a large dust holding amount of 750 units / g or more, but the pressure loss Was as large as 67 Pa or more, and the overall evaluation was negative. From this result, it can be confirmed that the prefilter having the ratio exceeding 95 m −1 has a too narrow wave-like interval between the laminated filter media, and the pressure loss increases, and it is difficult to extend the life of the filter. It was.
[0026]
【The invention's effect】
The method for producing a prefilter of the present invention has the following effects.
(1) In the method for producing a prefilter of the present invention, the ratio of the length of the filter medium to the cross-sectional area of the outer frame is set to 78 to 95 m −1 , so that the amount of retained dust is increased without increasing the pressure loss. The filter medium area can be increased within an appropriate range, and the filter life can be extended from half a year to one year of the conventional prefilter.
(2) In the prefilter having the same ratio between the length of the filter medium and the cross-sectional area of the outer frame, the aperture ratio of the aperture support of the prefilter is 80 to 90%, and the aperture ratio of the aperture support is increased. In this case, the dead space through which air does not pass can be reduced as compared with the conventional prefilter, and an increase in the pressure loss of the prefilter can be suppressed by effectively using the filter medium.
(3) Furthermore, since the prefilter manufacturing method of the present invention achieves a long service life, the amount of used prefilter (industrial waste) can be reduced, and the replacement cost of the prefilter can be reduced. .
[Brief description of the drawings]
FIG. 1 is a perspective view including a partially broken portion of a prefilter according to a manufacturing method of the present invention .
FIG. 2 is a development view of the outer frame.
FIG. 3 is a development view showing another embodiment of the outer frame.
FIG. 4 is a development view of a stabilizer.
FIG. 5 is a perspective view including a partially broken portion of a conventional prefilter.

Claims (1)

前後面に所要形状の開口を備える開口面サポートをそれぞれ形成して成る外枠内に、長尺帯状の厚さが4〜8mmの不織布濾材の一面に補強体を添設して波形状に折り畳んだ積層濾材が固定収容されたガスタービン用吸気フィルタに使用されるプレフィルタの製造方法において、前記外枠の横寸法を(A)とし、奥行寸法を(H)とし、横断面積を(AH)とした場合の、前記濾材の長さ(L)と前記外枠の横断面積(AH)との比(L/AH)が78〜95m-1
前記開口面サポートの開口率が80〜90%、前記外枠の横断面積が横寸法594〜610mm×奥行寸法70〜120mm、前記積層濾材の折山数(正数)が24〜28であるようにすることを特徴とするプレフィルタの製造方法
In the outer frame formed by opening surface supports each having an opening of the required shape on the front and rear surfaces, a reinforcing body is attached to one surface of a non-woven filter medium having a long belt shape thickness of 4 to 8 mm and folded into a wave shape. In the manufacturing method of the pre-filter used for the gas turbine intake filter in which the laminated filter medium is fixedly accommodated, the lateral dimension of the outer frame is (A), the depth dimension is (H), and the transverse area is (AH). , The ratio (L / AH) of the length (L) of the filter medium to the cross-sectional area (AH) of the outer frame is 78 to 95 m −1 ,
The aperture ratio of the opening surface support is 80 to 90%, the cross-sectional area of the outer frame is horizontal dimension 594 to 610 mm × depth dimension 70 to 120 mm, and the number of folds (positive number) of the laminated filter medium is 24-28. A method for producing a prefilter, characterized in that
JP2003138481A 2003-05-16 2003-05-16 Prefilter manufacturing method Expired - Lifetime JP4790206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138481A JP4790206B2 (en) 2003-05-16 2003-05-16 Prefilter manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138481A JP4790206B2 (en) 2003-05-16 2003-05-16 Prefilter manufacturing method

Publications (2)

Publication Number Publication Date
JP2004337759A JP2004337759A (en) 2004-12-02
JP4790206B2 true JP4790206B2 (en) 2011-10-12

Family

ID=33527840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138481A Expired - Lifetime JP4790206B2 (en) 2003-05-16 2003-05-16 Prefilter manufacturing method

Country Status (1)

Country Link
JP (1) JP4790206B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892907B (en) * 2010-06-12 2013-10-09 上海电力学院 Combined locking silencer for gas turbine intake duct
JP2014136179A (en) * 2013-01-15 2014-07-28 Nippon Air Filter Kk Box type prefilter
CN116490220A (en) * 2020-11-20 2023-07-25 本田技研工业株式会社 Filter device, method for manufacturing the same, and air conditioner

Also Published As

Publication number Publication date
JP2004337759A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US6238561B1 (en) Corrugated axial filter with simple fold pattern and method of making it
JP3790803B2 (en) Pleated filter assembly
US20030230061A1 (en) Collapsible pleated filter element
US9320998B2 (en) Collapsible pleated filter and frame
US20070289273A1 (en) Air filter with pleat lock
JP2011530402A (en) Z-type media, method and apparatus including fluted closure
US2008751A (en) Filter
US3807147A (en) High efficiency air filter
JP4790206B2 (en) Prefilter manufacturing method
US20070289272A1 (en) Nestable, rigid, planar air filter frame
JP6127411B2 (en) Air filter
JP5281752B2 (en) Filter pack and air filter using the same
JP3337676B2 (en) Air filter
JP4171115B2 (en) Prefilter
CN210786539U (en) Filter material with high filtering efficiency
US20080016835A1 (en) Nestable, rigid, planar air filter frame
US20220023791A1 (en) Collapsible air filter assemblies
CN211721974U (en) Mask
JP2008212781A (en) Air filter
CN216726350U (en) Air purifier filter screen of difficult limit that looses
CN208943573U (en) A kind of reinforcement type filter core for filter
JP2015139739A (en) Gas turbine intake air filter
US11717780B2 (en) Collapsible disposable filter
JP2902414B2 (en) Filter for air purifier
CN212701053U (en) Foldable filter element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090326

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4790206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term