JP4788641B2 - Degradation state detection method for storage battery - Google Patents

Degradation state detection method for storage battery Download PDF

Info

Publication number
JP4788641B2
JP4788641B2 JP2007101516A JP2007101516A JP4788641B2 JP 4788641 B2 JP4788641 B2 JP 4788641B2 JP 2007101516 A JP2007101516 A JP 2007101516A JP 2007101516 A JP2007101516 A JP 2007101516A JP 4788641 B2 JP4788641 B2 JP 4788641B2
Authority
JP
Japan
Prior art keywords
dcir
storage battery
load current
detected
dcir1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007101516A
Other languages
Japanese (ja)
Other versions
JP2008256642A (en
Inventor
裕樹 中西
宗良 野田
一宏 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007101516A priority Critical patent/JP4788641B2/en
Publication of JP2008256642A publication Critical patent/JP2008256642A/en
Application granted granted Critical
Publication of JP4788641B2 publication Critical patent/JP4788641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、蓄電池の劣化状態検出に関するものである。   The present invention relates to detection of a deterioration state of a storage battery.

従来の技術では蓄電池の劣化状態と直流状態での内部抵抗(以下、DCIR)の相関が密接であることから、DCIRを蓄電池の劣化状態の指標として用いてきた。このDCIRの測定方法としては、例えば、車両用の蓄電池においては車両走行中の、蓄電池の負荷電流Iと、そのときの蓄電池電圧Vを測定し、I−V特性の履歴データを線形近似して、その傾きをDCIRとして用いてきた(例えば特許文献1参照)。
特開2006−220616号公報
In the conventional technology, since the correlation between the deterioration state of the storage battery and the internal resistance (hereinafter referred to as DCIR) in the direct current state is close, DCIR has been used as an indicator of the deterioration state of the storage battery. As a DCIR measurement method, for example, in a vehicle storage battery, the load current I of the storage battery and the storage battery voltage V at that time are measured while the vehicle is running, and the history data of the IV characteristic is linearly approximated. The inclination has been used as DCIR (see, for example, Patent Document 1).
JP 2006-220616 A

しかしながら、上記従来の方法では、測定する電流領域によってDCIR値の精度が左右され、その結果、高精度のDCIR値検出が困難であり、蓄電池の劣化状態検出精度が低下していた。   However, in the above conventional method, the accuracy of the DCIR value depends on the current region to be measured. As a result, it is difficult to detect the DCIR value with high accuracy, and the accuracy of detecting the deterioration state of the storage battery is lowered.

本発明は上記従来の課題を解決しようとするもので、蓄電池に流れる負荷電流より蓄電池のDCIRを検出し、このDCIRより蓄電池の劣化状態を検出する蓄電池の劣化状態検出方法であり、負荷電流が高負荷電流域内である時点で蓄電池のDCIRを検出してDCIR1とし、負荷電流が低負荷電流域内である時点で蓄電池のDCIRを検出してDCIR2とし、DCIR1を検出した際には、このDCIR1を蓄電池のDCIRとし、前記DCIR1検出後、所定時間内にDCIR1を検出しない場合にDCIR2を蓄電池のDCIRとすることを特徴とする蓄電池の劣化状態検出方法を示すものである。   The present invention is intended to solve the above-described conventional problems, and is a storage battery deterioration state detection method for detecting a DCIR of a storage battery from a load current flowing through the storage battery, and detecting a deterioration state of the storage battery from the DCIR. The DCIR of the storage battery is detected as DCIR1 when it is within the high load current range, and the DCIR of the storage battery is detected as DCIR2 when the load current is within the low load current range. When DCIR1 is detected, this DCIR1 is A storage battery deterioration state detection method is characterized in that DCIR of a storage battery is used, and when DCIR1 is not detected within a predetermined time after DCIR1 is detected, DCIR2 is used as the DCIR of the storage battery.

なお、負荷電流が放電側で単調推移した際にDCIR1及びDCIR2を検出することにより、充電時のガス発生による影響を省き、より高精度のDCIRの算出を行うことができ、好ましい。   Note that it is preferable that DCIR1 and DCIR2 are detected when the load current monotonously changes on the discharge side, so that the influence of gas generation at the time of charging can be omitted and DCIR can be calculated with higher accuracy.

本発明によれば、劣化状態検出のパラメータであるDCIRの検出精度が顕著に向上するため、結果として、蓄電池の劣化状態を精度よく検出できるという顕著な効果を奏する。   According to the present invention, since the detection accuracy of DCIR, which is a parameter for detecting the deterioration state, is significantly improved, as a result, the deterioration state of the storage battery can be detected with high accuracy.

本発明の蓄電池の劣化状態検出方法は、蓄電池に流れる負荷電流より蓄電池のDCIRを検出し、このDCIRより蓄電池の劣化状態を検出する。   The storage battery deterioration state detection method of the present invention detects the DCIR of the storage battery from the load current flowing through the storage battery, and detects the deterioration state of the storage battery from this DCIR.

負荷電流からの蓄電池のDCIRの検出方法として、蓄電池の負荷電流Iとそのときの蓄電池電圧Vを所定時間間隔で、最低2点計測し、図1に示すようなI―V特性において、計測された2点間を直線で結び、その直線の傾きをDCIRとして算出することができる。   As a method for detecting the DCIR of the storage battery from the load current, the load current I of the storage battery and the storage battery voltage V at that time are measured at a minimum of two points at predetermined time intervals, and measured with the IV characteristics as shown in FIG. The two points can be connected with a straight line, and the slope of the straight line can be calculated as DCIR.

また、検出ポイントを2点とするのではなく、3点以上とすることもDCIRの測定精度向上の面で好ましい。3点以上の複数点よりDCIRを検出する場合は最小二乗法によりI−V間の近似直線を求め、その傾きをDCIRとすればよい。また、負荷電流Iが、放電側で単調推移している間にDCIRを検出することにより、充電時に発生するガスの影響や、電流変化に伴う電圧変化の遅れの影響を低減することができ、より高精度にDCIRを検出できるため、好ましい。   In addition, it is preferable from the viewpoint of improving DCIR measurement accuracy that the number of detection points is not two but three or more. When DCIR is detected from a plurality of three or more points, an approximate straight line between I and V is obtained by the least square method, and the slope thereof is DCIR. Further, by detecting DCIR while the load current I is monotonously changing on the discharge side, it is possible to reduce the influence of gas generated during charging and the influence of delay in voltage change caused by current change, This is preferable because DCIR can be detected with higher accuracy.

図2は、本発明の蓄電池の劣化状態検出方法を適用する蓄電池の放電負荷特性の一例を示す図である。なお、図2に示した例は、蓄電池を電動車に搭載した場合の例を示している。放電負荷電流Iは、車両の走行や停止その他の運行状況によって急激に変化する。本発明では、負荷電流が高負荷電流域(図2に示す領域1)内である時点で蓄電池のDCIRを検出してDCIR1とする。   FIG. 2 is a diagram illustrating an example of a discharge load characteristic of a storage battery to which the storage battery deterioration state detection method of the present invention is applied. In addition, the example shown in FIG. 2 has shown the example at the time of mounting a storage battery in an electric vehicle. The discharge load current I changes abruptly depending on the running, stopping and other operating conditions of the vehicle. In the present invention, when the load current is within the high load current region (region 1 shown in FIG. 2), the DCIR of the storage battery is detected and set to DCIR1.

また、負荷電流が低負荷電流域内(図2に示す領域2)である時点で蓄電池のDCIRを検出してDCIR2とする。   Further, when the load current is within the low load current region (region 2 shown in FIG. 2), the DCIR of the storage battery is detected and set to DCIR2.

図3は、負荷電流IとDCIRとの関係の一例を示す図である。図3から、負荷電流Iの差分ΔIと、DCIRの差分ΔDCIRの比(ΔDCIR/ΔI)は、負荷電流が高い領域で、負荷電流が低い領域よりも大幅に低下することがわかる。すなわち、負荷電流が高い領域では、低い領域に比較して、負荷電流の変化がDCIRの変化に及ぼす影響はより小さい。したがって、高い負荷電流で計測したDCIR1は、低い負荷電流で計測したDCIR2に比較して、蓄電池のDCIRとして、より精度の高い値であることがわかる。   FIG. 3 is a diagram illustrating an example of the relationship between the load current I and DCIR. From FIG. 3, it can be seen that the ratio (ΔDCIR / ΔI) of the difference ΔI of the load current I and the difference ΔDCIR of the DCIR is significantly lower in the region where the load current is high than in the region where the load current is low. That is, in the region where the load current is high, the influence of the change in the load current on the change in DCIR is smaller than in the region where the load current is low. Therefore, it can be seen that DCIR1 measured with a high load current is a more accurate value as the DCIR of the storage battery than DCIR2 measured with a low load current.

しかしながら、図2に示したように、負荷電流が高負荷電流領域内にある確率は、低負荷電流領域内にある確率よりも極めて低く、DCIR1を常時得ることはできない。   However, as shown in FIG. 2, the probability that the load current is in the high load current region is much lower than the probability that the load current is in the low load current region, and DCIR1 cannot always be obtained.

したがって、本発明では、図4に示したようなフローによってDCIRの検出を行う。図2に示した負荷電流推移において、常時蓄電池の負荷電流Iと電圧Vを測定し(S1)、低負荷電流領域にてDCIRが検出できた場合(図2におけるポイントA及びB、図4におけるS2)には、これをDCIR2として記憶し(S3)、高負荷電流領域にてDCIRが検出できた場合(図2におけるポイントC、図4におけるS4)には、これをDCIR1として記憶する(S5)。   Therefore, in the present invention, DCIR is detected by the flow shown in FIG. In the load current transition shown in FIG. 2, when the load current I and voltage V of the constant storage battery are measured (S1) and DCIR can be detected in the low load current region (points A and B in FIG. 2, and in FIG. 4) In S2), this is stored as DCIR2 (S3), and when DCIR can be detected in the high load current region (point C in FIG. 2, S4 in FIG. 4), this is stored as DCIR1 (S5). ).

DCIR1(図2におけるポイントC)が得られたときには、常にDCIR1をDCIRとして採用するが(S7)、DCIR1を検出後、DCIR1が得られないまま所定時間Tを経過した場合、DCIR1の精度は低下していると考えられ、より直近に検出されたDCIR2(図2に示すポイントD)をDCIRとして採用する(S8)ことで、蓄電池のDCIRの精度を一定水準以上に保つ事ができる。   When DCIR1 (point C in FIG. 2) is obtained, DCIR1 is always adopted as DCIR (S7). However, if DCIR1 is not obtained after DCIR1 is detected, the accuracy of DCIR1 decreases. By adopting DCIR2 (point D shown in FIG. 2) detected most recently as DCIR (S8), the accuracy of the DCIR of the storage battery can be maintained at a certain level or higher.

なお、DCIR1に替えて直近に得られたDCIR2値を採用する前記の所定時間Tは、負荷電流の時間的推移と、劣化の進行度合いに応じて設定すべきである。例えば、劣化が早期に進行する場合は、所定時間Tを短く、例えば1時間〜24時間といったスパンとし、劣化が早期に進行せず、緩慢に進行する場合には、所定時間Tを長く、例えば240時間以上に設定することができる。なお、所定時間Tを越えた後に、DCIR1が検出された場合(図2に示すポイントE),ただちにこのDCIR1を蓄電池のDCIRとして採用する。   The predetermined time T in which the most recently obtained DCIR2 value is used instead of DCIR1 should be set according to the time transition of the load current and the degree of progress of deterioration. For example, when the deterioration progresses early, the predetermined time T is shortened, for example, a span of 1 to 24 hours, and when the deterioration does not progress early but progresses slowly, the predetermined time T is increased. It can be set to 240 hours or more. In addition, when DCIR1 is detected after exceeding the predetermined time T (point E shown in FIG. 2), this DCIR1 is immediately adopted as the DCIR of the storage battery.

高負荷電流領域と低負荷電流領域の設定方法は、あらかじめ、車両等の使用機器のすべての使用モードにおける負荷電流推移を計測しておき、その負荷電流の範囲に応じて設定すればよい。高負荷電流域は前記使用機器の使用モードにおける最大電流値に近い範囲に設定するほうがよい。また、低負荷電流域は、使用頻度が多く、かつ、なるべく最大電流値に近い領域を設定するほうがよい。その際、高負荷電流域と低負荷電流域は重複してはならない。   As a method for setting the high load current region and the low load current region, the load current transition in all the use modes of the use device such as the vehicle is measured in advance, and may be set according to the range of the load current. It is better to set the high load current region in a range close to the maximum current value in the use mode of the device used. Further, it is better to set the low load current region as frequently used and as close to the maximum current value as possible. At that time, the high load current region and the low load current region should not overlap.

例えば、図2に示した電流推移において、最大負荷電流が180Aの場合、高負荷電流領域を120A〜180A、低負荷電流領域を20A〜60Aと設定することができる。   For example, in the current transition shown in FIG. 2, when the maximum load current is 180 A, the high load current region can be set to 120 A to 180 A, and the low load current region can be set to 20 A to 60 A.

前記して得られた蓄電池のDCIRから、蓄電池の劣化状態を検出する(S9)。その後、再度S1へ戻るという計測ループを繰り返して行なうことにより、連続して蓄電池の劣化状態を検出できる。なお、蓄電池のDCIRから劣化状態を検出方法の一例としては以下の方法によることができる。   The deterioration state of the storage battery is detected from the DCIR of the storage battery obtained as described above (S9). Thereafter, the deterioration state of the storage battery can be continuously detected by repeatedly performing the measurement loop of returning to S1 again. In addition, the following method can be used as an example of a method for detecting the deterioration state from the DCIR of the storage battery.

例えば、蓄電池の満充電時の総容量SOH(Ah)を蓄電池の劣化状態として採用する場合、図5に示すように、予め作成した温度別の蓄電池のDCIR及び充電状態(SOC)と、蓄電池の劣化状態(SOH)との相関を示すマップを用いて、本発明によって得られたDCIR値と、別途算出したSOC値からSOHを検出する。   For example, when the total capacity SOH (Ah) at the time of full charge of the storage battery is adopted as the deterioration state of the storage battery, as shown in FIG. 5, the DCIR and the charge state (SOC) of the storage battery by temperature created in advance and the storage battery Using a map showing the correlation with the deterioration state (SOH), SOH is detected from the DCIR value obtained by the present invention and the SOC value calculated separately.

なお、図5に示したマップの例においては、前回得られたSOHと電流積算によって得たその時点における残存容量Qとから、SOCを求める(Q/SOH×100)。このSOCと本発明で得たDCIR値と蓄電池の温度から、図5に示したマップより、更新されたSOHを求めることができる。   In the example of the map shown in FIG. 5, the SOC is obtained from the previously obtained SOH and the remaining capacity Q at that time obtained by current integration (Q / SOH × 100). The updated SOH can be obtained from the map shown in FIG. 5 from the SOC, the DCIR value obtained in the present invention, and the temperature of the storage battery.

なお、本実施形態では、DCIRから劣化状態を検出するステップとして、図5に示したマップを用いた例を説明したが、他に知られている方法であってもよい。例えば、初期状態の蓄電池のDCIR値と、現時点でのDCIR値との比率を蓄電池の劣化状態のパラメータとし、このパラメータ値によって、「良好」、「劣化」等のメッセージをLCDパネル等の表示手段で表示したり、電子ブザーや電子音声等の音響・音声的手段により、蓄電池の劣化状態を使用者に告知する方法を用いてもよい。   In the present embodiment, an example using the map shown in FIG. 5 has been described as the step of detecting the deterioration state from DCIR, but other known methods may be used. For example, the ratio between the DCIR value of the storage battery in the initial state and the current DCIR value is used as a parameter for the deterioration state of the storage battery, and messages such as “good” and “deterioration” are displayed on the LCD panel or the like depending on the parameter value. Or a method of notifying the user of the deterioration state of the storage battery by acoustic / voice means such as an electronic buzzer or electronic voice.

本発明では、蓄電池の劣化状態のパラメータとして、DCIRを検出する際、検出頻度は低いが、より高い精度のDCIR値が得られる高負荷電流領域でのDCIR1値を、検出頻度は高いが精度の低い低負荷電流領域でのDCIR2値に優先させる。これにより、精度の高いDCIR検出が可能となり、このDCIRを劣化状態パラメータとした蓄電池の劣化状態検出の精度を顕著に高めることができる。   In the present invention, when detecting DCIR as a parameter of the deterioration state of the storage battery, the detection frequency is low, but the DCIR1 value in the high load current region in which a higher accuracy DCIR value is obtained is detected with high frequency but with high accuracy. Prioritize the DCIR2 value in the low load current region. Thereby, DCIR detection with high accuracy becomes possible, and the accuracy of detection of the deterioration state of the storage battery using this DCIR as the deterioration state parameter can be remarkably increased.

なお、本実施形態では、高負荷電流域と低負荷電流域と2つの電流域に分けてDCIRを検出したが、使用モードに応じて、DCIR検出の負荷電流域を3つ以上に設定してもよい。   In this embodiment, DCIR is detected by dividing into two current regions, a high load current region and a low load current region, but the load current region for DCIR detection is set to three or more according to the use mode. Also good.

例えば3つの負荷電流域を設定する場合、高負荷電流域、中負荷電流域及び低負荷電流域を設ける。高負荷電流域は使用機器の使用モードにおける最大電流値に近い範囲に設定し、中負荷電流域は、使用頻度が高負荷電流域よりも多く、かつ、なるべく高負荷電流域に近い領域を設定、低負荷電流域は、使用頻度が中負荷電流域よりも多く、かつ、なるべく中負荷電流域に近い領域を設定する。その際、高負荷電流域と中負荷電流域と低負荷電流域は重複してはならない。   For example, when three load current regions are set, a high load current region, a medium load current region, and a low load current region are provided. The high load current range is set to a range close to the maximum current value in the use mode of the device used, and the medium load current range is set to a frequency that is more frequently used than the high load current range and as close to the high load current range as possible. The low load current region is set to a region that is used more frequently than the medium load current region and is as close to the medium load current region as possible. At that time, the high load current region, the medium load current region, and the low load current region should not overlap.

図6は、図5と同様に、蓄電池を電動車に搭載し、その時の蓄電池の放電負荷特性の一例を示す図である。高負荷電流域(図6に示す領域1)で検出されるDCIRをDCIR1とし、中負荷電流域(図6に示す領域2)で検出されるDCIRを便宜上DCIR1.5とし、低負荷電流域(図6に示す領域3)で検出されるDCIRをDCIR2とし、図7に示すフローによってDCIRの検出を行なう。   FIG. 6 is a diagram illustrating an example of a discharge load characteristic of the storage battery when the storage battery is mounted on the electric vehicle, similarly to FIG. 5. The DCIR detected in the high load current region (region 1 shown in FIG. 6) is DCIR1, the DCIR detected in the medium load current region (region 2 shown in FIG. 6) is DCIR1.5 for convenience, and the low load current region ( DCIR detected in the area 3) shown in FIG. 6 is DCIR2, and DCIR is detected by the flow shown in FIG.

図6に示した負荷電流推移において、常時蓄電池の負荷電流Iと電圧Vを測定し(S´1)、低負荷電流領域にてDCIRが検出できた場合(図6におけるポイントA及びB、図7におけるS´2)には、これをDCIR2として記憶し(S´3)、中電流領域にてDCIRが検出できた場合(図6におけるポイントC、図7におけるS´4)には、これをDCIR1.5として記憶し(S´5)、高負荷電流領域にてDCIRが検出できた場合(図6におけるポイントD、図7におけるS´6)には、これをDCIR1として記憶する(S´7)。   In the load current transition shown in FIG. 6, when the load current I and voltage V of the constant storage battery are measured (S′1) and DCIR can be detected in the low load current region (points A and B in FIG. 6, FIG. 7 (S′2 in FIG. 7), this is stored as DCIR2 (S′3). When DCIR can be detected in the middle current region (point C in FIG. 6, S′4 in FIG. 7), this is stored. Is stored as DCIR1.5 (S′5), and when DCIR can be detected in the high load current region (point D in FIG. 6, S′6 in FIG. 7), this is stored as DCIR1 (S1). '7).

DCIR1が得られたときには、常にDCIR1をDCIRとして採用する(S´9)が、DCIR1を検出後、DCIR1が得られないまま所定時間Tを経過した場合(S´8のYes)、DCIR1の精度は低下していると考えられ、より直近に検出されたDCIR2(図6に示すポイントE、図7のS´12)もしくはDCIR1.5をDCIRとして採用する(図7のS´11)。   When DCIR1 is obtained, DCIR1 is always adopted as DCIR (S'9). However, when DCIR1 is detected and DCIR1 is not obtained and a predetermined time T has passed (Yes in S'8), the accuracy of DCIR1 is obtained. DCIR2 (point E shown in FIG. 6, S′12 in FIG. 7) or DCIR1.5 detected more recently is adopted as DCIR (S′11 in FIG. 7).

なお、最後のDCIR1.5検出からの経過時間が前記した所定時間Tを経過している場合、このDCIR1.5も誤差が生じているため、より直近のDCIR2をDCIRとして採用する(S´12)。   If the elapsed time from the last DCIR1.5 detection has exceeded the predetermined time T, an error has occurred in this DCIR1.5, so the most recent DCIR2 is adopted as the DCIR (S'12 ).

なお、図6の例では、所定時間T内にDCIR2のみ得られているので、このDCIR2を蓄電池のDCIRとすることになる。所定時間T内にDCIR2とDCIR1.5が得られている場合は、DCIR2を採用せず、DCIR1.5を蓄電池のDCIRとして採用する。   In the example of FIG. 6, since only DCIR2 is obtained within a predetermined time T, this DCIR2 is used as the DCIR of the storage battery. When DCIR2 and DCIR1.5 are obtained within the predetermined time T, DCIR2 is not adopted and DCIR1.5 is adopted as the DCIR of the storage battery.

上記より得られたDCIR値より既述の方法によって蓄電池の劣化状態を検出し(S´13)、再度S´1へ戻ることによって繰り返して連続的に蓄電池の劣化状態を検出できる。   From the DCIR value obtained above, the deterioration state of the storage battery is detected by the above-described method (S′13), and the deterioration state of the storage battery can be continuously detected repeatedly by returning to S′1 again.

なお、図6に示す例において、その後DCIR1.5が検出できた場合(図6に示すポイントF、図7におけるS´4)は、DCIR1.5を蓄電池のDCIRとする(S´11)。さらに、DCIR1が得られたとき(図に示すポイントG、図7に示すS´6)は、これをDCIRとして採用する(S´9)。既述した説明により、DCIRの検出精度の面で、DCIR2が最も高く、DCIR1が最も低く、DCIR1.5はこれらの中間に位置している。一方、検出頻度は、検出精度とは全く逆のDCIR1>DCIR1.5>DCIR2の傾向となる。   In addition, in the example shown in FIG. 6, when DCIR1.5 is detectable after that (point F shown in FIG. 6, S'4 in FIG. 7), DCIR1.5 is made into DCIR of a storage battery (S'11). Further, when DCIR1 is obtained (point G shown in the figure, S′6 shown in FIG. 7), this is adopted as DCIR (S′9). According to the above description, in terms of DCIR detection accuracy, DCIR2 is the highest, DCIR1 is the lowest, and DCIR1.5 is located between these. On the other hand, the detection frequency tends to be DCIR1> DCIR1.5> DCIR2 which is completely opposite to the detection accuracy.

本発明では、DCIR2よりもDCIR1.5を優先し、DCIR1.5よりもDCIR1を優先採用する(S´9)。但し、前記した所定時間T内により精度の高いDCIR1が得られない場合(S´8のYes)は、直近に得られたDCIR1.5をDCIRとして採用する(S´11)。なお、DCIR1.5を得た時間から、さらに前記した所定時間内にDCIR1.5もしくはDCIR1が得られない場合(S´8のYes、S´10のYes)は、DCIR2をDCIRDCIRとして採用する(S´13)。   In the present invention, DCIR1.5 is prioritized over DCIR2, and DCIR1 is prioritized over DCIR1.5 (S'9). However, when DCIR1 with higher accuracy cannot be obtained within the predetermined time T (Yes in S'8), the most recently obtained DCIR1.5 is adopted as DCIR (S'11). If DCIR1.5 or DCIR1 cannot be obtained within the predetermined time described above from the time when DCIR1.5 is obtained (Yes in S′8, Yes in S′10), DCIR2 is adopted as DCIRDCIR ( S'13).

すなわち、所定時間内に現時点で採用しているDCIRx(x=1、1.5、2)と同負荷電流領域もしくは高負荷電流領域によるDCIRを得た場合は、この値をDCIRとして採用するが、所定時間に到達した時点で、現時点で採用しているDCIRx(x=1、1.5、2)よりも低負荷電流領域によるDCIRしか得られない場合、この値を蓄電池のDCIRとして採用する。   That is, when DCIR is obtained in the same load current region or high load current region as DCIRx (x = 1, 1.5, 2) currently employed within a predetermined time, this value is adopted as DCIR. When only a DCIR in a low load current region is obtained at a predetermined time when DCIRx (x = 1, 1.5, 2) used at present is obtained, this value is adopted as the DCIR of the storage battery. .

本発明では、検出精度のより高い負荷電流域でのDCIR値を、検出精度のより低い低負荷電流域でのDCIR値に優先して蓄電池のDCIRとするため、DCIRの測定電流領域に何らの配慮もない、従来のDCIR検出やこのDCIR値に基いた蓄電池の劣化検出方法に比較して、高精度なDCIR検出と、劣化検出を行なうことができる。   In the present invention, since the DCIR value in the load current region with higher detection accuracy is used as the DCIR of the storage battery in preference to the DCIR value in the low load current region with lower detection accuracy, there is no DCIR measurement current region. Compared with conventional DCIR detection and a storage battery deterioration detection method based on this DCIR value without consideration, highly accurate DCIR detection and deterioration detection can be performed.

負荷電流域の区分を4つ以上に増やした場合にも、同様な検出フローを用いてDCIRを検出することができる。   Even when the number of load current region sections is increased to four or more, DCIR can be detected using the same detection flow.

なお、本発明は、DCIR値によって劣化状態を検知できる蓄電池、例えば鉛蓄電池やニッケル水素蓄電池等の蓄電池に適用できる。   In addition, this invention is applicable to storage batteries which can detect a deterioration state by DCIR value, for example, storage batteries, such as a lead storage battery and a nickel hydride storage battery.

本発明の蓄電池の劣化状態検出方法は、前述したような電動車両用蓄電池をはじめとして、様々な用途の蓄電池の劣化状態検出方法として用いることができる。   The storage battery deterioration state detection method of the present invention can be used as a storage battery deterioration state detection method for various applications, including the electric vehicle storage battery as described above.

蓄電池のI−V特性の一例を示す図The figure which shows an example of the IV characteristic of a storage battery 蓄電池の放電負荷特性の一例を示す図The figure which shows an example of the discharge load characteristic of a storage battery 負荷電流IとDCIRとの関係の一例を示す図The figure which shows an example of the relationship between the load current I and DCIR DCIRの検出フローを示す図The figure which shows the detection flow of DCIR 蓄電池のSOH検出マップの一例を示す図The figure which shows an example of the SOH detection map of a storage battery 蓄電池の放電負荷特性の一例を示す他の図The other figure which shows an example of the discharge load characteristic of a storage battery DCIRの検出フローを示す他の図Another figure which shows the detection flow of DCIR

Claims (2)

蓄電池に流れる負荷電流と蓄電池電圧とから前記蓄電池のDCIRを検出し、前記DCIRより前記蓄電池の劣化状態を検出する蓄電池の劣化状態検出方法であり、
前記負荷電流が高負荷電流域内である時点で前記DCIRを検出してDCIR1とし、
前記DCIR1を検出した際には、前記DCIR1を蓄電池のDCIRとし、
前記DCIR1検出後、所定時間内に高負荷電流域内で別のDCIRを検出しない場合に、遂次検出する前記負荷電流が低負荷電流域内である時点で前記DCIRを検出してDCIR2とし、
前記DCIR2を蓄電池のDCIRとすることを特徴とする蓄電池の劣化状態検出方法。
It is a storage battery deterioration state detection method for detecting a DCIR of the storage battery from a load current and a storage battery voltage flowing in the storage battery, and detecting a deterioration state of the storage battery from the DCIR.
When the load current is within a high load current range, the DCIR is detected and set to DCIR1,
When the DCIR1 is detected, the DCIR1 is set as the DCIR of the storage battery,
If another DCIR is not detected within a high load current range within a predetermined time after the detection of the DCIR1, the DCIR is detected at a point in time when the load current to be sequentially detected is within the low load current range, and is set to DCIR2.
A method for detecting a deterioration state of a storage battery, wherein the DCIR2 is a DCIR of the storage battery.
負荷電流が放電側で単調推移した際に前記DCIR1及び前記DCIR2を検出することを特徴とする請求項1に記載の蓄電池の劣化状態検出方法。 The method for detecting a deterioration state of a storage battery according to claim 1, wherein the DCIR1 and the DCIR2 are detected when a load current monotonously changes on the discharge side.
JP2007101516A 2007-04-09 2007-04-09 Degradation state detection method for storage battery Expired - Fee Related JP4788641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101516A JP4788641B2 (en) 2007-04-09 2007-04-09 Degradation state detection method for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101516A JP4788641B2 (en) 2007-04-09 2007-04-09 Degradation state detection method for storage battery

Publications (2)

Publication Number Publication Date
JP2008256642A JP2008256642A (en) 2008-10-23
JP4788641B2 true JP4788641B2 (en) 2011-10-05

Family

ID=39980340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101516A Expired - Fee Related JP4788641B2 (en) 2007-04-09 2007-04-09 Degradation state detection method for storage battery

Country Status (1)

Country Link
JP (1) JP4788641B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492893B (en) * 2011-04-25 2015-09-09 株式会社Lg化学 For estimating equipment and the method for the deterioration of battery capacity
US10527681B2 (en) * 2015-03-31 2020-01-07 Gs Yuasa International Ltd. Degradation estimator for energy storage device, energy storage apparatus, input-output control device for energy storage device, and method for controlling input and output of energy storage device

Also Published As

Publication number Publication date
JP2008256642A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP5269994B2 (en) Battery SOH estimation apparatus and method using battery voltage behavior
JP5835761B2 (en) Battery capacity deterioration estimation apparatus and method
JP5273794B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
US9229064B2 (en) Method for estimating battery degradation
JP5661625B2 (en) Battery resistance characteristic estimation apparatus and method based on open circuit voltage estimated from battery voltage change pattern
EP2700966A1 (en) Battery state estimation device and method
TW201221986A (en) Method for checking and modulating battery capacity and power based on battery charging/discharging characteristics
US20090132186A1 (en) Method and system for reporting battery status based on current estimation
JP4670778B2 (en) Battery status notification method
JP7172013B2 (en) BATTERY MANAGEMENT DEVICE, BATTERY MANAGEMENT METHOD AND BATTERY PACK
JP7014374B2 (en) Battery management device, battery management method and battery pack
JP4806981B2 (en) Engine start storage battery deterioration determination device and engine start storage battery equipped with the deterioration determination device
JP2007309100A (en) Deterioration discriminating method and deterioration discriminating device of engine starting storage battery
US20090319108A1 (en) Electricity storage control apparatus and method of controlling eletricity storage
JP4788641B2 (en) Degradation state detection method for storage battery
JP4401734B2 (en) Secondary battery internal resistance detection method, internal resistance detection device, internal resistance detection program, and medium containing the program
JP7062870B2 (en) Battery management device, battery management method and battery pack
JPH11285155A (en) Discriminating device for battery replacement timing, deterioration level display and storage medium with battery performance measuring data stored therein
US20200182940A1 (en) Method for determining state of charge and electronic device thereof
JP2006010501A (en) Battery status administration system
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus
JP4686139B2 (en) Battery charge state calculation method
JP2011149840A (en) State discrimination device of battery, battery including the state discrimination device, and vehicle including the state discrimination device
JP3467969B2 (en) Battery fuel gauge
JP2007083965A (en) Battery state detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees