JP4789247B2 - Methods for analyzing acylglycerides and fatty acid esters - Google Patents

Methods for analyzing acylglycerides and fatty acid esters Download PDF

Info

Publication number
JP4789247B2
JP4789247B2 JP2006022431A JP2006022431A JP4789247B2 JP 4789247 B2 JP4789247 B2 JP 4789247B2 JP 2006022431 A JP2006022431 A JP 2006022431A JP 2006022431 A JP2006022431 A JP 2006022431A JP 4789247 B2 JP4789247 B2 JP 4789247B2
Authority
JP
Japan
Prior art keywords
sample
fatty acid
compound
refractive index
sensitivity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006022431A
Other languages
Japanese (ja)
Other versions
JP2007205757A (en
Inventor
幸範 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2006022431A priority Critical patent/JP4789247B2/en
Publication of JP2007205757A publication Critical patent/JP2007205757A/en
Application granted granted Critical
Publication of JP4789247B2 publication Critical patent/JP4789247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fats And Perfumes (AREA)

Description

本発明はバイオディーゼル燃料油製造工程等のアシルグリセリド及び/または脂肪酸エステルの化合物が混在する試料において、化合物群の含有量を測定する分析方法に関し、詳しくはアシルグリセリドとアルコールのエステル交換により得られた反応混合物中の脂肪酸エステル、アシルグリセリドを定量する方法に関する。   The present invention relates to an analytical method for measuring the content of a compound group in a sample in which acylglyceride and / or fatty acid ester compounds are mixed, such as in a biodiesel fuel production process, and more specifically, obtained by transesterification of acylglyceride and alcohol. The present invention relates to a method for quantifying fatty acid esters and acylglycerides in the reaction mixture.

バイオディーゼル燃料は、動植物油脂のアルコリシス(メタノリシス)によって生成する脂肪酸のメチルエステルに代表されるように、油脂中のグリセロールとアルコールとをエステル交換して得られる脂肪酸エステルを指称するものである。
脂肪酸エステルの製造方法としては、一般的にはアルカリ触媒を用いて行われるが、その他にもリパーゼを用いた酵素反応やアルコールを超臨界または亜臨界状態で油脂と接触させる無触媒反応が知られている。
Biodiesel fuel refers to fatty acid esters obtained by transesterification of glycerol and alcohol in fats and oils, as represented by methyl esters of fatty acids produced by alcoholysis (methanolysis) of animal and vegetable fats and oils.
As a method for producing a fatty acid ester, an alkali catalyst is generally used. In addition, an enzyme reaction using lipase and a non-catalytic reaction in which alcohol is brought into contact with fats and oils in a supercritical or subcritical state are known. ing.

バイオディーゼル燃料を製造する際、すなわち動植物油脂とアルコールとのエステル交換により脂肪酸エステルを製造する工程の反応混合物中には、脂肪酸エステル(FE)、トリアシルグリセリド(TG)、ジアシルグリセリド(DG)、モノアシルグリセリド(MG)、グリセリン、アルコールが含まれており、それぞれ用途に適した純度まで反応が進んでいるかを知ることは重要である。しかし、これらは動植物油を原料としているため様々な構造の脂肪酸基を有するため、反応終了後の反応混合物中には、様々な構造の脂肪酸基を有する反応中間体や脂肪酸エステルが存在することになり、組成は複雑である。   When producing biodiesel fuel, that is, in the reaction mixture of the step of producing fatty acid ester by transesterification of animal and vegetable fats and alcohol, fatty acid ester (FE), triacylglyceride (TG), diacylglyceride (DG), Since monoacylglyceride (MG), glycerin, and alcohol are contained, it is important to know whether the reaction has progressed to a purity suitable for each use. However, since these are made from animal and vegetable oils and have fatty acid groups of various structures, there are reaction intermediates and fatty acid esters having fatty acid groups of various structures in the reaction mixture after completion of the reaction. The composition is complicated.

反応混合物中の組成の分析方法としては、脂肪酸エステルは比較的揮発性が高いためガスクロマトグラフィー(GC)分析で、グリセリドは難揮発性物質であるため液体クロマトグラフィー(LC)分析で測定することが行われている。
これらの分析方法においても、各化合物群を分取したり、複数の前処理を施して分析をしたり、様々な分析方法を組合せて測定しなくてはならなかった。また、種々の分析はその化合物毎に標準化合物において検量線を作成して補正するなど手間のかかる作業であった。
The analysis method of the composition in the reaction mixture should be measured by gas chromatography (GC) analysis because fatty acid esters are relatively volatile, and by liquid chromatography (LC) analysis because glycerides are hardly volatile substances. Has been done.
In these analysis methods, each compound group must be collected, analyzed by applying a plurality of pretreatments, and various analysis methods must be combined for measurement. In addition, various analyzes are laborious operations such as creating a calibration curve for each standard compound and correcting it.

LCを用いた例としては、界面活性剤を構成する親油基の測定(特許文献1)や芳香族化合物を含む炭化水素油の分析方法(特許文献2)、ポリグリセリンの分析方法(特許文献3)等様々な方法が提案されてはいるが、動植物油脂とアルコールとのエステル交換により脂肪酸エステルを製造する工程での反応液のように、揮発性の高い化合物から難揮発性の低い化合物までが混在する系において、各化合物群の含有量を測定する方法は提案されていなかった。   Examples of using LC include measurement of a lipophilic group constituting a surfactant (Patent Document 1), analysis method of hydrocarbon oil containing an aromatic compound (Patent Document 2), analysis method of polyglycerin (Patent Document) 3) Although various methods have been proposed, from highly volatile compounds to less volatile compounds, such as reaction liquids in the process of producing fatty acid esters by transesterification of animal and vegetable oils and alcohols In a system in which is mixed, a method for measuring the content of each compound group has not been proposed.

高速液体クロマトグラフィー(HPLC)などで用いる屈折率(RI)検出器は、物質に特有の値である屈折率を検出するため汎用性が高い検出器であるが、紫外吸光光度(UV)検出器と比較すると、感度が低いが化合物間の感度差が少ないといわれている。RI検出器は移動相溶媒と試料成分との屈折率の差にほぼ比例した感度を持ち、目的成分濃度に比例した応答を示すため、例えば、HPLCにおいて、移動相溶媒の極性を変化させてグラジエント分離により各化合物を分離することは可能であり、その溶離液の処理方法も提案されている(特許文献4)が、その際、移動相の屈折率も変化するため、RI検出器での定量分析は困難であった。
特開平10−73578号公報 特許第3073757号公報 特許第3339147号公報 特開平9−229920号公報
A refractive index (RI) detector used in high-performance liquid chromatography (HPLC) is a highly versatile detector for detecting a refractive index that is a characteristic value of a substance, but an ultraviolet absorptiometric (UV) detector. It is said that the sensitivity difference between the compounds is small compared with the sensitivity. Since the RI detector has a sensitivity almost proportional to the difference in refractive index between the mobile phase solvent and the sample component and shows a response proportional to the concentration of the target component, for example, in HPLC, the polarity of the mobile phase solvent is changed to change the gradient. It is possible to separate each compound by separation, and a method for treating the eluent has been proposed (Patent Document 4). However, since the refractive index of the mobile phase also changes at that time, quantification with an RI detector is possible. Analysis was difficult.
Japanese Patent Laid-Open No. 10-73578 Japanese Patent No. 3073757 Japanese Patent No. 3339147 JP-A-9-229920

バイオディーゼル燃料製造時には、各化合物の生成量を捉える必要はないが、反応生成物であるFEや原料であるTGの化合物群毎の量を、反応中間生成物であるMG、DGも含めて把握することは重要である。これら各化合物群が混在する試料を簡易な分析法により化合物群の含有量を測定する分析方法は提案されていなかった。本発明はこれらの課題を解決し、簡易な方法によりTG,DG、MG、FEを定量する方法を提供する。   When producing biodiesel fuel, it is not necessary to capture the amount of each compound produced, but grasp the amount of FE as a reaction product and TG as a raw material for each compound group, including MG and DG as reaction intermediate products. It is important to do. An analysis method for measuring the content of a compound group by a simple analysis method for a sample containing each of these compound groups has not been proposed. The present invention solves these problems and provides a method for quantifying TG, DG, MG, and FE by a simple method.

本発明者は、TG、DG、MG及びFEが混在する試料の分析をRI検出器で定量する場合に、各化合物群のRI検出感度が試料の不飽和率と良い相関があることを見出した。これにより、個々の各化合物毎のRI感度を検量することなしに各化合物群の定量が行えることを発見し本発明に至った。   The present inventor has found that the RI detection sensitivity of each compound group has a good correlation with the sample unsaturation rate when the analysis of the sample containing TG, DG, MG and FE is quantified with an RI detector. . As a result, it was discovered that each compound group can be quantified without calibrating the RI sensitivity of each individual compound, and the present invention has been achieved.

すなわち本発明は、トリアシルグリセリド(TG)、ジアシルグリセリド(DG)、モノアシルグリセリド(MG)及び脂肪酸エステル(FE)の4種類の化合物群より選ばれる異なる2種以上の化合物を含む試料を定量するに当たり、(A)試料の不飽和率を測定する工程、(B)液体クロマトグラフィーにより分離した化合物群を屈折率検出器により出力値を得る工程、(C)不飽和率と所定の関係式により屈折率感度比を求める工程、(D)出力値と屈折率感度比を用いて試料中の化合物群の含有量を算出する工程を含むアシルグリセリド及び脂肪酸エステルの分析方法である。   That is, the present invention quantifies a sample containing two or more different compounds selected from the four compound groups of triacylglyceride (TG), diacylglyceride (DG), monoacylglyceride (MG) and fatty acid ester (FE). In doing so, (A) a step of measuring the unsaturation rate of the sample, (B) a step of obtaining an output value of the compound group separated by liquid chromatography using a refractive index detector, and (C) an unsaturation rate and a predetermined relational expression. And (D) an analysis method for acylglycerides and fatty acid esters, including the step of calculating the content of the compound group in the sample using the output value and the refractive index sensitivity ratio.

また、動植物油脂とアルコールとのエステル交換により脂肪酸エステルを製造する工程において、その反応生成物を前述の方法により分析し、前記エステル交換反応のモニタリングをする脂肪酸エステルの製造方法である。   Further, in the step of producing a fatty acid ester by transesterification of animal and vegetable oils and fats and alcohol, the reaction product is analyzed by the above-described method, and the transesterification reaction is monitored.

本発明によれば、トリアシルグリセリド(TG)、ジアシルグリセリド(DG)、モノアシルグリセリド(MG)及び脂肪酸エステル(FE)の4種類の化合物群が混在する試料中の化合物群毎の定量を、各化合物毎のRI感度の測定をすることなしに行うことができ、この分析方法を動植物油脂とアルコールとのエステル交換により脂肪酸エステルを製造する工程のモニタリングに適用することにより、脂肪酸エステルの製造工程の反応制御や製品の品質管理にも応用することができる。   According to the present invention, quantification for each compound group in a sample in which four kinds of compound groups of triacylglyceride (TG), diacylglyceride (DG), monoacylglyceride (MG) and fatty acid ester (FE) are mixed, It is possible to carry out without measuring the RI sensitivity of each compound, and by applying this analytical method to the monitoring of the process of producing a fatty acid ester by transesterification of animal and vegetable fats and alcohols, a fatty acid ester production process It can be applied to reaction control of products and quality control of products.

本発明は、TG、DG、MG及びFEの4種類の化合物群より選ばれる異なる2種以上の化合物を含む試料を定量する方法に関する。分析に供する試料は上記化合物群の異なる化合物群に含まれる2種以上の化合物が含まれていれば、天然由来の動植物油脂でも、特定のアシルグリセリドとアルコール(メタノール、エタノール等の低級アルコール)のエステル交換反応の反応液でも構わない。   The present invention relates to a method for quantifying a sample containing two or more different compounds selected from four types of compound groups of TG, DG, MG and FE. If the sample to be analyzed contains two or more kinds of compounds contained in different compound groups of the above compound groups, even natural-derived animal and vegetable oils and fats may contain specific acylglycerides and alcohols (lower alcohols such as methanol and ethanol). A reaction liquid for transesterification may be used.

本発明の(A)工程での不飽和率とは、不飽和率(X)=脂肪酸基の炭素・炭素二重結合の数/分子量で定義され、複数の化合物からなる混合物では、分子量は試料の平均分子量と、脂肪酸基の炭素・炭素二重結合の数は試料中に含まれる脂肪酸基の炭素・炭素二重結合の平均の数と読み替えて構わない。   The unsaturation rate in step (A) of the present invention is defined as unsaturation rate (X) = number of carbon-carbon double bonds of fatty acid group / molecular weight. In a mixture composed of a plurality of compounds, the molecular weight is the sample. The average molecular weight and the number of carbon / carbon double bonds of the fatty acid group may be read as the average number of carbon / carbon double bonds of the fatty acid group contained in the sample.

ここで、不飽和率を測定する工程に特に制限はなく、どのような方法から不飽和率を求めて構わない。原料トリアシルグリセリドの不飽和率が予め特定できる反応系ならば、生成物の不飽和率を測定をせずに原料の不飽和率を用いることもできる。種々の化合物の混合系である場合は、既知の方法によりその不飽和率を求めるために必要な分析を行う。例えば、試料中の二重結合の数を求めるには、試料中の脂肪酸組成を測定すればよく、油脂をアルカリケン化分解し、三フッ化ホウ素−メタノール法等によりメチルエステル化してGC分析するなどの従来法を使用して求めればよい。   Here, there is no restriction | limiting in particular in the process of measuring an unsaturation rate, You may obtain | require an unsaturation rate from what kind of method. If the reaction system can specify the unsaturation rate of the raw material triacylglyceride in advance, the unsaturation rate of the raw material can be used without measuring the unsaturation rate of the product. In the case of a mixed system of various compounds, analysis necessary for obtaining the unsaturation rate is performed by a known method. For example, in order to determine the number of double bonds in a sample, the fatty acid composition in the sample may be measured, and fats and oils are subjected to alkali saponification decomposition, methyl esterified by a boron trifluoride-methanol method or the like and subjected to GC analysis. What is necessary is just to obtain | require using conventional methods, such as.

不飽和率は各化合物群毎に求めることが好ましいが、各化合物群への分画操作や、各化合物の揮発性に応じた前処理操作等の作業が煩雑になるため、バイオディーゼル燃料製造時のように、原料の脂肪酸組成が一定とみなせる場合には、反応工程液の全化合物群の不飽和率を測定しなくても、一つの化合物群の不飽和率を測定して、他の化合物群の不飽和率として用いることができる。   It is preferable to obtain the unsaturation rate for each compound group. However, since operations such as fractionation into each compound group and pretreatment operations according to the volatility of each compound become complicated, biodiesel fuel production If the fatty acid composition of the raw material can be regarded as constant, the unsaturation rate of one compound group is measured and the other compounds are measured without measuring the unsaturation rate of all compound groups in the reaction process liquid. It can be used as the group unsaturation.

(B)工程の、LCにより分離した化合物群をRI検出器により出力値を得る工程とは、LCにより分離した化合物群毎のRI検出器の出力信号を積分し、相対面積値等の化合物群の量に相関した出力値を得る工程をいう。   In the step (B), the step of obtaining the output value of the compound group separated by LC with the RI detector is the integration of the output signal of the RI detector for each compound group separated by LC and the compound group such as relative area value The step of obtaining an output value correlated with the amount of.

LCとしては、シリカゲルカラムを用いた吸着カラムクロマトグラフィー(順相クロマトグラフィーともいう)やオクタデシルシラン結合型カラムを用いた分配カラムクロマトグラフィー(逆相クロマトグラフィーともいう)などあるが、様々な高分子充填剤の分子ふるい効果を利用して、溶質サイズ(分子量)によって分離する方法であるサイズ排除クロマトグラフィー(SEC)が好ましく用いられる。   LC includes adsorption column chromatography using silica gel column (also called normal phase chromatography) and distribution column chromatography using octadecylsilane-bonded column (also called reverse phase chromatography). Size exclusion chromatography (SEC), which is a method of separating by solute size (molecular weight) using the molecular sieving effect of the filler, is preferably used.

化合物群毎の分離には、排除限界が分子量2000以下のポリスチレン系カラムを使用することが好ましい。カラムの例としては、ポリマーラボラトリー社製、50Åカラム、東ソー製のTSKgel G1000H8などの排除限界が分子量2000以下のカラムが挙げられる。   For the separation of each compound group, it is preferable to use a polystyrene column having a molecular weight of 2000 or less. Examples of columns include columns with a molecular weight of 2000 or less, such as Polymer Laboratories, 50 、 columns, Tosoh's TSKgel G1000H8.

LCの移動相としてはテトラヒドロフラン(THF)、ジクロロメタン、クロロホルムなどの汎用の有機系溶媒を使用することができる。   As the LC mobile phase, general-purpose organic solvents such as tetrahydrofuran (THF), dichloromethane, and chloroform can be used.

LC分析装置としてヒューレットパッカード社製1050を用い、データ処理システムにシステムインスツルメンツ480データ処理システム、RI検出器にWaters社製410を備えた分析装置を用い、カラムにポリマーラボラトリー社製50Åを、移動相としてTHFを1.0mL/分、カラム温度25℃、試料注入量100μLの測定条件下で、SIGMA社製の各試薬をサイズ排除クロマトグラフィー分析した際のクロマトグラムを図1に示す。リテンションタイムの早い方から順にTG、DG、MG、FEの各化合物群が分画できる。ここでは図示していないが、FEのリテンションタイムのよりさらに後にグリセンリン、メタノールが分離される。   A Hewlett Packard 1050 was used as the LC analyzer, a system instruments 480 data processing system was used as the data processing system, a water detector 410 was used as the RI detector, a polymer laboratory 50 liter was used as the column, and the mobile phase FIG. 1 shows a chromatogram when each reagent manufactured by SIGMA is subjected to size exclusion chromatography analysis under the measurement conditions of 1.0 mL / min of THF, a column temperature of 25 ° C., and a sample injection amount of 100 μL. TG, DG, MG, and FE compound groups can be fractionated in order from the one with the highest retention time. Although not shown here, glycenline and methanol are separated after the retention time of FE.

(C)工程における所定の関係式について説明する。
RI感度はその化合物構造により異なるため、各化合物毎の感度補正を行うことなく、正確な含有量を求めることはできない。そこで、各化合物のRI感度を予め求めて補正することが必要となるが、多様な化合物の混合物からなる試料に対し、夫々の化合物に対してRI感度を測定するのは困難であり、実用的でない。本発明者は化合物群毎の含有量を測定する場合において、そのRI感度比を容易に算出できる方法を見出した。
The predetermined relational expression in the step (C) will be described.
Since the RI sensitivity varies depending on the compound structure, the accurate content cannot be obtained without performing sensitivity correction for each compound. Therefore, it is necessary to obtain and correct the RI sensitivity of each compound in advance. However, it is difficult to measure the RI sensitivity of each compound for a sample made of a mixture of various compounds, and it is practical. Not. The present inventor has found a method capable of easily calculating the RI sensitivity ratio when measuring the content of each compound group.

以下にその背景となる実験経緯を説明する。
まず、脂肪酸構造が異なる各化合物を試薬で入手し、そのRI感度を前記同条件でSECを行い、その出力値(相対面積値)から、特定の基準化合物に対するRI感度比を求めた。
ここでは、炭素数18の不飽和脂肪酸であるリノール酸から構成されるトリアシルグリセリドであるトリリノレイン(C5798分子量)を基準化合物とした方法を一例として示す。各化合物のトリリノレインを基準としたRI感度比(Y)を表1に示す。例えば、トリオレイン(C57104)では0.87、1,3−ジオレイン(C3972)では0.92、1−モノオレイン(C2140)では0.90、オレイン酸メチル(C1936)では0.63である。
The background of the experiment will be explained below.
First, each compound having a different fatty acid structure was obtained as a reagent, and the SEC was subjected to SEC under the same conditions, and the RI sensitivity ratio with respect to a specific reference compound was determined from the output value (relative area value).
Here, a method using trilinolein (C 57 H 98 O 6 molecular weight) which is a triacylglyceride composed of linoleic acid which is an unsaturated fatty acid having 18 carbon atoms as a reference compound is shown as an example. Table 1 shows the RI sensitivity ratio (Y) of each compound based on trilinolein. For example, 0.87 for triolein (C 57 H 104 O 6 ), 0.92 for 1,3-diolein (C 39 H 72 O 5 ), and 0 for 1-monoolein (C 21 H 40 O 4 ). 90, 0.63 for methyl oleate (C 19 H 36 O 2 ).

これら実験結果から、各化合物単体のRI感度比(Y)は、前述した不飽和率(X)と相関があり、所定の関係式、本例では、(1)式に示すように、RI感度比(Y)は不飽和率(X)の2次関数として整理されることを見出した。
Y=0.47+(Z×0.23)+54.2X−1595X・・・・・(1)
ここでZは化合物群におけるグリセリン骨格の数である。
From these experimental results, the RI sensitivity ratio (Y) of each compound alone has a correlation with the above-described unsaturation rate (X), and as shown in a predetermined relational expression, in this example, the RI sensitivity (1). It has been found that the ratio (Y) is arranged as a quadratic function of the unsaturation rate (X).
Y = 0.47 + (Z × 0.23) + 54.2X-1595X 2 (1)
Here, Z is the number of glycerin skeletons in the compound group.

本例では、グリセリン骨格に結合する脂肪酸は同一の物を用いたが、上記結果より、不飽和率とRI感度に所定の関係式があることが判明したことにより、結合する脂肪酸が複数種類であっても、前述した不飽和率(X)と上記の所定の関係式(1)により、各化合物群毎のRI感度比(Y)を容易に算出することができることがわかる。   In this example, the same fatty acid that binds to the glycerin skeleton was used, but the above results revealed that there is a predetermined relational expression between the unsaturation rate and the RI sensitivity. Even if it exists, it turns out that RI sensitivity ratio (Y) for each compound group is easily computable from said unsaturation rate (X) and said predetermined relational expression (1).

不飽和率(X)とRI感度比(Y)は高い相関があるため、測定条件等が異なっても測定系毎にこの所定の関係式、特には2次関数を定めることにより、不飽和率(X)からRI感度比(Y)を求めることができる。   Since the unsaturation rate (X) and the RI sensitivity ratio (Y) have a high correlation, even if the measurement conditions are different, the unsaturation rate can be determined by defining this predetermined relational expression, particularly a quadratic function, for each measurement system. The RI sensitivity ratio (Y) can be obtained from (X).

(D)工程は、(B)工程で求めた出力値と(C)工程で求めたRI感度比を用いて試料中の化合物群の含有量を算出する工程である。通常は、各化合物群毎に(B)工程で求めた出力値を(C)工程で求めたRI感度比で除して補正した値を、全試料に対する分率として算出する。   The step (D) is a step of calculating the content of the compound group in the sample using the output value obtained in the step (B) and the RI sensitivity ratio obtained in the step (C). Usually, a value corrected by dividing the output value obtained in the step (B) by the RI sensitivity ratio obtained in the step (C) for each compound group is calculated as a fraction of all samples.

また、本発明は、動植物油脂とアルコールとのエステル交換により脂肪酸エステルを製造する工程において、その反応生成物を前述の分析方法により分析し、前記エステル交換反応のモニタリングをすることを特徴とする脂肪酸エステルの製造方法である。   Further, the present invention provides a fatty acid characterized in that, in the step of producing a fatty acid ester by transesterification between animal and vegetable fats and oils, the reaction product is analyzed by the aforementioned analysis method and the transesterification reaction is monitored. It is a manufacturing method of ester.

前記エステル交換反応のモニタリングをするとは、前述の分析方法により分析し、反応生成物の生成量を把握し、所望する反応率に達しているかを判別し、反応温度や反応時間、撹拌条件などの反応に関与する諸条件を変更するかどうかの判断を行うことをいう。
例えば、バッチ式で動植物油脂とメタノールとのエステル交換反応を行う際に、経時的に反応液を前記分析法により分析し、脂肪酸エステルの生成量が所定量に達していない場合、反応時間を延長したり、反応温度を変更したりする脂肪酸エステルの製造方法である。
The transesterification reaction is monitored by the analysis method described above, grasping the amount of reaction product produced, determining whether the desired reaction rate has been reached, and determining the reaction temperature, reaction time, stirring conditions, etc. Determining whether to change various conditions related to the reaction.
For example, when performing transesterification reaction between animal and vegetable fats and oils and methanol in batch mode, the reaction solution is analyzed over time by the above analysis method, and the reaction time is extended if the production amount of fatty acid ester does not reach the predetermined amount. Or changing the reaction temperature.

以下に例を挙げて更に具体的に説明するが、本発明はその要旨を超えない限り、以下の例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(実施例1、比較例1)
トリリノレイン30.3重量部、トリオレイン13.5重量部、トリパルミチン6.2重量部からなるトリグリセリド(TG)を50.0重量%、リノール酸メチル30.3重量部、オレイン酸メチル13.5重量部パルミチン酸メチル6.2重量部からなる脂肪酸エステル(FE)を50.0重量%からなる試料1を調整した。
(Example 1, Comparative Example 1)
30.0 parts by weight of trilinolein, 13.5 parts by weight of triolein, 50.0% by weight of triglyceride (TG) consisting of 6.2 parts by weight of tripalmitin, 30.3 parts by weight of methyl linoleate, 13. Sample 1 consisting of 50.0% by weight of fatty acid ester (FE) consisting of 6.2 parts by weight of 5 parts by weight of methyl palmitate was prepared.

この試料1を、RI検出器(Waters社製410)を備えた液体クロマトグラフィー(ヒューレットパッカード社製1050、データ処理システム:システムインスツルメンツ480データ処理システム)を用い、カラムにポリマーラボラトリー社製50Å(300mm×7.5mmφ)を使用して、移動相としてTHFを1.0mL/分、カラム温度25℃、試料注入量100μLの測定条件下で、SEC分析を行った。
SECによる相対面積値より求めた測定結果を比較例1として表2に示した。
The sample 1 was subjected to liquid chromatography (1050, manufactured by Hewlett Packard, data processing system: System Instruments 480 data processing system) equipped with an RI detector (410, manufactured by Waters), and 50 mm (300 mm, manufactured by Polymer Laboratories) as a column. × 7.5 mmφ), SEC analysis was performed under the measurement conditions of 1.0 mL / min of THF as a mobile phase, a column temperature of 25 ° C., and a sample injection amount of 100 μL.
The measurement results obtained from the relative area values by SEC are shown in Table 2 as Comparative Example 1.

本実施例1ではトリリノレインのRI感度を基準としたRI感度比(Y)に基づく関係式(1)を使用した。また、不飽和率(X)は試料中のFEの組成であるリノール酸メチル30.3重量部、オレイン酸メチル13.5重量部パルミチン酸メチル6.2重量部からなる試料2を無極性のキャピラリーカラム(DB−1:J&W Science社製0.25mmφ×30m)を備えたGC(島津製作所製GC−17A:検出器FID)を用いて脂肪酸組成を分析し、その測定結果より不飽和率(X)を求めた。不飽和率(X)は0.0050であった。   In Example 1, the relational expression (1) based on the RI sensitivity ratio (Y) based on the RI sensitivity of trilinolein was used. Further, the degree of unsaturation (X) was determined by comparing sample 2 consisting of 30.3 parts by weight of methyl linoleate, 13.5 parts by weight of methyl oleate, and 6.2 parts by weight of methyl palmitate, which is the composition of FE in the sample. Fatty acid composition was analyzed using GC (Shimadzu Corporation GC-17A: detector FID) equipped with a capillary column (DB-1: J & W Science, 0.25 mmφ × 30 m), and the unsaturation rate (X ) Unsaturation rate (X) was 0.0050.

資料中のFEの平均分子量は292.07であり、RI感度比(YFE)は(1)式においてZ=0、先に求めた不飽和率(X)=0.0050を用いて、YFE=0.70と算出される。理論値より不飽和率を計算すると不飽和率(XFE)は0.0051であった。
同様にTGの平均分子量は872.13であり、RI感度比(YTG)は(1)式においてZ=1、不飽和率(X)は脂肪酸組成比がTGとFEで一定とみなせるため、FEの不飽和率(X)を代用して算出し、YTG=0.94となる。理論値より算出した不飽和率(XTG)は0.0051であった。
The average molecular weight of FE in the material is 292.07, and the RI sensitivity ratio (Y FE ) is Y = 0 in the equation (1) using the unsaturation rate (X) = 0.050 determined previously. FE is calculated as 0.70. When the unsaturation rate was calculated from the theoretical value, the unsaturation rate (X FE ) was 0.0051.
Similarly, the average molecular weight of TG is 872.13, the RI sensitivity ratio (Y TG ) is Z = 1 in the formula (1), and the unsaturation rate (X) can be considered that the fatty acid composition ratio is constant between TG and FE. It calculates by substituting the unsaturation rate (X) of FE, and becomes YTG = 0.94. The unsaturation rate (X TG ) calculated from the theoretical value was 0.0051.

SECによる面積値より求めた各化合物群の出力値(比較例1)でのTG、FEの各濃度はATG:57.6重量%、AFE:42.4重量%であった。この各出力値と各RI感度比(Y)を用い演算処理することにより各化合物群の含有量を求めると、TG:50.3重量%、FE:49.7重量%となった。 The concentrations of TG and FE in the output value (Comparative Example 1) of each compound group determined from the area value by SEC were A TG : 57.6 wt% and A FE : 42.4 wt%. When the content of each compound group was determined by calculating using each output value and each RI sensitivity ratio (Y), it was TG: 50.3% by weight and FE: 49.7% by weight.

各化合物のSEC分析のクロマトグラムSEC analysis chromatogram of each compound

Claims (3)

トリアシルグリセリド、ジアシルグリセリド、モノアシルグリセリド及び脂肪酸エステルの4種類の化合物群より選ばれる異なる2種以上の化合物を含む試料を定量するに当たり、(A)試料の不飽和率を測定する工程、(B)液体クロマトグラフィーにより分離した化合物群を屈折率検出器により出力値を得る工程、(C)既知の脂肪酸構造の異なる化合物について、前記液体クロマトグラフィー分析と同条件で基準化合物に対する当該化合物のRI感度比を求め、当該化合物の不飽和率と前記当該化合物のRI感度比との相関により2次関数式を定め、次いで前記(A)工程で測定された試料の不飽和率と前記2次関数式に基づき試料の屈折率感度比を求める工程、(D)前記(B)工程で得られた出力値と前記(C)工程により求められた試料の屈折率感度比を用いて試料中の化合物群の含有量を算出する工程を含むアシルグリセリド及び脂肪酸エステルの分析方法。 In quantifying a sample containing two or more different compounds selected from four types of compound groups of triacylglyceride, diacylglyceride, monoacylglyceride and fatty acid ester, (A) a step of measuring the unsaturation rate of the sample; B) A step of obtaining an output value of a compound group separated by liquid chromatography with a refractive index detector, (C) RI of the compound with respect to a reference compound with respect to a reference compound under the same conditions as in the liquid chromatography analysis for compounds having different known fatty acid structures A sensitivity ratio is obtained, a quadratic function formula is determined by correlation between the unsaturation rate of the compound and the RI sensitivity ratio of the compound, and then the unsaturation rate of the sample measured in the step (A) and the quadratic function obtaining a refractive index sensitivity ratio of the sample based on the equation, obtained by (D) wherein (B) said output value obtained in the step (C) step Acyl glyceride and fatty acid esters analysis method comprising the step of using a refractive index sensitivity ratio of the sample to calculate the content of the compounds in the sample. トリアシルグリセリド、ジアシルグリセリド、モノアシルグリセリド及び脂肪酸エステルの4種類の化合物群より選ばれる異なる2種以上の化合物を含む試料を定量するに当たり、(A)試料の不飽和率を測定する工程、(B)排除限界が分子量2000以下のポリスチレン系カラム、移送相としてTHFを1.0mL/分、カラム温度25℃、試料注入量100μLの測定条件下で液体クロマトグラフィーにより分離した化合物群を屈折率検出器により出力値を得る工程、(C)試料の屈折率感度比(Y)を、前記(A)工程で測定された試料の不飽和率(X)と式(1)に基づき求める工程、
Y=0.47+(Z×0.23)+54.2X−1595X2 (1)
Xは試料の不飽和率、Yは試料の屈折率感度比、Zは、化合物群におけるグリセリン骨格の数
(D)前記(B)工程で得られた出力値と前記(C)工程により求められた試料の屈折率感度比を用いて試料中の化合物群の含有量を算出する工程を含むアシルグリセリド及び脂肪酸エステルの分析方法。
In quantifying a sample containing two or more different compounds selected from four types of compound groups of triacylglyceride, diacylglyceride, monoacylglyceride and fatty acid ester, (A) a step of measuring the unsaturation rate of the sample; B) Refractive index detection of compound groups separated by liquid chromatography under the measurement conditions of polystyrene column with a molecular weight of 2000 or less, THF as the transfer phase, 1.0 mL / min, column temperature of 25 ° C., sample injection volume of 100 μL A step of obtaining an output value by a vessel, (C) a step of obtaining a refractive index sensitivity ratio (Y) of the sample based on the unsaturation rate (X) of the sample measured in the step (A ) and the formula (1),
Y = 0.47 + (Z × 0.23) + 54.2X-1595X 2 (1)
X is the unsaturation rate of the sample, Y is the refractive index sensitivity ratio of the sample, Z is the number of glycerin skeletons in the compound group (D) The output value obtained in the step (B) and the step (C) A method for analyzing acylglycerides and fatty acid esters, comprising calculating the content of compound groups in a sample using the refractive index sensitivity ratio of the sample.
動植物油脂とアルコールのエステル交換により脂肪酸エステルを製造する工程において、その反応生成物を請求項1又は2記載の方法により分析し、前エステル交換反応のモニタリングをすることを特徴とする脂肪酸エステルの製造方法。
In the process of producing the fatty acid esters by transesterification of animal or vegetable fats and oils and alcohols, the reaction products were analyzed by the method of claim 1 or 2 wherein, prior Symbol of fatty acid ester, which comprises the monitoring of the transesterification Production method.
JP2006022431A 2006-01-31 2006-01-31 Methods for analyzing acylglycerides and fatty acid esters Expired - Fee Related JP4789247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022431A JP4789247B2 (en) 2006-01-31 2006-01-31 Methods for analyzing acylglycerides and fatty acid esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022431A JP4789247B2 (en) 2006-01-31 2006-01-31 Methods for analyzing acylglycerides and fatty acid esters

Publications (2)

Publication Number Publication Date
JP2007205757A JP2007205757A (en) 2007-08-16
JP4789247B2 true JP4789247B2 (en) 2011-10-12

Family

ID=38485370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022431A Expired - Fee Related JP4789247B2 (en) 2006-01-31 2006-01-31 Methods for analyzing acylglycerides and fatty acid esters

Country Status (1)

Country Link
JP (1) JP4789247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655785A (en) * 2015-02-13 2015-05-27 嘉必优生物工程(武汉)有限公司 Method for analyzing composition of microbial oil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008127617A1 (en) * 2007-04-13 2008-10-23 Alltech Associates Inc. Method and apparatus for analyzing a sample such as a biodiesel fuel sample
CN106124604B (en) * 2016-07-08 2018-09-04 中国农业科学院油料作物研究所 The mass spectrometric analysis method of free fatty in a kind of edible oil based on Derivative

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655785A (en) * 2015-02-13 2015-05-27 嘉必优生物工程(武汉)有限公司 Method for analyzing composition of microbial oil

Also Published As

Publication number Publication date
JP2007205757A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
Foglia et al. Quantitation of neutral lipid mixtures using high performance liquid chromatography with light scattering detection
Knothe Analytical methods used in the production and fuel quality assessment of biodiesel
Qu et al. Direct detection of free fatty acids in edible oils using supercritical fluid chromatography coupled with mass spectrometry
Dahmer et al. A rapid screening technique for determining the lipid composition of soybean seeds
Senorans et al. Analysis of fatty acids in foods by supercritical fluid chromatography
Godswill et al. GC-FID method development and validation parameters for analysis of palm oil (Elaeis guineensis Jacq.) fatty acids composition
Pacheco et al. Simultaneous quantitation of FFA, MAG, DAG, and TAG in enzymatically modified vegetable oils and fats
Kalpio et al. Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils
Xie et al. Hydroxyl content and refractive index determinations on transesterified soybean oil
JP4789247B2 (en) Methods for analyzing acylglycerides and fatty acid esters
US20050106741A1 (en) Determination of aromatic hydrocarbons in edible oil products
Alleman et al. Improving biodiesel monoglyceride determination by ASTM method D6584-17
Csernica et al. Simple and efficient method for the analysis of transesterification reaction mixtures for biodiesel production by reversed-phase high performance liquid chromatography
Lucci et al. Improved analysis of olive oils triacylglycerols by UHPLC-charged aerosol detection
Naviglio et al. Rapid determination of esterified glycerol and glycerides in triglyceride fats and oils by means of periodate method after transesterification
Mu et al. Chromatographic methods in the monitoring of lipase‐catalyzed interesterification
Márquez-Ruiz et al. A direct and fast method to monitor lipid oxidation progress in model fatty acid methyl esters by high-performance size-exclusion chromatography
Shen et al. Evaluation of ethanolysis with immobilized Candida antarctica lipase for regiospecific analysis of triacylglycerols containing highly unsaturated fatty acids
Sun et al. Quantitative analysis of volatiles in transesterified coconut oil by headspace-solid-phase microextraction-gas chromatography–mass spectrometry
Knothe Analytical methods for biodiesel
US20090013769A1 (en) Assay for oils
Hájek et al. Determination of esters in glycerol phase after transesterification of vegetable oil
Hua et al. Determination of trans-4-hydroxy-2-alkenals in thermally treated soybean oil by SPE-HPLC
Pandohee et al. Evaluation of new micro solid-phase extraction cartridges for on-column derivatisation reactions
WO2008127617A1 (en) Method and apparatus for analyzing a sample such as a biodiesel fuel sample

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees