JP4789508B2 - Method for producing silver-colored pearlescent pigment - Google Patents

Method for producing silver-colored pearlescent pigment Download PDF

Info

Publication number
JP4789508B2
JP4789508B2 JP2005152455A JP2005152455A JP4789508B2 JP 4789508 B2 JP4789508 B2 JP 4789508B2 JP 2005152455 A JP2005152455 A JP 2005152455A JP 2005152455 A JP2005152455 A JP 2005152455A JP 4789508 B2 JP4789508 B2 JP 4789508B2
Authority
JP
Japan
Prior art keywords
pigment
coating
substrate
thickness
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005152455A
Other languages
Japanese (ja)
Other versions
JP2006328182A (en
Inventor
彰 西村
正博 橋本
真吾 大久保
福二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005152455A priority Critical patent/JP4789508B2/en
Publication of JP2006328182A publication Critical patent/JP2006328182A/en
Application granted granted Critical
Publication of JP4789508B2 publication Critical patent/JP4789508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は、シルバー発色の真珠光沢顔料およびその製造方法、特に、顔料の厚みをより薄くし塗膜内に緻密に存在可能であって、且つシルバー発色を有する真珠光沢顔料およびその製造方法に関する。   The present invention relates to a silver-colored pearlescent pigment and a method for producing the same, and more particularly, to a pearlescent pigment having a silver-colored pearlescent pigment and a method for producing the same.

従来から、雲母やシリカ表面に二酸化チタンを被覆したパールマイカ顔料が知られている。このパールマイカ顔料は、二酸化チタン層の屈折率を利用した光干渉により真珠のような光沢を示し、二酸化チタン層の厚さを変化させることにより種々の干渉色を発色できることから、特に自動車の上塗り塗料として広く使用されている。   Conventionally, pearl mica pigments in which titanium dioxide is coated on the surface of mica or silica are known. This pearl mica pigment exhibits a pearly luster due to light interference utilizing the refractive index of the titanium dioxide layer, and various interference colors can be developed by changing the thickness of the titanium dioxide layer. Widely used as a paint.

しかしながら、従来のパールマイカ顔料は、図5に示すように、厚みが0.2〜1.0μmを有する雲母23の表面に、例えば酸化チタン被覆層14を80〜400nmの厚みで被覆したものであった。   However, as shown in FIG. 5, the conventional pearl mica pigment is obtained by coating the surface of mica 23 having a thickness of 0.2 to 1.0 μm, for example, with a titanium oxide coating layer 14 having a thickness of 80 to 400 nm. there were.

したがって、従来のパールマイカ顔料40は、その厚みが厚いために、上塗り塗膜またはペース塗膜中に緻密に配向することができず、さらに顔料粒子のエッジの光散乱が強くなるため、「フリップ・フロップ効果」(角度によって微妙に色調が変化する効果)により意匠効果が今一歩であった。   Therefore, since the conventional pearl mica pigment 40 is thick, it cannot be densely oriented in the top coat film or the pace paint film, and the light scattering at the edge of the pigment particle becomes strong.・ The design effect was just one step away from the “flop effect” (an effect in which the color tone changes slightly depending on the angle).

一方、特許文献1には、合成マイカ粉末を一旦600〜1350℃に熱処理して表面平滑化して得られた面方向の径は3〜100μmで、厚みが0.05〜1μmの薄片状粒子に、ルチル化した二酸化チタンを被覆した、塗料、インキ、化粧品などに用いるためのパール光沢顔料が提案されている。   On the other hand, Patent Document 1 discloses that flaky particles having a diameter in a plane direction of 3 to 100 μm and a thickness of 0.05 to 1 μm obtained by heat-treating a synthetic mica powder once at 600 to 1350 ° C. A pearlescent pigment for use in paints, inks, cosmetics, etc., coated with rutile titanium dioxide has been proposed.

また、特許文献2には、雲母フレークの代わりに基材としてアルカリ金属またはアルカリ土類金属含有板状べーマイトを用い、この特定のベーマイトに酸化チタン等の金属酸化物を被覆してなる真珠光沢顔料が提案されている。ここで、基材として用いられる特定のベーマイトの厚さは150〜200nmであり、そのアスペクト比は27〜40の範囲のものである。   Further, in Patent Document 2, a pearly luster obtained by using an alkali metal or alkaline earth metal-containing plate boehmite as a base material instead of mica flakes and coating this specific boehmite with a metal oxide such as titanium oxide. Pigments have been proposed. Here, the specific boehmite used as the substrate has a thickness of 150 to 200 nm and an aspect ratio in the range of 27 to 40.

特開平9−194754号公報JP 9-194754 A 特開2001−207077号公報JP 2001-207077 A

しかしながら、上記特許文献1に提案されているパール光沢顔料では、合成マイカの表面を平滑化するために熱処理が必要となり、製造操作が煩雑になる。さらに、この平滑化された合成マイカに被覆される酸化チタン被膜の厚みについて、特許文献1には何ら提示されておらず、酸化チタン被膜が厚い場合には、得られたパール光沢顔料自体の厚みも厚くなり、その結果、顔料粒子のエッジ光散乱が強くなるため、「フリップ・フロップ効果」が得にくくなり、意匠性に欠ける可能性がある。さらに、酸化チタンの被膜が厚すぎると、シルバー色を発色させることができず、ホワイトパール色を有する顔料を得ることはできない。   However, the pearl luster pigment proposed in Patent Document 1 requires heat treatment to smooth the surface of the synthetic mica, and the manufacturing operation becomes complicated. Furthermore, there is no indication in Patent Document 1 about the thickness of the titanium oxide film coated on the smoothed synthetic mica. When the titanium oxide film is thick, the thickness of the obtained pearl luster pigment itself As a result, the edge light scattering of the pigment particles becomes strong, which makes it difficult to obtain the “flip-flop effect” and may lack design properties. Furthermore, if the titanium oxide film is too thick, a silver color cannot be developed, and a pigment having a white pearl color cannot be obtained.

また、上記特許文献2に提案されている真珠光沢顔料では、基材のアスペクト比が40以下であるため、この基材に酸化チタンを被覆しても、光の干渉効果が発現しにくくなる。さらに、特許文献2にも酸化チタン被膜の厚みについて何ら提示されておらず、上述したように、酸化チタン被膜が厚い場合には、得られた真珠光沢顔料自体の厚みも厚くなり、その結果、得られた真珠光沢顔料自体の厚みも厚くなるため、顔料粒子のエッジ光散乱が強くなるため、「フリップ・フロップ効果」が得にくく、意匠性に欠ける可能性がある。さらに、酸化チタンの被膜が厚すぎると、シルバー色を発色させることができず、ホワイトパール色を有する顔料を得ることはできない。   Moreover, in the pearl luster pigment proposed in Patent Document 2, since the base material has an aspect ratio of 40 or less, even if the base material is coated with titanium oxide, the light interference effect is hardly exhibited. Furthermore, Patent Document 2 does not provide any information about the thickness of the titanium oxide film. As described above, when the titanium oxide film is thick, the thickness of the obtained pearlescent pigment itself is also increased. Since the thickness of the obtained pearl luster pigment itself is increased, the edge light scattering of the pigment particles is increased, so that it is difficult to obtain the “flip-flop effect” and the design property may be lacking. Furthermore, if the titanium oxide film is too thick, a silver color cannot be developed, and a pigment having a white pearl color cannot be obtained.

本発明は、上記課題に鑑みなされたものであり、フリップ・フロップ効果が高く、且つシルバー発色性を有し、また塗膜内に緻密に存在可能な薄片状の真珠光沢顔料およびその製造方法を提供する。   The present invention has been made in view of the above problems, and provides a flaky pearlescent pigment having a high flip-flop effect, silver colorability, and capable of being densely present in a coating film, and a method for producing the same. provide.

本発明のシルバー発色の真珠光沢顔料の製造方法は、以下の特徴を有する。   The method for producing a silver-colored pearlescent pigment of the present invention has the following characteristics.

(1)薄片状基質の表面上にシリカを被覆して被覆組成物を形成させ、前記被覆組成物を500℃以上700℃以下の温度で焼成させ、前記被覆組成物中の表層被膜を前記薄片状基質表面から剥離させ剥離組成物を得て、長径が5〜100μmであってアスペクト比が50以上の前記剥離組成物の表面に酸化チタンからなる被覆層を形成させ、前記被覆層が形成された顔料前駆体を700℃以上の温度で焼成させ、40〜100nmの厚みを有する被覆層を有するシルバー発色の真珠光沢顔料の製造方法である。 (1) The surface of the flaky substrate is coated with silica to form a coating composition, and the coating composition is baked at a temperature of 500 ° C. or higher and 700 ° C. or lower. A release composition is obtained by peeling from the surface of the substrate, and a coating layer made of titanium oxide is formed on the surface of the release composition having a major axis of 5 to 100 μm and an aspect ratio of 50 or more , whereby the coating layer is formed. The pigment precursor is baked at a temperature of 700 ° C. or higher, and a silver-colored pearlescent pigment having a coating layer having a thickness of 40 to 100 nm is produced.

上記薄片状基質の表面上にシリカを被覆して被覆組成物を形成させ、この被覆組成物を500℃以上700℃以下の温度で焼成させ、さらに上記被覆組成物中の表層被膜を薄片状基質表面から剥離させて得られた剥離組成物は、極めて厚みの薄く、且つ平滑性を有する鱗片状基材となる。この鱗片状基材に酸化チタンを被覆して700℃以上で焼成させることによって得られた顔料は、アスペクト比の高く極薄で且つ平滑性の高いフリップ・フロップ効果の高いシルバー発色性真珠光沢顔料となる。酸化チタンからなる被覆層を上記特定の厚みとしたことにより、初めてシルバー色を有するホワイトパール発色の真珠光沢顔料が得られる。さらに、上記特定の長径およびアスペクト比(厚みと長手方向の長さの比)を有する鱗片状基材に上記被覆層が形成されたシルバー発色性真珠光沢顔料は、その厚みが極薄であり、塗膜中に同含有量PWC(pigment weight content:塗料の樹脂に対する固形分含量)で顔料を含有された場合に塗膜中の顔料数が増加し且つ緻密に存在させることができる。これにより、より「フリップ・フロップ効果」の高い塗膜を形成することができる。 Silica is coated on the surface of the flaky substrate to form a coating composition, the coating composition is baked at a temperature of 500 ° C. or higher and 700 ° C. or lower, and the surface layer coating in the coating composition is further flaky substrate The peeling composition obtained by peeling from the surface becomes a scaly substrate having a very thin thickness and smoothness. The pigment obtained by coating the scale-like substrate with titanium oxide and calcining at 700 ° C. or higher is a silver-colored pearlescent pigment having a high aspect ratio, extremely thin, high smoothness and high flip-flop effect. It becomes. By setting the coating layer made of titanium oxide to the specific thickness, a white pearl-colored pearlescent pigment having a silver color can be obtained for the first time. Furthermore, the silver color-forming pearlescent pigment in which the coating layer is formed on a scaly substrate having the specific major axis and aspect ratio (ratio of thickness and length in the longitudinal direction) has an extremely thin thickness. When the pigment is contained in the coating film with the same content PWC (pigment weight content: solid content with respect to the resin of the coating material), the number of pigments in the coating film increases and can be made dense. Thereby, a coating film having a higher “flip-flop effect” can be formed.

(2)上記(1)に記載のシルバー発色の真珠光沢顔料の製造方法において、前記薄片状基質は、天然マイカ、合成マイカ、ガラスフレーク、シリカフレーク、アルミナフレーク、硫酸バリウムから選択される。   (2) In the method for producing a silver-colored pearlescent pigment according to (1), the flaky substrate is selected from natural mica, synthetic mica, glass flake, silica flake, alumina flake, and barium sulfate.

上記薄片状基質は、鱗片状基材となる素材との界面剥離性がよい。   The flaky substrate has good interfacial peelability from the material that becomes the scaly substrate.

本発明によれば、「フリップ・フロップ効果」が高く、塗膜内に緻密に存在可能なシルバー発色の真珠光沢顔料を得ることができる。   According to the present invention, a silver-colored pearlescent pigment having a high “flip-flop effect” and capable of being densely present in the coating film can be obtained.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[シルバー発色の真珠光沢顔料]
本発明の好適な実施の形態のシルバー発色の真珠光沢顔料に関し、図1を用いてその構成を説明する。
[Silver color pearlescent pigment]
The configuration of the silver-colored pearlescent pigment of a preferred embodiment of the present invention will be described with reference to FIG.

図1に示すように、本実施の形態のシルバー発色の真珠光沢顔料20は、鱗片状基材13に酸化チタンからなる被覆層14が被覆されて形成されている。   As shown in FIG. 1, the silver-colored pearlescent pigment 20 of this embodiment is formed by coating a scaly substrate 13 with a coating layer 14 made of titanium oxide.

鱗片状基材13は、その厚みは100〜200nmであり、好ましくは100〜150nmである。鱗片状基材13の厚みが200nmを超えると、塗膜内での緻密性が減少し、さらにフリップ・フロップ効果が低下する。一方、厚みが100nm未満のものを基材として得ることは、後述する製造方法によっても難しい。   The scale-like base material 13 has a thickness of 100 to 200 nm, preferably 100 to 150 nm. When the thickness of the scaly substrate 13 exceeds 200 nm, the denseness in the coating film is reduced, and the flip-flop effect is further reduced. On the other hand, it is difficult to obtain a substrate having a thickness of less than 100 nm as a substrate by a manufacturing method described later.

また、鱗片状基材13の長径(長手方向の長さ)は、5〜100μmであり、特に車両用の塗料に用いる顔料の場合には、鱗片状基材13の長径が5〜15μmが好ましい。長径が5μm未満の場合には、光干渉効果の高い顔料を得ることができず、長径が100μmを超えると塗膜より顔料の一部が突出する可能性があり、塗膜外観が劣化する。なお、車両用の塗料に用いる顔料の場合、鱗片状基材13の長径が15μmを超えると、やはり、上塗り塗膜またはベース塗膜より顔料の一部が突出して塗膜外観を損ねる可能性がある。   Further, the major axis (length in the longitudinal direction) of the scaly substrate 13 is 5 to 100 μm, and particularly in the case of a pigment used for a paint for vehicles, the major axis of the scaly substrate 13 is preferably 5 to 15 μm. . When the major axis is less than 5 μm, a pigment having a high light interference effect cannot be obtained. When the major axis exceeds 100 μm, a part of the pigment may protrude from the coating film, and the coating film appearance deteriorates. In the case of a pigment used for a paint for vehicles, if the major axis of the scaly substrate 13 exceeds 15 μm, there is still a possibility that a part of the pigment protrudes from the top coat film or the base coat film to impair the appearance of the paint film. is there.

上記鱗片状基材13のアスペクト比(厚みと長径との比)は50以上であり、好ましくは50以上500以下であり、より好ましくは50以上300である。アスペクト比が50未満の場合には、光干渉効果の高い顔料が得られず、一方、アスペクト比が500を超えると、塗膜から顔料の一部が突出してしまい、塗膜外観を損ねるおそれがある。   The scale-like substrate 13 has an aspect ratio (ratio of thickness to major axis) of 50 or more, preferably 50 or more and 500 or less, more preferably 50 or more and 300. When the aspect ratio is less than 50, a pigment having a high light interference effect cannot be obtained. On the other hand, when the aspect ratio exceeds 500, a part of the pigment protrudes from the coating film, which may impair the appearance of the coating film. is there.

鱗片状基材13の素材は、シリカ(SiO2)またはマイカであり、マイカも合成マイカが好ましく、この合成マイカは、合成マイカを600〜1350℃で熱処理して平滑化したものが好ましい。上記素材は、いずれも、表面平滑性が高くアスペクト比の高い鱗片状基材を形成することができ、「フリップ・フロップ効果」の高いシルバー発色の真珠光沢顔料を得ることができる。また、製造操作の簡便性を考慮すると、熱処理工程を要しないシリカが、鱗片状基材13としてより好ましい。 The material of the scaly substrate 13 is silica (SiO 2 ) or mica, and mica is also preferably synthetic mica, and this synthetic mica is preferably obtained by heat-treating synthetic mica at 600 to 1350 ° C. and smoothing. Any of the above materials can form a scaly substrate having a high surface smoothness and a high aspect ratio, and a silver-colored pearlescent pigment having a high “flip-flop effect” can be obtained. In view of the simplicity of the manufacturing operation, silica that does not require a heat treatment step is more preferable as the scaly substrate 13.

一方、被覆層14は、酸化チタン(TiO2)からなり、被覆層14の厚みは40〜100nmである。被覆層14の厚みが40nm未満の場合には、干渉色であるシルバー色を得ることができず、一方、厚みが100nmを超えると、黄味〜赤味へと変化し、シルバー発色し難くなる。 On the other hand, the coating layer 14 is made of titanium oxide (TiO 2 ), and the thickness of the coating layer 14 is 40 to 100 nm. When the thickness of the coating layer 14 is less than 40 nm, a silver color that is an interference color cannot be obtained. On the other hand, when the thickness exceeds 100 nm, the color changes from yellow to red and it is difficult to develop a silver color. .

[シルバー発色の真珠光沢顔料の製造方法]
本発明の好適な実施の形態のシルバー発色の真珠光沢顔料の製造方法に関し、図2を用いて説明する。
[Method for producing silver-colored pearlescent pigment]
A method for producing a silver-colored pearlescent pigment according to a preferred embodiment of the present invention will be described with reference to FIG.

図2に示すように、まず、薄片状基質10の表面に鱗片状基材となる素材からなる表層被膜12を形成し、得られた被覆組成物を700℃以下、好ましくは500℃〜650℃の低温で焼成する(S100)。次に、被覆組成物の薄片状基質10から表層被膜12を剥離させ、剥離組成物である鱗片状基材13を得る(S102)。得られた鱗片状基材13の表面に酸化チタン(TiO2)からなる被覆層14を形成し顔料前駆体を生成させる(S104)。次いで、前記顔料前駆体を700℃以上、好ましくは700℃〜800℃の高温で焼成する(S106)。更に分級して、平均粒径5〜100μmのシルバー発色の真珠光沢顔料20が得られる。 As shown in FIG. 2, first, a surface layer film 12 made of a raw material to be a scaly substrate is formed on the surface of a flaky substrate 10, and the obtained coating composition is 700 ° C. or lower, preferably 500 ° C. to 650 ° C. Is fired at a low temperature (S100). Next, the surface layer film 12 is peeled from the flaky substrate 10 of the coating composition to obtain a scaly substrate 13 which is a peeling composition (S102). A coating layer 14 made of titanium oxide (TiO 2 ) is formed on the surface of the obtained scaly substrate 13 to generate a pigment precursor (S104). Next, the pigment precursor is baked at a high temperature of 700 ° C. or higher, preferably 700 ° C. to 800 ° C. (S106). Further classification is performed to obtain a silver-colored pearlescent pigment 20 having an average particle diameter of 5 to 100 μm.

ここで、鱗片状基材13の厚み、長径、アスペクトおよび被覆層14の厚みについては、上述した通りであり、その説明を省略する。   Here, the thickness, the major axis, the aspect, and the thickness of the coating layer 14 of the scaly substrate 13 are as described above, and the description thereof is omitted.

上記薄片状基質10は、平滑性に富み、その粒子の板形の大きさは、レーザー径で50〜800μmの範囲が好ましい。50μm以下では、剥離した鱗片状基材13の粒子径が細かすぎて、干渉光沢が十分に発揮できても、薄片状基質10から酸化チタンが剥離しにくい。また、粒子の板形の大きさが、800μm以上になると、鱗片状基材13の干渉光沢は十分に発揮できるが、剥離した鱗片状基材13の粒子が大きくなりすぎると共に、その機械的強度が弱いため、利用する用途が限定されてしまう。   The flaky substrate 10 is rich in smoothness, and the plate size of the particles is preferably in the range of 50 to 800 μm in terms of laser diameter. When the particle size is 50 μm or less, the particle size of the exfoliated scaly substrate 13 is too small, and even when the interference gloss is sufficiently exhibited, the titanium oxide is difficult to exfoliate from the flaky substrate 10. Further, when the size of the plate shape of the particles is 800 μm or more, the interference gloss of the scaly substrate 13 can be sufficiently exerted, but the particles of the exfoliated scaly substrate 13 become too large and the mechanical strength thereof is increased. However, the usage is limited.

上記薄片状基質10の粒子径は、100〜700μmの範囲であることがより好ましい。100μm以下の薄片状基質を用いると、後述する剥離組成物の粒子が細かくなり、高虹彩色の干渉色の発色がやや弱くなる傾向がある。また、薄片状基質10の粒子径が700μmより大きくなると、剥離組成物の粒子による高虹彩色の干渉色の発色は強くなるものの、粒子にザラツキ感が出てくる傾向がある。更に、薄片状基質10の粒子径は、更に好ましくは100〜300μmであり、光沢が強く剥離も容易となる。   The particle size of the flaky substrate 10 is more preferably in the range of 100 to 700 μm. When a flaky substrate having a thickness of 100 μm or less is used, particles of a peeling composition described later tend to be fine, and the coloration of high iris interference colors tends to be slightly weakened. Further, when the particle size of the flaky substrate 10 is larger than 700 μm, although the coloring of the high iris interference color by the particles of the peeling composition becomes strong, there is a tendency for the particles to feel rough. Furthermore, the particle size of the flaky substrate 10 is more preferably 100 to 300 μm, and it has a high gloss and is easy to peel off.

具体的に、上述の粒子径の範囲に入りやすい薄片状基質10としては、例えば、天然マイカ、合成マイカ、ガラスフレーク、シリカフレーク、アルミナフレーク、硫酸バリウム等が挙げられる。ガラスフレークは、その形状、及び表面の平滑性の度合いを制御することが比較的容易であり、更に、その表面に均一な鱗片状基材13となる素材を、上述した100〜200nmの厚さまで被覆させることも比較的容易であり、またガラスフレークと鱗片状基材13との界面剥離が容易な点などにおいて、薄片状基質10として選択するには好ましい素材である。   Specifically, examples of the flaky substrate 10 that easily falls within the above-described particle diameter range include natural mica, synthetic mica, glass flake, silica flake, alumina flake, and barium sulfate. The glass flake is relatively easy to control its shape and the degree of surface smoothness, and further, the material that forms the uniform scaly substrate 13 on the surface thereof has a thickness of 100 to 200 nm as described above. It is a preferable material to select as the flaky substrate 10 because it is relatively easy to coat and the interface flaking between the glass flakes and the flaky substrate 13 is easy.

薄片状基質10の粒子の厚さは特に規定されないが、0.1μm〜10μmの範囲が好ましい。粒子の厚さが0.1μm以下の場合、薄片状基質10の周辺が丸くカールし、被覆した表層被膜12も周辺がカールし、平滑性を有する鱗片状基材13が得られない。一方、粒子の厚さが10μm以上になると、鱗片状基材13の生産性が低下する。   Although the thickness of the particles of the flaky substrate 10 is not particularly defined, a range of 0.1 μm to 10 μm is preferable. When the thickness of the particles is 0.1 μm or less, the periphery of the flaky substrate 10 is curled roundly, and the periphery of the coated surface layer film 12 is also curled, and the scaly substrate 13 having smoothness cannot be obtained. On the other hand, when the thickness of the particles is 10 μm or more, the productivity of the scaly substrate 13 decreases.

例えば、シリカからなる鱗片状基材13を得るためには、ケイ酸ナトリウム(水ガラス)水溶液に塩酸などの酸を添加して中和した液を、薄片状基質10の表面に塗布し、この薄片状基質10の表面にシリカゲルを析出させ、被覆組成物を生成させる。そののち、この被覆組成物を700℃以下で低温焼成することにより、薄片状基質10の表面にシリカ(SiO2)の表層被膜12を形成することができる。次に、薄片状基質10の表面にシリカ(SiO2)の表層被膜12が形成された焼成済み被覆組成物を、アルカリ中(pH8以上)に浸し、薄片状基質10からシリカからなる表層被膜12を剥離させる。これにより、カールがない平滑性に優れた鱗片状基材13を得ることができる。 For example, in order to obtain the scaly substrate 13 made of silica, a solution obtained by adding an acid such as hydrochloric acid to a sodium silicate (water glass) aqueous solution and neutralizing it is applied to the surface of the flaky substrate 10. Silica gel is deposited on the surface of the flaky substrate 10 to form a coating composition. Thereafter, the surface coating 12 of silica (SiO 2 ) can be formed on the surface of the flaky substrate 10 by baking the coating composition at a low temperature of 700 ° C. or lower. Next, the baked coating composition in which the surface coating 12 of silica (SiO 2 ) is formed on the surface of the flaky substrate 10 is immersed in an alkali (pH 8 or more), and the surface coating 12 made of silica from the flaky substrate 10. To peel off. Thereby, the scaly base material 13 excellent in smoothness without curling can be obtained.

また、合成マイカからなる鱗片状基材13を得るためには、フッ素金雲母、フッ素四ケイ素雲母、フッ素テニオライトおよびこれらの同型置換体のようなフッ素雲母を溶融させ、溶融物を薄片状基質10の表面に塗布して被覆組成物を形成する。そののち、この被覆組成物を700℃以下で低温焼成することにより、薄片状基質10の表面に合成マイカの表層被膜12を形成することができる。次に、薄片状基質10の表面に合成マイカの表層被膜12が形成された焼成済み被覆組成物を、アルカリ中(pH8以上)に浸し、薄片状基質10から合成マイカからなる表層被膜12を剥離させる。これにより、カールがない平滑性に優れた鱗片状基材13を得ることができる。   Further, in order to obtain the scaly substrate 13 made of synthetic mica, fluorine mica such as fluorine phlogopite, fluorine tetrasilicon mica, fluorine teniolite, and their isomorphous substitutes is melted, and the melt is flaky substrate 10. Is applied to the surface of the coating to form a coating composition. Thereafter, the surface coating 12 of synthetic mica can be formed on the surface of the flaky substrate 10 by baking the coating composition at a low temperature of 700 ° C. or lower. Next, the baked coating composition in which the surface coating 12 of synthetic mica is formed on the surface of the flaky substrate 10 is immersed in an alkali (pH 8 or more), and the surface coating 12 made of synthetic mica is peeled from the flaky substrate 10. Let Thereby, the scaly base material 13 excellent in smoothness without curling can be obtained.

また、上記鱗片状基材13の表面に、例えば、酸化スズ−四塩化チタンの可溶性水溶液または硫酸チタニルや四塩化チタンの可溶性水溶液またはチタンアルコラートの加水分解を塗布することによって、鱗片状基材13の表面に酸化チタンからなる被覆層14を形成することができる。この被覆層14が形成された顔料前駆体を高温焼成させ、真珠光沢顔料20を得ることができる。   Further, for example, by applying hydrolysis of a soluble aqueous solution of tin oxide-titanium tetrachloride or a soluble aqueous solution of titanyl sulfate or titanium tetrachloride or titanium alcoholate to the surface of the flaky substrate 13, the flaky substrate 13 A coating layer 14 made of titanium oxide can be formed on the surface of the film. The pigment precursor on which the coating layer 14 is formed can be fired at a high temperature to obtain the pearlescent pigment 20.

図3には、複数塗膜の例が示されており、例えば鋼板等の基板に電着塗膜(いずれも図示せず)が形成され、この電着塗膜上に中塗り塗膜30、白塗りベース塗膜32、真珠光沢顔料含有ベース塗膜34、クリア塗膜36が順次積層されて形成されている。   FIG. 3 shows an example of a plurality of coating films. For example, an electrodeposition coating film (not shown) is formed on a substrate such as a steel plate, and the intermediate coating film 30 is formed on the electrodeposition coating film. A white base coating film 32, a pearlescent pigment-containing base coating film 34, and a clear coating film 36 are sequentially laminated.

上述の製造方法により製造されたシルバー発色性の真珠光沢顔料20は、極薄顔料であり、したがって、図3に示すような複数積層塗膜中の真珠光沢顔料含有ベース塗膜34中に、緻密に存在することとなる。これにより、シルバー発色性が高く、且つフリップ・フロップ効果の高い複層塗膜を得ることができる。   The silver coloring pearlescent pigment 20 produced by the above-described production method is an ultrathin pigment. Therefore, the pearlescent pigment-containing base coating 34 in the multi-layered coating as shown in FIG. Will exist. Thereby, a multilayer coating film having a high silver coloring property and a high flip-flop effect can be obtained.

以下に、本発明のシルバー発色性真珠光沢顔料について、実施例を用いて説明する。   Below, the silver coloring pearl luster pigment of this invention is demonstrated using an Example.

実施例1.
ガラスフレーク1.0kgを上水20Lに加え、撹拌しながら、間隔150μmの増幸産業社製マスコロイダーで2回通過、解砕し、解砕した焼成天然雲母を50L入れポリタンクに移し、これに0.02%のへキサメタ燐酸水溶液を加えて、全量を45Lとした。
Example 1.
Add 1.0 kg of glass flakes to 20 liters of clean water, and while stirring, pass 50 liters of mash colloider made by Masuyuki Sangyo Co., Ltd. twice and crush it. 0.02% hexametaphosphoric acid aqueous solution was added to make the total volume 45L.

プロぺラ攪拌機で撹拌し、静置後5分で、上澄液を別の容器に移し、この操作を3回繰返し、0.1mm以上の大粒子を分級し、上澄液を標準節40メッシュ(445μm)と65メッシュ(203μm)を用いて節分級し、40〜65メッシュの粒子径を150g得た。   Stir with a propeller stirrer, and after leaving still for 5 minutes, transfer the supernatant to another container, repeat this operation three times, classify large particles of 0.1 mm or more, Nodal classification was performed using a mesh (445 μm) and a 65 mesh (203 μm), and 150 g of a particle size of 40 to 65 mesh was obtained.

次に、分級したガラスフレーク150gに上水1.5Lを加え撹拌し、液温を80℃に加熱した後苛性ソーダを用いてpH=9とした。その後、ケイ酸ナトリウム溶液(SiO2として20%)200gを徐々に滴下し、それと同時にpH=9を保つ為に希塩酸を用いて調節した。滴下終了後に水洗、ろ過後に150℃で乾燥した。得られた被覆組成物の粒子径は0.01μmの集合体であった。 Next, 1.5 L of clean water was added to 150 g of classified glass flakes, and the mixture was stirred and heated to 80 ° C., and then adjusted to pH = 9 using caustic soda. Thereafter, 200 g of a sodium silicate solution (20% as SiO 2 ) was gradually added dropwise, and at the same time, the pH was adjusted with dilute hydrochloric acid to maintain pH = 9. It was washed with water after completion of the dropwise addition and dried at 150 ° C. after filtration. The obtained coating composition was an aggregate having a particle size of 0.01 μm.

また、乾燥粉末を大気中700℃で1時間焼成した。該焼成粉末に10パーセントの苛性ソーダ水溶液を加えてpH11に調整し浸漬静置した。上澄に浮離した粉末をデカンテーション法で分級し、分級粉末をろ過、水洗した。このとき得られた水洗分級粉末(シリカ粉末)の厚みは200nmであり、その長径は15μmで、そのアスペクト比は75であった。   The dry powder was fired at 700 ° C. for 1 hour in the air. A 10 percent aqueous caustic soda solution was added to the calcined powder to adjust the pH to 11, and left to stand still. The powder floating in the supernatant was classified by a decantation method, and the classified powder was filtered and washed with water. The thickness of the washing classification powder (silica powder) obtained at this time was 200 nm, the major axis was 15 μm, and the aspect ratio was 75.

この水洗分級粉末100g(シリカ粉末)に上水1.5Lを加えて撹拌し、塩酸6g、塩化スズ1.5gを加え液温を80℃、pH=2.0に調節した。そこに四塩化チタン360g(Tiとして16%)を徐々に滴下し、それと同時にpH=2.0を保つ為に苛性ソーダを用いて調整した。滴下終了後に水洗、ろ過し150℃で乾燥した。この乾燥粉末を大気中700℃2時間焼成した。このとき得られたシルバー発色性真珠光沢顔料の酸化チタン被覆層の厚みは、上記製造例より計算によって求めると、70nmであった。   To 100 g of this water-washed classification powder (silica powder), 1.5 L of clean water was added and stirred, and 6 g of hydrochloric acid and 1.5 g of tin chloride were added to adjust the liquid temperature to 80 ° C. and pH = 2.0. To this, 360 g of titanium tetrachloride (16% as Ti) was gradually added dropwise, and at the same time, adjustment was made using caustic soda to maintain pH = 2.0. After completion of the dropwise addition, it was washed with water, filtered and dried at 150 ° C. This dry powder was fired in the atmosphere at 700 ° C. for 2 hours. The thickness of the titanium oxide coating layer of the silver coloring pearlescent pigment obtained at this time was 70 nm when calculated from the above production example.

実施例2.
ガラスフレーク1.0kgを上水20Lに加え、撹拌しながら、間隔100μmの増幸産業社製マスコロイダーで2回通過、解砕し、解砕した焼成天然雲母を50L入れポリタンクに移し、これに0.02%のへキサメタ燐酸水溶液を加えて、全量を45Lとした。
Example 2
Add 1.0 kg of glass flakes to 20 liters of clean water, and while stirring, pass 50 liters of mash colloider made by Masuyuki Sangyo Co., Ltd. twice and pulverize. 0.02% hexametaphosphoric acid aqueous solution was added to make the total volume 45L.

プロぺラ攪拌機で撹拌し、静置後5分で、上澄液を別の容器に移し、この操作を3回繰返し、0.1mm以上の大粒子を分級し、上澄液を標準節100メッシュ(154μm)と200メッシュ(77μm)を用いて節分級し、40〜65メッシュの粒子径を100g得た。   Stir with a propeller stirrer, and after leaving still for 5 minutes, transfer the supernatant to another container, repeat this operation three times, classify large particles of 0.1 mm or more, and use the supernatant for standard section 100 Nodules were classified using a mesh (154 μm) and a 200 mesh (77 μm) to obtain 100 g of a particle size of 40 to 65 mesh.

次に、分級したガラスフレーク150gに上水1.5Lを加え撹拌し、液温を80℃に加熱した後苛性ソーダを用いてpH=9とした。その後、ケイ酸ナトリウム溶液(SiO2として20%)130gを徐々に滴下し、それと同時にpH=9を保つ為に希塩酸を用いて調節した。滴下終了後に水洗、ろ過後に150℃で乾燥した。得られた被覆組成物の粒子径は0.01μmの集合体であった。 Next, 1.5 L of clean water was added to 150 g of classified glass flakes, and the mixture was stirred and heated to 80 ° C., and then adjusted to pH = 9 using caustic soda. Thereafter, 130 g of sodium silicate solution (20% as SiO 2 ) was gradually added dropwise, and at the same time, the pH was adjusted with dilute hydrochloric acid in order to maintain pH = 9. It was washed with water after completion of the dropwise addition and dried at 150 ° C. after filtration. The obtained coating composition was an aggregate having a particle size of 0.01 μm.

また、乾燥粉末を大気中700℃で1時間焼成した。該焼成粉末に10パーセントの苛性ソーダ水溶液を加えてpH11に調整し浸漬静置した。上澄に浮離した粉末をデカンテーション法で分級し、分級粉末をろ過、水洗した。このとき得られた水洗分級粉末(シリカ粉末)の厚みは100nmであり、その長径は5μmで、そのアスペクト比は50であった。   The dry powder was fired at 700 ° C. for 1 hour in the air. A 10 percent aqueous caustic soda solution was added to the calcined powder to adjust the pH to 11, and left to stand still. The powder floating in the supernatant was classified by a decantation method, and the classified powder was filtered and washed with water. The thickness of the washing classification powder (silica powder) obtained at this time was 100 nm, the major axis was 5 μm, and the aspect ratio was 50.

この水洗分級粉末100g(シリカ粉末)に上水1.5Lを加えて撹拌し、塩酸6g、塩化スズ1.8gを加え液温を80℃、pH=2.0に調節した。そこに四塩化チタン360g(Tiとして16%)を徐々に滴下し、それと同時にpH=2.0を保つ為に苛性ソーダを用いて調整した。滴下終了後に水洗、ろ過し150℃で乾燥した。この乾燥粉末を大気中700℃2時間焼成した。このとき得られたシルバー発色性真珠光沢顔料の酸化チタン被覆層の厚みは、上記製造例より計算によって求めると、40nmであった。   To 100 g of this water-washed classification powder (silica powder), 1.5 L of clean water was added and stirred, and 6 g of hydrochloric acid and 1.8 g of tin chloride were added to adjust the liquid temperature to 80 ° C. and pH = 2.0. To this, 360 g of titanium tetrachloride (16% as Ti) was gradually added dropwise, and at the same time, adjustment was made using caustic soda to maintain pH = 2.0. After completion of the dropwise addition, it was washed with water, filtered and dried at 150 ° C. This dry powder was fired in the atmosphere at 700 ° C. for 2 hours. The thickness of the titanium oxide coating layer of the silver color developing pearl luster pigment obtained at this time was 40 nm when calculated from the above production example.

実施例3.
ガラスフレーク1.0kgを上水20Lに加え、撹拌しながら、間隔400μmの増幸産業社製マスコロイダーで2回通過、解砕し、解砕した焼成天然雲母を50L入れポリタンクに移し、これに0.02%のへキサメタ燐酸水溶液を加えて、全量を45Lとした。
Example 3
Add 1.0 kg of glass flakes to 20 liters of clean water, and while stirring, pass 50 liters of crushed natural mica twice through a mascolloider manufactured by Masuyuki Sangyo Co., Ltd., and transfer to a plastic tank. 0.02% hexametaphosphoric acid aqueous solution was added to make the total volume 45L.

プロぺラ攪拌機で撹拌し、静置後5分で、上澄液を別の容器に移し、この操作を3回繰返し、0.1mm以上の大粒子を分級し、上澄液を標準節10メッシュ(800μm)と65メッシュ(203μm)を用いて節分級し、10〜65メッシュの粒子径を150g得た。   Stir with a propeller stirrer, and after standing for 5 minutes, transfer the supernatant to another container, repeat this operation three times, classify large particles of 0.1 mm or more, and use the supernatant for standard section 10 The particles were classified using a mesh (800 μm) and a 65 mesh (203 μm) to obtain 150 g of a particle size of 10 to 65 mesh.

次に、分級したガラスフレーク150gに上水1.5Lを加え撹拌し、液温を80℃に加熱した後苛性ソーダを用いてpH=9とした。その後、ケイ酸ナトリウム溶液(SiO2として20%)180gを徐々に滴下し、それと同時にpH=9を保つ為に希塩酸を用いて調節した。滴下終了後に水洗、ろ過後に150℃で乾燥した。得られた被覆組成物の粒子径は0.01μmの集合体であった。 Next, 1.5 L of clean water was added to 150 g of classified glass flakes, and the mixture was stirred and heated to 80 ° C., and then adjusted to pH = 9 using caustic soda. Thereafter, 180 g of sodium silicate solution (20% as SiO 2 ) was gradually added dropwise, and at the same time, the pH was adjusted with dilute hydrochloric acid in order to maintain the pH = 9. It was washed with water after completion of the dropwise addition and dried at 150 ° C. after filtration. The obtained coating composition was an aggregate having a particle size of 0.01 μm.

また、乾燥粉末を大気中700℃で1時間焼成した。該焼成粉末に10パーセントの苛性ソーダ水溶液を加えてpH11に調整し浸漬静置した。上澄に浮離した粉末をデカンテーション法で分級し、分級粉末をろ過、水洗した。このとき得られた水洗分級粉末(シリカ粉末)の厚みは200nmであり、その長径は60μmで、そのアスペクト比は300であった。   The dry powder was fired at 700 ° C. for 1 hour in the air. A 10 percent aqueous caustic soda solution was added to the calcined powder to adjust the pH to 11, and left to stand still. The powder floating in the supernatant was classified by a decantation method, and the classified powder was filtered and washed with water. The thickness of the water-washed classification powder (silica powder) obtained at this time was 200 nm, the major axis was 60 μm, and the aspect ratio was 300.

この水洗分級粉末100g(シリカ粉末)に上水1.5Lを加えて撹拌し、塩酸6g、塩化スズ1.2gを加え液温を80℃、pH=2.0に調節した。そこに四塩化チタン500g(Tiとして16%)を徐々に滴下し、それと同時にpH=2.0を保つ為に苛性ソーダを用いて調整した。滴下終了後に水洗、ろ過し150℃で乾燥した。この乾燥粉末を大気中700℃2時間焼成した。このとき得られたシルバー発色性真珠光沢顔料の酸化チタン被覆層の厚みは、上記製造例より計算によって求めると、100nmであった。   To 100 g of this water classification powder (silica powder), 1.5 L of clean water was added and stirred, and 6 g of hydrochloric acid and 1.2 g of tin chloride were added to adjust the liquid temperature to 80 ° C. and pH = 2.0. To this, 500 g of titanium tetrachloride (16% as Ti) was gradually dropped, and at the same time, adjustment was made using caustic soda to maintain pH = 2.0. After completion of the dropwise addition, it was washed with water, filtered and dried at 150 ° C. This dry powder was fired in the atmosphere at 700 ° C. for 2 hours. The thickness of the titanium oxide coating layer of the silver coloring pearlescent pigment obtained at this time was 100 nm when calculated from the above production example.

比較例1.
顔料として、「SC−100」(日本光研製、商品名「アルティミカ」のタイプ名)を用いた。
Comparative Example 1
As a pigment, “SC-100” (manufactured by Nippon Koken Co., Ltd., trade name “ultimica”) was used.

比較例2.
顔料として、「SD−100」(日本光研製、商品名「アルティミカ」のタイプ名)を用いた。
Comparative Example 2
As a pigment, “SD-100” (manufactured by Nippon Koken Co., Ltd., trade name “ultimica” type name) was used.

比較例3.
顔料として、「SB−100」(日本光研製、商品名「アルティミカ」のタイプ名)を用いた。
Comparative Example 3
As the pigment, “SB-100” (manufactured by Nippon Koken Co., Ltd., trade name “ultimica” type name) was used.

比較例4.
顔料として、「SE−100」(日本光研製、商品名「アルティミカ」のタイプ名)を用いた。
Comparative Example 4
As a pigment, “SE-100” (manufactured by Nippon Koken Co., Ltd., trade name “ultimica”) was used.

比較例5.
顔料として、比較例4の顔料と基材の長径、アスペクト比、被覆層の厚みの異なる「SE−100」(日本光研製、商品名「アルティミカ」のタイプ名)を用いた。
Comparative Example 5
As the pigment, “SE-100” (manufactured by Nihon Koken Co., Ltd., trade name “Ultimica”), which is different from the pigment of Comparative Example 4 in the major diameter, aspect ratio, and coating layer thickness of the base material, was used.

比較例6.
顔料として、光輝性顔料ではないソリッド色のトヨタ自動車製の「#040」の塗色の顔料を用いた。
Comparative Example 6
As the pigment, a solid color pigment “# 040” made by Toyota Motor which is not a bright pigment was used.

以上より得られた実施例1〜3および比較例1〜6のそれぞれの顔料は、アクリルメラミン塗料にPWC(pigment weight content)10%を混合してベース塗料とした。   The pigments of Examples 1 to 3 and Comparative Examples 1 to 6 obtained above were mixed with acrylic melamine paint at 10% PWC (pigment weight content) to form a base paint.

鋼板上に電着塗装され、さらに図3に示すように、中塗塗膜30、白塗りベース塗膜32を形成し、この白塗りベース塗膜32上に、上記ベース塗料を約15μmになるように塗装しベース塗膜34を形成し、焼き付けずにアクリルメラミン系のクリア塗料を約30μmになるように塗装しクリア塗膜36を形成したのち、140℃で30分間焼き付けた。このようにして、評価塗板を得て、以下に示す評価を行った。   As shown in FIG. 3, an intermediate coating film 30 and a white base coating film 32 are formed on the steel plate, and the base coating is applied to the white coating base film 32 to a thickness of about 15 μm. A base coating film 34 was formed by coating, an acrylic melamine-based clear paint was applied to a thickness of about 30 μm without baking, and a clear coating film 36 was formed, followed by baking at 140 ° C. for 30 minutes. Thus, the evaluation coating plate was obtained and the evaluation shown below was performed.

[L値の測定評価]
マルチアングル測色計「X−Rite MA68II」(X−Rite社製)を用い、入射角15°、受光角15°にてL15値、入射角25°、受光角25°にてL25値を測定し、「L15」−「L25」のΔ値を、「L15−L25」とし、図4に示す。なお、図4に示す「L15−L25」の値が大きくなるほど、フリップ・フロップ効果が大きくなる。
[Measurement evaluation of L value]
Using a multi-angle colorimeter “X-Rite MA68II” (manufactured by X-Rite), L15 value is measured at an incident angle of 15 ° and a light receiving angle of 15 °, and an L25 value is measured at an incident angle of 25 ° and a light receiving angle of 25 °. The Δ value of “L15”-“L25” is “L15-L25” and is shown in FIG. As the value of “L15−L25” shown in FIG. 4 increases, the flip-flop effect increases.

[光輝粒子性BS]
特開2005−77202号公報に開示されているコンピュータグラフィック(CG)表示装置を用いて、所定面積中に占める光輝レベル毎の単位面積数の比率を計算し、光輝度粒子性を測定した。図6に示すように、上記CG表示装置100は、光輝材含有塗料の塗装色が塗布された所定面積の試料の変角分光反射率を測定して変角分光反射率を取得する変角分光反射率測定装置52と、変角分光反射率測定装置52によって取得された変角分光反射率を記憶する変角分光反射率記憶部54と、光輝材含有塗料の塗装色が塗布された試料の光輝度をカメラで測定して画像データを取得し光輝度を計算する光輝度測定装置56と、光輝度測定装置56によって測定された光輝度を記憶する光輝度記憶部58と、物体の形状を記憶している物体形状記憶部74と、変角分光反射率記憶部54に記憶された変角分光反射率と、光輝度記憶部58に記憶された光輝度と、物体形状記憶部74に記憶された物体形状とを利用して、CGで光輝粒子性がよく表示されるように処理を行なうCG表示処理装置80とから構成される。
[Bright particle BS]
Using a computer graphic (CG) display device disclosed in Japanese Patent Application Laid-Open No. 2005-77202, the ratio of the number of unit areas for each brightness level in a predetermined area was calculated, and the luminous particle property was measured. As shown in FIG. 6, the CG display device 100 measures the variable angle spectral reflectance of a sample having a predetermined area to which the paint color of the glittering material-containing paint is applied, and acquires the variable angle spectral reflectance. The reflectance measuring device 52, the variable angle spectral reflectance storage unit 54 that stores the variable angle spectral reflectance acquired by the variable angle spectral reflectance measuring device 52, and the sample coated with the paint color of the glittering material-containing paint. A light luminance measuring device 56 that measures light luminance with a camera to acquire image data and calculates the light luminance, a light luminance storage unit 58 that stores the light luminance measured by the light luminance measuring device 56, and a shape of the object The stored object shape storage unit 74, the variable spectral reflectance stored in the variable spectral reflectance storage unit 54, the light intensity stored in the light luminance storage unit 58, and the object shape storage unit 74. CG with CG Composed of CG display processor 80. which may perform processing so as to be displayed.

上記変角分光反射率測定装置52として、例えば、一般的に知られている「株式会社村上色彩技術研究所」によって製作・市販されている変角分光反射率システム等を使用することができる。また、上記光輝度測定装置56は、主に光源とCCD(Charge Couple Device)カメラと、CCDカメラと接続されたコンピュータ等から構成される。   As the variable angle spectral reflectance measuring device 52, for example, a variable angle spectral reflectance system manufactured and marketed by a generally known “Murakami Color Research Laboratory Co., Ltd.” or the like can be used. The light luminance measuring device 56 mainly includes a light source, a CCD (Charge Couple Device) camera, and a computer connected to the CCD camera.

上述のコンピュータグラフィック(CG)表示装置は、レンダリング部70が、CG表示用塗装色記憶手段68に記憶されたCG表示用塗装色と、物体形状記憶部74に記憶された物体形状を取得し、CG表示用塗装色に基づいて、CG表示を行なう。CG表示処理は、レンダリング部70が、CG表示用塗装色と物体形状と、照明条件や照明環境を指定する照明環境情報とに基づいて、3次元CGによってデザイナーが意図する光輝材含有塗装色の自動車のボディのカラー画像を生成し、カラーディスプレイやカラープリンタ等のCG表示部72に表示する。上記のように計算されたCG表示用塗装色を図4にプロットした。   In the computer graphic (CG) display device described above, the rendering unit 70 acquires the CG display paint color stored in the CG display paint color storage unit 68 and the object shape stored in the object shape storage unit 74, CG display is performed based on the paint color for CG display. In the CG display process, the rendering unit 70 uses the CG display paint color, the object shape, and the illumination environment information for designating the illumination condition and the illumination environment to determine the paint material-containing paint color intended by the designer through the three-dimensional CG. A color image of the automobile body is generated and displayed on a CG display unit 72 such as a color display or a color printer. The CG display paint color calculated as described above is plotted in FIG.

また、実施例および比較例の顔料の特性を表1に示す。   In addition, Table 1 shows the characteristics of the pigments of Examples and Comparative Examples.

Figure 0004789508
Figure 0004789508

表1および図4に示すように、アスペクト比の高い鱗片状基材に酸化チタンからなる被覆層を40〜100nmの厚みで形成した真珠光沢顔料は、「L15−L25」が高く、したがってフリップ・フロップ効果が高く、また、光輝粒子性も高いことがわかる。   As shown in Table 1 and FIG. 4, the pearlescent pigment formed by forming a coating layer made of titanium oxide with a thickness of 40 to 100 nm on a scaly base material having a high aspect ratio has a high “L15-L25”. It can be seen that the flop effect is high and the glitter particle property is also high.

本発明のシルバー発色性真珠光沢顔料は、シルバー発色の真珠光沢を有する塗膜を要する用途であれば、いかなる用途にも有効であるが、例えば、家電用塗膜、車両用塗膜の形成に供することができ、特に、意匠性を際立たせるための車両外装の塗膜形成に有用である。   The silver-coloring pearlescent pigment of the present invention is effective for any use as long as it requires a coating film having a silver-colored pearly luster, for example, for forming a coating film for home appliances and a coating film for vehicles. In particular, it is useful for forming a coating film on a vehicle exterior for making a design stand out.

本発明のシルバー発色性真珠光沢顔料の構成の一態様を説明する図である。It is a figure explaining one aspect | mode of a structure of the silver coloring pearl luster pigment of this invention. 本発明のシルバー発色性真珠光沢顔料の製造方法の一態様の工程を説明するフロー図である。It is a flowchart explaining the process of 1 aspect of the manufacturing method of the silver coloring pearl luster pigment of this invention. 本発明のシルバー発色性真珠光沢顔料を含有する複層塗膜の一例を説明する図である。It is a figure explaining an example of the multilayer coating film containing the silver color development pearl luster pigment of this invention. 本発明の実施例のシルバー発色性真珠光沢顔料と比較例に供した他の顔料に対し、L15−L25と光輝粒子性を測定しその結果をプロットした図である。It is the figure which measured the L15-L25 and glitter particle property, and plotted the result with respect to the silver coloring pearl luster pigment of the Example of this invention, and the other pigment used for the comparative example. 従来のパールマイカの構成の一態様を説明する図である。It is a figure explaining the one aspect | mode of the structure of the conventional pearl mica. 光輝粒子性を測定するコンピュータグラフィック(CG)表示装置の構成を説明する図である。It is a figure explaining the structure of the computer graphic (CG) display apparatus which measures a luminous particle property.

符号の説明Explanation of symbols

10 薄片状基質、12 表層被膜、13 鱗片状基材、14 被覆層、20 真珠光沢顔料。   10 flaky substrate, 12 surface coating, 13 scaly substrate, 14 coating layer, 20 pearlescent pigment.

Claims (2)

薄片状基質の表面上にシリカを被覆して被覆組成物を形成させ、
前記被覆組成物を500℃以上700℃以下の温度で焼成させ、
前記被覆組成物中の表層被膜を前記薄片状基質表面から剥離させ剥離組成物を得て、
長径が5〜100μmであってアスペクト比が50以上の前記剥離組成物の表面に酸化チタンからなる被覆層を形成させ、
前記被覆層が形成された顔料前駆体を700℃以上の温度で焼成させ、40〜100nmの厚みを有する被覆層を有することを特徴とするシルバー発色の真珠光沢顔料の製造方法。
Coating the silica on the surface of the flaky substrate to form a coating composition;
Firing the coating composition at a temperature of 500 ° C. or higher and 700 ° C. or lower;
The surface coating in the coating composition is peeled off from the surface of the flaky substrate to obtain a peeling composition,
Forming a coating layer made of titanium oxide on the surface of the release composition having a major axis of 5 to 100 μm and an aspect ratio of 50 or more ,
A method for producing a silver-colored pearlescent pigment comprising firing a pigment precursor on which the coating layer is formed at a temperature of 700 ° C. or more and having a coating layer having a thickness of 40 to 100 nm .
請求項に記載のシルバー発色の真珠光沢顔料の製造方法において、
前記薄片状基質は、天然マイカ、合成マイカ、ガラスフレーク、シリカフレーク、アルミナフレーク、硫酸バリウムから選択されることを特徴とするシルバー発色の真珠光沢顔料の製造方法。
In the manufacturing method of the pearl luster pigment of the silver coloring of Claim 1 ,
The flaky substrate is selected from natural mica, synthetic mica, glass flakes, silica flakes, alumina flakes, and barium sulfate.
JP2005152455A 2005-05-25 2005-05-25 Method for producing silver-colored pearlescent pigment Active JP4789508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152455A JP4789508B2 (en) 2005-05-25 2005-05-25 Method for producing silver-colored pearlescent pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152455A JP4789508B2 (en) 2005-05-25 2005-05-25 Method for producing silver-colored pearlescent pigment

Publications (2)

Publication Number Publication Date
JP2006328182A JP2006328182A (en) 2006-12-07
JP4789508B2 true JP4789508B2 (en) 2011-10-12

Family

ID=37550221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152455A Active JP4789508B2 (en) 2005-05-25 2005-05-25 Method for producing silver-colored pearlescent pigment

Country Status (1)

Country Link
JP (1) JP4789508B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045643B2 (en) 2006-04-21 2015-06-02 Nippon Sheet Glass Company Limited Bright pigment, method for producing the pigment, and waterborne resin composition containing the pigment
WO2008130040A1 (en) 2007-04-18 2008-10-30 Nippon Sheet Glass Company, Limited Photoluminescent pigment and cosmetic composition using the same
CN101668819B (en) * 2007-04-27 2012-11-21 日本板硝子株式会社 Photoluminescent pigment, and photoluminescent coating composition and automotive outer panel each comprising the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295234A (en) * 1985-06-11 1986-12-26 Sumitomo Chem Co Ltd Metal oxide-coated flakelike titanium oxide
JPH03167238A (en) * 1989-11-27 1991-07-19 Sumitomo Bakelite Co Ltd Decorative sheet
JP3386222B2 (en) * 1994-03-03 2003-03-17 日本ペイント株式会社 Design film formation method
JP2922148B2 (en) * 1996-01-12 1999-07-19 トピー工業株式会社 Novel pearlescent pigments and coating compositions, cosmetics, inks and plastics containing the pigments
DE19618564A1 (en) * 1996-05-09 1997-11-13 Merck Patent Gmbh Platelet-shaped titanium dioxide pigment
DE19823866A1 (en) * 1998-05-28 1999-12-02 Merck Patent Gmbh Pigment mixture
DE19831869A1 (en) * 1998-07-16 2000-01-20 Merck Patent Gmbh Use of pigments based on lamellar substrate for coloring food and pharmaceutical products
JP2001262036A (en) * 1999-12-14 2001-09-26 Nippon Sheet Glass Co Ltd Lustrous color ink composition and its manufacturing method
JP2002129064A (en) * 2000-10-25 2002-05-09 Toho Titanium Co Ltd Controlling method for hue/gloss of mica-based titanium pearl pigment and production method thereof
JP4276448B2 (en) * 2003-01-24 2009-06-10 トヨタ自動車株式会社 Brilliant pigment and method for producing the same

Also Published As

Publication number Publication date
JP2006328182A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
EP1874873B1 (en) Sparkle effect of unique particle size distribution
JP4334204B2 (en) High-luminance and high-saturation iris pigment and method for producing the same
CN100551976C (en) Multi-layer effect pigment
CN1732234B (en) Improved effect pigment comprising a mixture of at least 2 substrate materials
US4494993A (en) Nacreous pigments, their preparation and use
US4192691A (en) Metal oxide platelets as nacreous pigments
JP5030946B2 (en) Glittering pigment having gold color, cosmetics, paint, ink or resin composition containing the same
JP2010500402A (en) Flaky pigment, method for producing the same, and cosmetic composition using the same
JP2004352725A (en) Glass substrate pearlescent pigment for cosmetic
JP5535425B2 (en) Filler, method for producing the same, and cosmetics
JP7000420B2 (en) Glittering pigments, pigment-containing compositions, and pigment-containing coatings
JP4739008B2 (en) Method for producing pearl pigment
JP4789508B2 (en) Method for producing silver-colored pearlescent pigment
JP4153066B2 (en) Method for producing strongly cohesive titanium oxide
JP4276448B2 (en) Brilliant pigment and method for producing the same
JP4990303B2 (en) High-luminance and high-saturation iris pigment and method for producing the same
JP4190174B2 (en) High iris color titanium oxide and its manufacturing method
JP2646454B2 (en) Coated pigment
CN1220684A (en) High-chroma orange pearl pigment
CN108250802B (en) Pearlescent pigment with matte effect and preparation method and application thereof
JP4241004B2 (en) Multilayer interference pigment
JP6542010B2 (en) Composite powder
JP2002069355A (en) Ink composition for intaglio printing and printed matter using the same composition
JP2008230964A (en) Strong cohesive titanium oxide
KR100529446B1 (en) High-chroma orange pearl pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4789508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250