JP4788504B2 - Power supply structure for plasma processing equipment - Google Patents

Power supply structure for plasma processing equipment Download PDF

Info

Publication number
JP4788504B2
JP4788504B2 JP2006191151A JP2006191151A JP4788504B2 JP 4788504 B2 JP4788504 B2 JP 4788504B2 JP 2006191151 A JP2006191151 A JP 2006191151A JP 2006191151 A JP2006191151 A JP 2006191151A JP 4788504 B2 JP4788504 B2 JP 4788504B2
Authority
JP
Japan
Prior art keywords
power supply
supply line
frequency
electrode
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006191151A
Other languages
Japanese (ja)
Other versions
JP2008019470A (en
Inventor
崇 大内
均 清水
政和 鷁頭
慎 下沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006191151A priority Critical patent/JP4788504B2/en
Publication of JP2008019470A publication Critical patent/JP2008019470A/en
Application granted granted Critical
Publication of JP4788504B2 publication Critical patent/JP4788504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマを利用して、基板の表面に薄膜堆積、エッチング等の処理を行うようにしたプラズマ処理装置における給電構造に関する。   The present invention relates to a power supply structure in a plasma processing apparatus that uses plasma to perform processing such as thin film deposition and etching on the surface of a substrate.

真空容器内の基板に対向して配置される2つの電極の間に電圧を印加するとともにガスを流すことによってプラズマを生成し、このプラズマを利用して薄膜形成やエッチングを行うプラズマ処理技術は、従来から、多くの技術分野で適用されている。
かかるプラズマ処理技術の装置としては、例えば容量結合型の平行平板プラズマCVD装置もしくはエッチング装置が挙げられる。
この平行平板プラズマCVD装置もしくはエッチング装置においては、基板が配置される真空容器内に流すガスを、例えばSiH4に代表される製膜ガスとすれば、当該基板に薄膜が堆積され、また、例えばCF4に代表されるエッチングガスとすれば、当該基板に対してエッチングが行われることになる。
ここでは、SiH4を主体としたガスで基板上にSi系薄膜を形成するプラズマCVD法によって、薄膜太陽電池を製造する例を挙げることとする。
A plasma processing technique for generating a plasma by applying a voltage and flowing a gas between two electrodes arranged opposite to a substrate in a vacuum vessel, and performing thin film formation and etching using this plasma, Conventionally, it has been applied in many technical fields.
As an apparatus of such a plasma processing technique, for example, a capacitively coupled parallel plate plasma CVD apparatus or an etching apparatus can be cited.
In this parallel plate plasma CVD apparatus or etching apparatus, if the gas flowing in the vacuum vessel in which the substrate is arranged is a film forming gas typified by SiH 4 , for example, a thin film is deposited on the substrate, If an etching gas typified by CF 4 is used, the substrate is etched.
Here, an example will be given in which a thin film solar cell is manufactured by a plasma CVD method in which a Si-based thin film is formed on a substrate with a gas mainly containing SiH 4 .

図5は、容量結合型の平行平板プラズマCVD方法によるプラズマ処理装置の模式図である。
図5において、プラズマ処理装置1の真空容器2の内部に形成された真空室2aには、外部の高周波電源3から整合回路4及び給電線5を通して高周波電力が供給される高周波電極6と、基板8を挟んで当該高周波電極6と対向する位置に接地電極7とが配置されている。真空容器2と給電線5とは、電気的に絶縁されている。なお、接地電極7は必ずしも接地電位である必要はなく、目的に応じて直流、もしくは高周波電力の印加が可能な機構を有していても良い。
FIG. 5 is a schematic view of a plasma processing apparatus using a capacitively coupled parallel plate plasma CVD method.
In FIG. 5, a high-frequency electrode 6 to which high-frequency power is supplied from an external high-frequency power source 3 through a matching circuit 4 and a feed line 5 is supplied to a vacuum chamber 2a formed inside the vacuum vessel 2 of the plasma processing apparatus 1, and a substrate. A ground electrode 7 is arranged at a position facing the high-frequency electrode 6 with 8 interposed therebetween. The vacuum vessel 2 and the power supply line 5 are electrically insulated. Note that the ground electrode 7 is not necessarily at the ground potential, and may have a mechanism capable of applying direct current or high frequency power depending on the purpose.

上記接地電極7の上部には基板8を設置する機構(図示省略)が設けられ、当該接地電極7内には基板8を加熱する加熱機構が内蔵されている。基板8の設置位置は真空室2a内の任意の場所、例えば高周波電極6上でも良い。また、接地電極7内の加熱機構の有無、もしくは加熱機構の設置場所も限定されるものではない。
上記給電線5と上記高周波電極6との接触位置は、通常、高周波電極6の中心にあり、また、これら高周波電極6と給電線5とは垂直に接触しており、高周波電極6側から見て給電線5は対称な配置となっている。
A mechanism (not shown) for installing the substrate 8 is provided above the ground electrode 7, and a heating mechanism for heating the substrate 8 is built in the ground electrode 7. The installation position of the substrate 8 may be an arbitrary place in the vacuum chamber 2a, for example, on the high-frequency electrode 6. Further, the presence or absence of the heating mechanism in the ground electrode 7 or the installation location of the heating mechanism is not limited.
The contact position between the power supply line 5 and the high-frequency electrode 6 is usually at the center of the high-frequency electrode 6, and the high-frequency electrode 6 and the power supply line 5 are in vertical contact with each other, as viewed from the high-frequency electrode 6 side. Thus, the feeder line 5 is arranged symmetrically.

図6及び図7は、上記高周波電極と上記給電線との配置関係の他の例を示すプラズマ処理装置の模式図である。
図6に示されるプラズマCVD法によるプラズマ処理装置においては、給電線5と高周波電極6との接触部位が、図5の装置のような高周波電極6の中心部ではなく、高周波電極6の上部周縁部に配置されている。その他の構成は図5と同様であり、これと同一の部材は同一の符号で示されている。
6 and 7 are schematic views of a plasma processing apparatus showing another example of the arrangement relationship between the high-frequency electrode and the power supply line.
In the plasma processing apparatus using the plasma CVD method shown in FIG. 6, the contact portion between the feeder 5 and the high-frequency electrode 6 is not the central portion of the high-frequency electrode 6 as in the apparatus of FIG. It is arranged in the part. The other structure is the same as that of FIG. 5, and the same member is shown with the same code | symbol.

また、図7に示されるプラズマ処理装置においては、給電線5と高周波電極6との接触部位が高周波電極6の中心部に配置されているとともに(中心部から若干ずれることもある)、外部の高周波電源3が真空容器2の上部に配置され、高周波電源3から電力を導入する給電線5が真空容器2の上壁から真空室2a内に導入するように構成されている。従って、外部の高周波電源3側と高周波電極6とを繋ぐ給電線5は直線状でなくL字状の形状となり、高周波電極6側から見て非対称な配置となっている。
かかる構造は、例えば装置レイアウト等の問題で外部の高周波電源3からの電力導入形式が図5のような構成を取れない場合に採用されている。
その他の構成は図5と同様であり、これと同一の部材は同一の符号で示されている。
In the plasma processing apparatus shown in FIG. 7, the contact portion between the power supply line 5 and the high-frequency electrode 6 is disposed at the center of the high-frequency electrode 6 (may be slightly shifted from the center), and externally. A high-frequency power source 3 is arranged on the upper part of the vacuum vessel 2, and a power supply line 5 for introducing power from the high-frequency power source 3 is introduced into the vacuum chamber 2 a from the upper wall of the vacuum vessel 2. Therefore, the power supply line 5 that connects the external high-frequency power source 3 side and the high-frequency electrode 6 is not linear but L-shaped, and is asymmetrically arranged when viewed from the high-frequency electrode 6 side.
Such a structure is employed when the power introduction form from the external high-frequency power source 3 cannot take the configuration as shown in FIG.
The other structure is the same as that of FIG. 5, and the same member is shown with the same code | symbol.

図8に示されるプラズマ処理装置は、真空室2a内に複数の高周波電極及び接地電極を設置するように構成されている。
即ち図8において、真空室2a内には、2個の高周波電源3a,3bから給電線5a,5bを通して高周波電力が供給される高周波電極6a,6bと、該高周波電極6a,6bとそれぞれ対向する位置に接地電極7a,7b(当該接地電極7a,7bに代えて、目的に応じて直流もしくは高周波電力の印加が可能な機構でも良い)とが設置されている。接地電極7a,7bの上方には基板8a,8bを設置する機構(図示省略)が設けられ、また、接地電極7a,7b内には基板8a,8bを加熱するための加熱機構が設けられている。
かかるプラズマ処理装置においては、真空室2a内に、高周波電極6a,6b及び接地電極7a,7bの組が2組設置されており、各々の高周波電極6a,6bに対して配置された高周波電源3a,3bにより、それぞれ独立に電力を印加することが可能となっている。
このような構成を取ることにより、図5〜図7に示すような高周波電極6及び接地電極7が1組設けられるプラズマ処理装置に比べて、処理能力を2倍にすることができる。
図8のようなプラズマ処理装置を用いて、長尺の高分子材料あるいはステンレス鋼などの金属材料からなる可撓性基板上に薄膜太陽電池を製造することにより、薄膜太陽電池の生産性を向上することが可能となる。その他の構成は図5と同様であり、これと同一の部材は同一の符号で示す。
The plasma processing apparatus shown in FIG. 8 is configured to install a plurality of high-frequency electrodes and ground electrodes in the vacuum chamber 2a.
That is, in FIG. 8, high-frequency electrodes 6a and 6b to which high-frequency power is supplied from two high-frequency power sources 3a and 3b through power supply lines 5a and 5b are opposed to the high-frequency electrodes 6a and 6b, respectively. Ground electrodes 7a and 7b (in place of the ground electrodes 7a and 7b, a mechanism capable of applying direct current or high-frequency power depending on the purpose) may be installed at positions. A mechanism (not shown) for installing the substrates 8a and 8b is provided above the ground electrodes 7a and 7b, and a heating mechanism for heating the substrates 8a and 8b is provided in the ground electrodes 7a and 7b. Yes.
In such a plasma processing apparatus, two sets of high-frequency electrodes 6a and 6b and ground electrodes 7a and 7b are installed in a vacuum chamber 2a, and a high-frequency power source 3a disposed for each of the high-frequency electrodes 6a and 6b. , 3b, it is possible to apply power independently.
By adopting such a configuration, the processing capability can be doubled as compared with a plasma processing apparatus in which one set of the high-frequency electrode 6 and the ground electrode 7 as shown in FIGS.
By using a plasma processing apparatus as shown in FIG. 8 to produce a thin film solar cell on a flexible substrate made of a long polymer material or a metal material such as stainless steel, the productivity of the thin film solar cell is improved. It becomes possible to do. The other structure is the same as that of FIG. 5, and the same member is shown with the same code | symbol.

次に、図5〜図8に示されるようなプラズマ処理装置を用いて基板に薄膜を形成する手順を図5の装置を例にとって説明する。
先ず、図示しない排気手段によって、真空室2a内を所要の真空度まで真空引きを行う。次いで、必要に応じ接地電極73内のヒータによって基板8の加熱を行う。
真空引き直後においては、真空室2a内や基板8の表面等に水分等の不純物が吸着している場合が多く、これらの不純物が十分に脱ガスされない状態で薄膜形成を行うと、薄膜中に大量の不純物が含まれるため膜質の低下につながる。そこで、真空室2a内の脱ガスを促進する目的で、薄膜形成前にガス導入ラインからガスを導入し、圧力制御器と製膜ガス排気ラインによって真空室2a内を一定の圧力に保持したまま該真空室2a内の加熱(ベーキング)を行う。
上記ベーキング中に流すガスは、H2等の熱伝導性が比較的良好なガス、He,Ar等の不活性ガス、あるいは製膜を行う際に流す製膜ガス等を採用している。また、ベーキング中の基板温度は、実際に製膜を行う時の基板温度よりも高めに設定する場合がある。これは、ベーキング中の基板温度を製膜時の基板温度よりも高めに設定することにより脱ガスを促進し、製膜時における脱ガス量を低減するためである。
上記脱ガス後、基板温度を製膜する際の基板温度に設定し、必要に応じて数種類の製膜ガスを所定の流量比で混合してなる混合ガスを真空室2a内に流して所要圧力に保持し、しかる後、高周波電極6に電圧を印加し、高周波電極6〜接地電極7間にプラズマを発生させて基板8上に薄膜形成を行う。種々の製膜条件で基板8上に多層膜を形成することにより、薄膜太陽電池等を作製することが可能となる。
Next, a procedure for forming a thin film on a substrate using a plasma processing apparatus as shown in FIGS. 5 to 8 will be described taking the apparatus of FIG. 5 as an example.
First, the inside of the vacuum chamber 2a is evacuated to a required degree of vacuum by an exhaust means (not shown). Next, the substrate 8 is heated by a heater in the ground electrode 73 as necessary.
Immediately after evacuation, impurities such as moisture are often adsorbed in the vacuum chamber 2a, the surface of the substrate 8, and the like, and if these impurities are not sufficiently degassed, Since a large amount of impurities are included, the film quality is degraded. Therefore, for the purpose of promoting degassing in the vacuum chamber 2a, gas is introduced from the gas introduction line before forming the thin film, and the vacuum chamber 2a is kept at a constant pressure by the pressure controller and the film forming gas exhaust line. The inside of the vacuum chamber 2a is heated (baked).
As the gas to be flowed during the baking, a gas having relatively good thermal conductivity such as H 2 , an inert gas such as He or Ar, or a film forming gas to be flowed during film formation is employed. Further, the substrate temperature during baking may be set higher than the substrate temperature at the time of actual film formation. This is because the degassing is promoted by setting the substrate temperature during baking higher than the substrate temperature during film formation, and the amount of degassing during film formation is reduced.
After the degassing, the substrate temperature is set to the substrate temperature at the time of film formation, and if necessary, a mixed gas obtained by mixing several kinds of film formation gases at a predetermined flow rate ratio is allowed to flow into the vacuum chamber 2a to obtain a required pressure. Then, a voltage is applied to the high-frequency electrode 6 to generate plasma between the high-frequency electrode 6 and the ground electrode 7 to form a thin film on the substrate 8. By forming a multilayer film on the substrate 8 under various film forming conditions, a thin film solar cell or the like can be manufactured.

図5〜図7に示される従来技術において、給電線5と高周波電極6との接続態様については、給電線5と高周波電極6との接続部位は、図5及び図7に示す例のように、高周波電極6の中心部である場合と、図6に示す例のように、給電線5と高周波電極6とが垂直に接続される場合とがある。図5に示す例の場合には、外部から真空室2a内に電力を供給する機構(前記高周波電源3と整合回路4を含む)が真空容器2に対して側部位置に配置されている。
一方、図6及び図7に示す例の場合は、外部から真空室2a内に電力を供給する機構が真空容器2に対して上部位置に配置されている。特に図7に示す例では、給電線5と高周波電極6との接続部位は、高周波電極6の中心部であるが、外部から真空室2a内に電力を供給する機構が真空容器2に対して上部位置に配置され、外部から真空室2a内に電力を供給する機構と高周波電極6とを互いに繋げる給電線5は、図5や図6の場合に比較すると長くなる。
In the prior art shown in FIG. 5 to FIG. 7, as for the connection mode between the feeder line 5 and the high-frequency electrode 6, the connection part between the feeder line 5 and the high-frequency electrode 6 is as in the examples shown in FIGS. 5 and 7. In some cases, the center portion of the high-frequency electrode 6 is connected to the feeder line 5 and the high-frequency electrode 6 vertically as in the example shown in FIG. In the case of the example shown in FIG. 5, a mechanism (including the high-frequency power source 3 and the matching circuit 4) that supplies power from the outside into the vacuum chamber 2 a is disposed at a side position with respect to the vacuum container 2.
On the other hand, in the example shown in FIGS. 6 and 7, a mechanism for supplying electric power from the outside into the vacuum chamber 2 a is disposed at an upper position with respect to the vacuum container 2. In particular, in the example shown in FIG. 7, the connection site between the feeder 5 and the high-frequency electrode 6 is the center of the high-frequency electrode 6, but a mechanism for supplying electric power from the outside into the vacuum chamber 2 a is connected to the vacuum vessel 2. The feeder 5 that is disposed at the upper position and connects the high-frequency electrode 6 to the mechanism for supplying electric power from the outside into the vacuum chamber 2a is longer than in the case of FIGS.

図5〜図7に示す例のように、真空室2a内に1組の高周波電極6と接地電極7とを設置するものに対して、図8に示す例では複数の高周波電極6及び複数の接地電極7を設置している。
即ち、図8に示す例では、真空室2a内には、高周波電極6a,6b及び接地電極7a,7bが2組設置されており、各々の高周波電極6a,6bに対して配置された高周波電源3a,3b及び整合回路4a,4bにより、それぞれ独立に電力を供給することが可能な構成とされている。
As shown in FIG. 5 to FIG. 7, in the example shown in FIG. 8, a plurality of high-frequency electrodes 6 and a plurality of high-frequency electrodes 6 and a ground electrode 7 are installed in the vacuum chamber 2 a. A ground electrode 7 is provided.
That is, in the example shown in FIG. 8, two sets of high-frequency electrodes 6a and 6b and ground electrodes 7a and 7b are installed in the vacuum chamber 2a, and the high-frequency power source disposed for each of the high-frequency electrodes 6a and 6b. 3a, 3b and matching circuits 4a, 4b are configured to be able to supply power independently.

即ち、図8に示す例においては、給電線5a、5bが高周波電極6a,6bの中心部近傍で接続配置される場合には、給電線5a,5bの形状は、構成上の制約により、図5に示すような直線状の形状にすることができず、図7に示す例と同様にL字状の形状となされている。
然るに図8に示す例においては、給電線5a,5bの形状は、外部から真空室2a内に電力を供給する機構を設置する箇所、並びに、給電線5a,5bと高周波電極6a,6bとの接続位置で決まるが、高周波電力を用いる場合には、給電線5a,5bの長さや形状に応じたインダクタンス成分が存在し、整合回路4a,4bと給電線5a,5bとの接続点で過大な電圧が発生することから、給電線5a,5bをできるだけ広く短くして接続することが好ましい。
That is, in the example shown in FIG. 8, when the power supply lines 5a and 5b are connected and arranged near the center of the high-frequency electrodes 6a and 6b, the shapes of the power supply lines 5a and 5b are shown in FIG. The linear shape as shown in FIG. 5 cannot be formed, and the L shape is formed similarly to the example shown in FIG.
However, in the example shown in FIG. 8, the shape of the power supply lines 5a and 5b is such that the mechanism for supplying power from the outside into the vacuum chamber 2a is installed, and the power supply lines 5a and 5b and the high-frequency electrodes 6a and 6b. Although it depends on the connection position, when high-frequency power is used, an inductance component according to the length and shape of the feeder lines 5a and 5b exists, and the connection point between the matching circuits 4a and 4b and the feeder lines 5a and 5b is excessive. Since a voltage is generated, it is preferable to connect the feeder lines 5a and 5b as wide and short as possible.

一方、上記給電線5(5a,5b)の材質としては銀や銅等、抵抗率の低い金属が選択されることが多く、その形状は線状,板状,或いは円柱状のものが選択されることが多い。
図8に示す例のように、電源として高周波電力を用い、給電線5(5a,5b)が長くなる場合、給電線5(5a,5b)には高電圧が生じ、真空容器2内外で様々な影響が出ることになる。例えば給電線5(5a,5b)が、プラズマが印加される反応室内に存在する場合には、給電線5(5a,5b)の周囲も反応ガスで満たされており、給電線5(5a,5b)と適当な距離だけ離れた部位に接地電位を有する反応室壁体(真空容器1の壁体)等があると、給電線5(5a,5b)と反応室壁体との間で放電が生じやすくなり、パワーロスやプラズマが生じた領域近傍における薄膜の付着やエッチングが生じる等の不具合が発生することになる。また、整合回路4に高電圧が印加され、整合回路4内で絶縁破壊が生じやすくなるという不具合が発生することになる。
なお、この真空容器2a内の不要な放電対策としては、図9に示す例のように、シールド板12を高周波電圧が印加される高周波電極6と給電線5との間に挿入し、シールド板12の両端を接地電位部に接続させ、電磁気的な干渉を弱くすることで、良好なプラズマ処理を行うことが提案されている。
On the other hand, as the material of the power supply line 5 (5a, 5b), a metal having a low resistivity such as silver or copper is often selected, and the shape thereof is selected to be linear, plate, or cylindrical. Often.
As in the example shown in FIG. 8, when high-frequency power is used as a power source and the power supply lines 5 (5a, 5b) become long, a high voltage is generated in the power supply lines 5 (5a, 5b), and various values are generated inside and outside the vacuum vessel 2. Will be affected. For example, when the feeder 5 (5a, 5b) is present in the reaction chamber to which plasma is applied, the periphery of the feeder 5 (5a, 5b) is also filled with the reaction gas, and the feeder 5 (5a, 5b) If there is a reaction chamber wall body (wall body of the vacuum vessel 1) having a ground potential at a position separated from 5b) by an appropriate distance, a discharge occurs between the feeder 5 (5a, 5b) and the reaction chamber wall body. As a result, a problem such as adhesion or etching of a thin film in the vicinity of a region where power loss or plasma is generated occurs. Further, a high voltage is applied to the matching circuit 4, which causes a problem that dielectric breakdown easily occurs in the matching circuit 4.
As a measure against unnecessary discharge in the vacuum vessel 2a, a shield plate 12 is inserted between the high-frequency electrode 6 to which a high-frequency voltage is applied and the power supply line 5 as shown in FIG. It has been proposed to perform good plasma processing by connecting both ends of 12 to a ground potential portion to weaken electromagnetic interference.

図10は、図7に示されるプラズマ処理装置の給電構造を示す概略断面図である。
図10において、板状、または円筒状の給電線5は、整合回路4の端子に接続され、絶縁シール材21を介して真空容器2を貫通した後、真空室2a内に入り、高周波電極6の背面側に接続され、高周波給電が行われるようになっている。かかる構成においては、高周波電極6の背面側の給電線5の接続作業を行う為のサービスハッチ22が必要となる。その他の構成は図7と同様で、図7と同一の部材は同一の符号で示されている。
FIG. 10 is a schematic cross-sectional view showing the power supply structure of the plasma processing apparatus shown in FIG.
In FIG. 10, the plate-like or cylindrical feeder 5 is connected to the terminal of the matching circuit 4, penetrates the vacuum vessel 2 through the insulating sealing material 21, enters the vacuum chamber 2 a, and enters the high-frequency electrode 6. It is connected to the back side of the high frequency power supply. In such a configuration, the service hatch 22 for connecting the power supply line 5 on the back side of the high-frequency electrode 6 is required. The other structure is the same as that of FIG. 7, and the same member as FIG. 7 is shown with the same code | symbol.

また、特許文献1(特開平8−293491号公報)には、プラズマ処理装置を備えたステッピングロール方式による多列基板搬送製膜装置が提案されている。
かかるプラズマ処理装置において、真空容器の内部に形成した真空室内に並行して搬送される2列の基板の間には、それぞれ対向配置された電圧を印加する高周波電極及び接地電極が設けられており、真空容器の外部に設置された高周波電源からの高周波電流を給電線を通して前記高周波電極に通電して、成膜時に気密状態となる成膜室に電圧が印加され、基板の表面に薄膜を形成するためのプラズマが当該成膜室内に生成されるようになっている。
特開平8−293491号公報
Further, Patent Document 1 (Japanese Patent Laid-Open No. 8-293491) proposes a multi-row substrate transport film forming apparatus using a stepping roll system equipped with a plasma processing apparatus.
In such a plasma processing apparatus, a high-frequency electrode and a ground electrode are provided between two rows of substrates that are transported in parallel in a vacuum chamber formed inside the vacuum vessel, and each applies a voltage that is opposed to each other. A high-frequency current from a high-frequency power source installed outside the vacuum vessel is supplied to the high-frequency electrode through a power supply line, and a voltage is applied to the film-forming chamber that becomes airtight during film formation, forming a thin film on the surface of the substrate Plasma for this purpose is generated in the film forming chamber.
JP-A-8-293491

図8に示される従来技術のような、真空室2a内に、複数の高周波電極6a,6b及び接地電極7a,7bを設置したプラズマ処理装置(プラズマCVD装置)においては、高周波電極6a,6bに給電線5a,5bを通して高周波電力を供給する場合、電磁的な干渉が発生し易くなり、給電エネルギーを十分に高周波電極6a,6bへ供給できなくなるという問題を生じるおそれがあった。
かかる問題に対処する手段として、給電線5a,5b(中心導体)の外周に、シールド体(外周導体)を設けた、同軸ケーブル等を使用することにより、電磁気的な干渉を低減して、良好なプラズマ処理を行う手段が知られている。
このような外周導体と中心導体との同軸ケーブルからなる給電線5a,5bにおいて、従来は、中心導体の形状を、糸状、角状、円筒状の形状とし、また外周導体の形状を、円管形状、角管形状としている。然るに前記給電線5a,5bは、インピーダンスマッチングを図る必要があることから、適切な導体サイズの選定及び適切な中心導体〜外周導体間距離を確保することにより、最適なインダクタンス、キャパシタンスとする必要がある。
In the plasma processing apparatus (plasma CVD apparatus) in which a plurality of high-frequency electrodes 6a and 6b and ground electrodes 7a and 7b are installed in the vacuum chamber 2a as in the prior art shown in FIG. 8, the high-frequency electrodes 6a and 6b When high-frequency power is supplied through the power supply lines 5a and 5b, electromagnetic interference is likely to occur, and there is a possibility of causing a problem that power supply energy cannot be sufficiently supplied to the high-frequency electrodes 6a and 6b.
As a means for coping with this problem, electromagnetic interference is reduced by using a coaxial cable or the like in which a shield body (outer conductor) is provided on the outer periphery of the feeders 5a and 5b (center conductor). Means for performing an appropriate plasma treatment are known.
Conventionally, in the feeders 5a and 5b composed of the coaxial cable of the outer peripheral conductor and the central conductor, the shape of the central conductor is conventionally a thread shape, a square shape, and a cylindrical shape, and the outer peripheral conductor shape is a circular tube. The shape is a square tube shape. However, since the power supply lines 5a and 5b need to be impedance-matched, it is necessary to set the optimum inductance and capacitance by selecting an appropriate conductor size and securing an appropriate distance between the center conductor and the outer conductor. is there.

一方、近年、大型基板上に薄膜を形成する大面積成膜技術が急速に進歩しており、生産性の向上を目的として、1m級の基板上へ薄膜を形成する大面積成膜の研究もなされている。図8に示されるような、真空室2a内に複数の高周波電極6a,6b及び接地電極7a,7bを設置したプラズマCVD装置において、幅寸法が1mを超える基板8a,8b上に薄膜を形成するためには、高周波電極6a,6bの幅寸法も1m超に大型化することになる。
その結果、給電線5a,5bも長くなり、損失が大きくなる傾向にあるとともに、供給電力も数kW〜5kW程度までの電力投入が必要となる。
このため、給電線5a,5bは、シールド機能を有する外周導体の内部に、銀や銅からなる中心導体を通す構造とすることにより、シールド機能を持たせて電磁的な干渉を防止するとともに、同軸ケーブルとすることにより低損失な給電線が得られる。
On the other hand, in recent years, large-area film formation technology for forming a thin film on a large substrate has been rapidly advanced, and research on large-area film formation for forming a thin film on a 1 m class substrate has been conducted for the purpose of improving productivity. Has been made. In a plasma CVD apparatus in which a plurality of high-frequency electrodes 6a and 6b and ground electrodes 7a and 7b are installed in a vacuum chamber 2a as shown in FIG. 8, a thin film is formed on substrates 8a and 8b having a width dimension exceeding 1 m. For this purpose, the width dimensions of the high-frequency electrodes 6a and 6b are increased to more than 1 m.
As a result, the feeder lines 5a and 5b also become longer and the loss tends to increase, and the supplied power also needs to be input up to several kW to 5 kW.
For this reason, the feed lines 5a and 5b have a structure in which a central conductor made of silver or copper is passed through the outer conductor having a shield function, thereby providing a shield function and preventing electromagnetic interference. By using a coaxial cable, a low-loss feed line can be obtained.

一方、良好な膜質を有する薄膜を得るためには、高周波電極6の温度は200℃超まで昇温せしめる必要がある。一方、前記給電線5は、前記図5、図7及び図8に示す例のように、高周波電極6の背面中心部近傍に、あるいは図6に示す例のように高周波電極6の端部にそれぞれ接続されている必要がある。
このため、かかる従来技術にあっては、高周波電極6からの熱伝導により給電線5が温度上昇により加熱状態となるという問題が発生する。
On the other hand, in order to obtain a thin film having good film quality, the temperature of the high-frequency electrode 6 needs to be raised to over 200 ° C. On the other hand, the feed line 5 is located near the center of the back surface of the high-frequency electrode 6 as in the examples shown in FIGS. 5, 7 and 8, or at the end of the high-frequency electrode 6 as in the example shown in FIG. Each must be connected.
For this reason, in such a conventional technique, there arises a problem that the power supply line 5 is heated due to a temperature rise due to heat conduction from the high-frequency electrode 6.

また、図8に示されるような、真空室2a内に、複数の高周波電極6a,6b及び接地電極7a,7bを設置したプラズマCVD装置においては、装置スペース節減の要求から、高周波電極6a,6b間の距離を短くすることが必要な場合がある。
かかる場合において、高周波電極6a,6b及び接地電極7a,7bの背面側スペースを削減するためには、予め給電線5a,5bを接続した状態で高周波電極6a,6bを組込み、上部空間で真空容器2の外部からの給電線5a,5bと接続する必要が生じる。
かかる従来技術にあっては、長尺で不安定な形態にある給電線5a,5bを高周波電極6a,6bに組付けた状態での、真空容器2内への取付けが必要となることから、給電線5a,5bと高周波電極6a,6bとの接続部に過大応力が発生するおそれがあるとともに、組立て時に給電線5a,5bと高周波電極6a,6bとの接続部を、目視点検したり、増し締めしたりすることが困難であるため、メンテナビリティーが悪い給電構造となってしまう、等の問題がある。
Further, in the plasma CVD apparatus in which a plurality of high-frequency electrodes 6a and 6b and ground electrodes 7a and 7b are installed in the vacuum chamber 2a as shown in FIG. 8, the high-frequency electrodes 6a and 6b are required due to the demand for reducing the apparatus space. It may be necessary to shorten the distance between.
In such a case, in order to reduce the space on the back side of the high-frequency electrodes 6a and 6b and the ground electrodes 7a and 7b, the high-frequency electrodes 6a and 6b are incorporated in a state where the power supply lines 5a and 5b are connected in advance, and the vacuum container is installed in the upper space. 2 need to be connected to the feeders 5a and 5b from the outside.
In such a conventional technique, since it is necessary to attach the feeders 5a and 5b in a long and unstable form to the high-frequency electrodes 6a and 6b in the vacuum vessel 2, There is a possibility that excessive stress may occur at the connection between the power supply lines 5a and 5b and the high-frequency electrodes 6a and 6b, and at the time of assembly, the connection between the power supply lines 5a and 5b and the high-frequency electrodes 6a and 6b is visually inspected. Since it is difficult to retighten, there are problems such as a power supply structure with poor maintainability.

本発明は、このような実状に鑑みてなされたものであり、その目的は、大面積成膜を行う大型のプラズマCVD装置においても、給電線の温度上昇を抑制し、かつ電極への接続が容易な、プラズマ処理装置の給電構造を提供することにある。   The present invention has been made in view of such a situation, and the purpose of the present invention is to suppress the temperature rise of the feeder line and to connect to the electrode even in a large-sized plasma CVD apparatus that performs large-area film formation. An object is to provide an easy power supply structure for a plasma processing apparatus.

上記従来技術の有する課題を解決するために、本発明は、真空容器内の基板に対向して配置される高周波電極及び接地電極を備え、これら高周波電極と接地電極との間に高周波電源から給電線を経た高周波給電によって電圧を印加するとともにガスを流すことによってプラズマを生成し、前記基板の表面に製膜、エッチング等のプラズマ処理を行うようにしたプラズマ処理装置において、前記給電線は、上流側の前記高周波電源接続側の断面積を大きく、下流側の前記高周波電極接続側の断面積を前記高周波電源接続側の断面積よりも小さく形成している。   In order to solve the above-described problems of the prior art, the present invention includes a high-frequency electrode and a ground electrode arranged to face a substrate in a vacuum vessel, and a high-frequency power source is supplied between the high-frequency electrode and the ground electrode. In a plasma processing apparatus in which a plasma is generated by applying a voltage and flowing a gas by high-frequency power supply via an electric wire, and performing plasma processing such as film formation and etching on the surface of the substrate, the power supply line is upstream The cross-sectional area on the high-frequency power source connection side on the side is large, and the cross-sectional area on the high-frequency electrode connection side on the downstream side is smaller than the cross-sectional area on the high-frequency power source connection side.

本発明において、具体的には次のように構成することが好ましい。
即ち、前記給電線は、前記高周波電源側に接続される給電フランジと、該給電フランジの下流側に接続される給電フランジ接続側給電線と、前記高周波電極に接続される電極接続側給電線と、前記給電フランジ接続側給電線及び電極接続側給電線を接続する主給電線とにより構成され、前記電極接続側給電線の表面積を前記主給電線の表面積と同等、または、大きく形成している。
In the present invention, the following configuration is specifically preferred.
That is, the power supply line includes a power supply flange connected to the high frequency power supply side, a power supply flange connection side power supply line connected to the downstream side of the power supply flange, and an electrode connection side power supply line connected to the high frequency electrode. The power supply flange connection side power supply line and the main power supply line connecting the electrode connection side power supply line are formed, and the surface area of the electrode connection side power supply line is equal to or larger than the surface area of the main power supply line. .

また、本発明は、前記給電線の上流側の前記真空容器に取付けられる給電フランジに、前記給電線を冷却する冷却水が通流する冷却水通水路を設けている。   In the present invention, a cooling water passageway through which cooling water for cooling the power supply line flows is provided in a power supply flange attached to the vacuum vessel on the upstream side of the power supply line.

さらに、本発明は、前記給電線の下流側の前記高周波電極側端部に、ガイドピンを有する角形状フランジを設けて、前記高周波電極の背面側に設けた角溝部に埋め込むとともに、前記ガイドピンが挿入可能なガイドピン挿入孔を有するフランジと前記角形状フランジとで前記高周波電極を挟持して、前記高周波電極の正面側から前記給電線と前記電極を接続可能に構成したガイドピン式連結構造からなる電極接続フランジ部を備えている。   Furthermore, the present invention provides a square flange having a guide pin at the high-frequency electrode side end portion downstream of the feeder line, and embeds it in a square groove portion provided on the back side of the high-frequency electrode. A guide pin type coupling structure in which the high-frequency electrode is sandwiched between a flange having a guide pin insertion hole into which the high-frequency electrode can be inserted and the square-shaped flange so that the feed line and the electrode can be connected from the front side of the high-frequency electrode The electrode connection flange part which consists of is provided.

この発明に加えて次のように構成することが可能である。
即ち、複数の高周波電極及び複数の接地電極を設けたプラズマCVD装置において、前記給電線の前記ガイドピン式連結構造からなる電極接続フランジ部を、前記複数の高周波電極の間の空間に配置している。
In addition to the present invention, the following configuration is possible.
That is, in a plasma CVD apparatus provided with a plurality of high-frequency electrodes and a plurality of ground electrodes, an electrode connection flange portion composed of the guide pin type connection structure of the power supply line is disposed in a space between the plurality of high-frequency electrodes. Yes.

本発明によれば、高周波電極が200℃超の高温になった場合でも、給電線における、上流側の前記高周波電源接続側の断面積を大きく、下流側の前記高周波電極接続側の断面積を前記高周波電源接続側の断面積よりも小さく形成し、具体的には電極接続側給電線の断面積を主給電線の断面積よりも小さく、かつ給電フランジ接続側給電線の断面積を主給電線の断面積よりも大きく形成したので、給電線の電極接続側給電線の断面積をこれの入口端子に接続される主給電線の断面積よりも小さくすることにより熱抵抗を増大して、高周波電極側から給電線側への伝熱量を低減することが可能となる。
また、前記給電線における真空容器側の給電フランジ接続側給電線の断面積を主給電線の断面積よりも大きくすることにより、高周波電極からの伝熱量及び高周波給電に伴う給電線の自己発熱量を、真空容器の外部の給電フランジ側へ伝熱させて放熱を促進することが可能となる。これにより、給電線の最高温度を許容値の200〜250℃以下に抑制することができる。
According to the present invention, even when the high-frequency electrode reaches a high temperature exceeding 200 ° C., the cross-sectional area on the high-frequency power source connection side on the upstream side of the feeder line is increased, and the cross-sectional area on the high-frequency electrode connection side on the downstream side is increased. The cross-sectional area of the high-frequency power supply connection side is formed smaller than the cross-sectional area of the power supply line, specifically, the cross-sectional area of the electrode connection-side power supply line is smaller than the cross-sectional area of the main power supply line, Since it is formed larger than the cross-sectional area of the electric wire, the thermal resistance is increased by making the cross-sectional area of the electrode connection side power supply line of the power supply line smaller than the cross-sectional area of the main power supply line connected to the inlet terminal, It becomes possible to reduce the amount of heat transfer from the high-frequency electrode side to the feeder line side.
Further, by making the cross-sectional area of the power supply flange connection side power supply line on the vacuum vessel side in the power supply line larger than the cross-sectional area of the main power supply line, the heat transfer amount from the high-frequency electrode and the self-heat generation amount of the power supply line accompanying the high-frequency power supply It is possible to transfer heat to the power supply flange side outside the vacuum vessel to promote heat dissipation. Thereby, the maximum temperature of the feeder can be suppressed to an allowable value of 200 to 250 ° C. or less.

加えて、上記のような給電線の温度降下によって、給電線の主給電線と給電線を覆う外周導体の内面との間に挿入される絶縁材からなる間隔片に、加工性の良好な耐熱樹脂材料を使用することが可能となり、当該間隔片の製作コストを低減できるとともに、冷却水等の冷媒を真空容器内に通水せずに、給電線における電気抵抗の増大を抑制することが可能となり、真空容器内での漏水の懸念がない信頼性の高い給電構造が得られる。   In addition, due to the temperature drop of the power supply line as described above, a heat-resistant and excellent workability is formed on the gap piece made of an insulating material inserted between the main power supply line of the power supply line and the inner surface of the outer peripheral conductor covering the power supply line. Resin material can be used, and the manufacturing cost of the spacing piece can be reduced, and the increase in electric resistance in the feeder line can be suppressed without passing coolant such as cooling water through the vacuum vessel. As a result, a highly reliable power feeding structure with no fear of water leakage in the vacuum vessel is obtained.

また、前記給電線における高周波電極接続側の電極接続側給電線の板厚、直径等を低減することによってこれの断面積を小さくした場合には、給電線の可撓性が上昇する。かかる給電線の可撓性の上昇により、給電線と高周波電極との接続作業性が向上するとともに、成膜時の温度上昇に伴う熱膨張量を、断面積が小さく柔軟な電極接続側給電線の部分で吸収することも可能となり、高周波電極及び給電線に過大な熱応力が発生するのを防止することができ、高周波電極及び給電線の耐久性が向上する。   Further, when the cross-sectional area of the power supply line is reduced by reducing the plate thickness, diameter, etc. of the electrode connection side power supply line on the high frequency electrode connection side, the flexibility of the power supply line is increased. The increase in flexibility of the power supply line improves the connection workability between the power supply line and the high-frequency electrode, and the amount of thermal expansion associated with the temperature rise during film formation can be reduced with a small cross-sectional area and a flexible electrode connection side power supply line. It is also possible to absorb at this portion, and it is possible to prevent excessive thermal stress from being generated in the high frequency electrode and the power supply line, and the durability of the high frequency electrode and the power supply line is improved.

さらに、本発明によれば、給電線の給電フランジに設けた冷却水通水路を通流する冷却水にて給電線を冷却することにより、給電線からの放熱を抑制して、かかる放熱による周囲温度への影響を低減でき、より安定した給電線の温度管理が可能となるとともに、冷却水温度及び冷却水量を調整することにより、給電線を低温に維持することが可能となり、給電線の抵抗値の増加を抑制して給電線の自己発熱量を低減できる。
これにより、給電線の温度上昇による給電線周りの絶縁部材の損傷、炭化を防止でき、長期間良好な絶縁性を維持できる。
また、前記冷却水通水路は、真空容器の外部にある給電フランジにのみ設けられているので、冷却水通水路からの真空容器内への漏水の懸念がなく、信頼性の高いプラズマCVD装置となる。
Furthermore, according to the present invention, by cooling the power supply line with the cooling water flowing through the cooling water flow path provided in the power supply flange of the power supply line, the heat dissipation from the power supply line is suppressed, and the surroundings due to the heat dissipation The effect on temperature can be reduced, more stable power line temperature management is possible, and by adjusting the cooling water temperature and the amount of cooling water, it is possible to keep the power line at a low temperature, and the resistance of the power line By suppressing the increase in value, the amount of self-heating of the feeder line can be reduced.
Thereby, damage and carbonization of the insulating member around the power supply line due to the temperature rise of the power supply line can be prevented, and good insulation can be maintained for a long time.
In addition, since the cooling water passage is provided only at the power supply flange outside the vacuum vessel, there is no concern of water leakage from the cooling water passage into the vacuum vessel, and a highly reliable plasma CVD apparatus and Become.

そして、本発明によれば、高周波電極の正面側から、ガイドピンが仮固定された角形状フランジとガイドピン挿入孔を有するフランジにより高周波電極を挟み込む形態で、高周波電極の正面側から給電線と高周波電極とを接続するガイドピン式接続構造からなる電極接続フランジ部を備えたことにより、高周波電極の正面側から高周波電極と給電線との接続が可能となるため、高周波電極背面側の給電線の接続スペースを節減でき、真空容器の小型化を図ることができる。
しかも、高周波電極の背面側に設けた角溝部に角形状フランジを嵌め込むことにより、該角形状フランジの共回りを防止することができ、かかる共回りに伴うトルクにより給電線が変形あるいは切断するのを防止できる。
Then, according to the present invention, from the front side of the high-frequency electrode, the high-frequency electrode is sandwiched between the rectangular flange on which the guide pin is temporarily fixed and the flange having the guide pin insertion hole. By providing an electrode connection flange portion composed of a guide pin type connection structure for connecting to the high frequency electrode, it becomes possible to connect the high frequency electrode and the power supply line from the front side of the high frequency electrode. Connection space can be saved, and the vacuum vessel can be miniaturized.
In addition, by fitting a square flange into the square groove provided on the back side of the high-frequency electrode, it is possible to prevent the square flange from co-rotating, and the power supply line is deformed or cut by the torque accompanying the co-rotation. Can be prevented.

また、本発明によれば、複数の高周波電極の背面側の電極設置スペースを節減することができ、複数の高周波電極間の距離を短くすることが可能となるとともに、高周波電極の組立後に、該高周波電極の正面側から給電線を接続可能となるため、高周波電極への給電線の接続作業性を向上させることができる。また、給電線の接続状態の目視確認及び増し締めも容易となり、メンテナビリティーが良好な給電構造が得られる。   Further, according to the present invention, it is possible to reduce the electrode installation space on the back side of the plurality of high-frequency electrodes, it is possible to shorten the distance between the plurality of high-frequency electrodes, and after assembling the high-frequency electrodes, Since the power supply line can be connected from the front side of the high-frequency electrode, connection workability of the power supply line to the high-frequency electrode can be improved. Further, it is easy to visually check and retighten the connection state of the power supply line, and a power supply structure with good maintainability can be obtained.

以下に、本発明に係るプラズマ処理装置の絶縁構造について、その実施形態に基づき詳細に説明する。   Below, the insulation structure of the plasma processing apparatus which concerns on this invention is demonstrated in detail based on the embodiment.

[第1実施形態]
図1は本発明の第1実施形態に係るプラズマCVD装置の概略断面図である。
図1において、1はプラズマCVD装置、2は真空容器であり、該真空容器2の内部には真空室2aが形成されている。この真空室2a内には、基板8が搬送され、かつ基板8を間において、対向配置された電圧を印加する高周波電極6及び接地電極7が設けられ、これら高周波電極6及び接地電極7によって、成膜時に気密状態となる成膜室2bに電圧が印加され、基板8の表面に薄膜を形成するためのプラズマが当該成膜室2b内に生成されるようになっている。
[First embodiment]
FIG. 1 is a schematic sectional view of a plasma CVD apparatus according to the first embodiment of the present invention.
In FIG. 1, 1 is a plasma CVD apparatus, 2 is a vacuum vessel, and a vacuum chamber 2 a is formed inside the vacuum vessel 2. In this vacuum chamber 2a, a high-frequency electrode 6 and a ground electrode 7 for applying a voltage that is opposed to each other are provided between the substrate 8 and the substrate 8, and the high-frequency electrode 6 and the ground electrode 7 provide A voltage is applied to the film formation chamber 2b which is in an airtight state during film formation, and plasma for forming a thin film on the surface of the substrate 8 is generated in the film formation chamber 2b.

上記高周波電極6には給電線5が接続されており、該給電線5は、外部に設置された整合回路4を介して高周波電源3に接続され、該高周波電源3からの高周波電流は、整合回路4及び給電線5を経て高周波電極6に印加されるようになっている。
給電線5は、板状に形成されており、整合回路4の出口端子に接続される給電フランジ54、該給電フランジ54の出口端子に接続され、かつL字状に形成された給電フランジ接続側給電線53、該給電フランジ接続側給電線53の出口端子に接続される主給電線52、及び該主給電線52の出口端子と高周波電極6の背面中央部とを接続する電極接続側給電線51によって構成されている。
また、給電線5は、電極接続側給電線51の断面積を主給電線52の断面積よりも小さく、給電フランジ接続側給電線53の断面積を主給電線52の断面積よりも大きくした構成となっている。しかも、電極接続側給電線51は、高周波電極6及び主給電線52との両端締付け片部が平行で、中間部が主給電線52から高周波電極6へ向かって下り傾斜面の略クランク形状に形成されている。
なお、給電フランジ54の外周と真空容器2との間には、絶縁シール材21が介装されている。
A feeding line 5 is connected to the high-frequency electrode 6, and the feeding line 5 is connected to a high-frequency power source 3 through a matching circuit 4 installed outside, and a high-frequency current from the high-frequency power source 3 is matched. It is applied to the high-frequency electrode 6 through the circuit 4 and the feeder line 5.
The power supply line 5 is formed in a plate shape, and is connected to the outlet terminal of the matching circuit 4, the power supply flange 54 connected to the outlet terminal of the power supply flange 54, and the L-shaped power supply flange connection side The feed line 53, the main feed line 52 connected to the exit terminal of the feed flange connection side feed line 53, and the electrode connection side feed line connecting the exit terminal of the main feed line 52 and the center of the back surface of the high-frequency electrode 6 51.
Further, in the feeder line 5, the sectional area of the electrode connection side feeder line 51 is smaller than the sectional area of the main feeder line 52, and the sectional area of the feeder flange connection side feeder line 53 is larger than the sectional area of the main feeder line 52. It has a configuration. In addition, the electrode connection side power supply line 51 has both ends of the high-frequency electrode 6 and the main power supply line 52 that are clamped in parallel, and the intermediate part has a substantially crank shape with a downward inclined surface from the main power supply line 52 toward the high-frequency electrode 6. Is formed.
An insulating sealing material 21 is interposed between the outer periphery of the power supply flange 54 and the vacuum vessel 2.

上記真空容器2内には、絶縁性材料からなる中空の外周導体9が設けられており、該外周導体9は、上端部が接地状態で真空容器2の内面に固定され、真空室2a内に突出して配置されている。そして、給電線5の給電フランジ54よりも下部の部分、つまり給電フランジ接続側給電線53、主給電線52、及び電極接続側給電線51は、当該外周導体9により覆われて、真空室2a内に配置されている。
また、給電線5の主給電線52と外周導体9の内面との間には、複数(本実施形態では2個)の絶縁材からなる間隔片91が介装されており、該間隔片91は、加工性の良好な耐熱樹脂材料、例えば、テフロン(登録商標)(PTFE)、ポリアミドイミド(PAI)等の材料から形成されている。しかも、間隔片91の厚さtを調整することにより、給電線5の外周導体9内への取付け位置が調整可能となっている。
The vacuum vessel 2 is provided with a hollow outer peripheral conductor 9 made of an insulating material. The outer peripheral conductor 9 is fixed to the inner surface of the vacuum vessel 2 with its upper end grounded, and is placed in the vacuum chamber 2a. Protrusively arranged. The portion below the power supply flange 54 of the power supply line 5, that is, the power supply flange connection side power supply line 53, the main power supply line 52, and the electrode connection side power supply line 51 are covered with the outer peripheral conductor 9, and the vacuum chamber 2a. Is placed inside.
Further, a plurality of (two in this embodiment) spacing pieces 91 are interposed between the main feeding line 52 of the feeding line 5 and the inner surface of the outer peripheral conductor 9. Is formed from a heat-resistant resin material having good processability, for example, a material such as Teflon (registered trademark) (PTFE), polyamideimide (PAI), or the like. In addition, by adjusting the thickness t of the spacing piece 91, the mounting position of the feeder line 5 in the outer peripheral conductor 9 can be adjusted.

次に、本発明の第1実施形態に係るプラズマCVD処理装置での成膜時の作用について、その概略を説明する。
図1において、成膜時には、図示しないアクチュエータによって、真空容器2の真空室2a内に搬送され、接地電極7及び成膜室2bで停止された基板8が図示しない接地電極支持枠まで移動し、気密状態の成膜室2bが高周波電極6と基板8との間に形成される。
そして、高周波電源3の出力電圧が整合回路4及び給電線5を介して高周波電極6の中央部に給電され、これら高周波電極6及び接地電極7の間に高周波電圧が印加される。これによって、成膜室2b内にプラズマが発生し、図示しない導入管から導入された反応ガスが分解され、接地電極7に内蔵されたヒータ(図示せず)によって加熱された基板8の表面上に薄膜が形成されることになる。
Next, an outline of the operation during film formation in the plasma CVD processing apparatus according to the first embodiment of the present invention will be described.
In FIG. 1, at the time of film formation, an actuator (not shown) conveys the substrate 8 that is transported into the vacuum chamber 2a of the vacuum vessel 2 and stopped in the ground electrode 7 and the film formation chamber 2b to a ground electrode support frame (not shown). An airtight film formation chamber 2 b is formed between the high-frequency electrode 6 and the substrate 8.
Then, the output voltage of the high frequency power supply 3 is supplied to the central portion of the high frequency electrode 6 through the matching circuit 4 and the power supply line 5, and a high frequency voltage is applied between the high frequency electrode 6 and the ground electrode 7. As a result, plasma is generated in the film forming chamber 2b, the reaction gas introduced from an introduction pipe (not shown) is decomposed, and is heated on the surface of the substrate 8 heated by a heater (not shown) built in the ground electrode 7. Thus, a thin film is formed.

このように、本発明の第1実施形態によれば、高周波電極6が200℃超の高温になった場合でも、給電線5の電極接続側給電線51の断面積をこれの入口端子に接続される主給電線52の断面積よりも小さくすることによって、高周波電極6側から給電線5側への伝熱量を低減することが可能となる。
また、給電線5における給電フランジ接続側給電線53の表面積を主給電線52の表面積と同等、または、大きくすることにより、高周波電極6からの高周波給電に伴う給電線5の自己発熱量を、低減することが可能となる。
これにより、給電線5の最高温度を200〜250℃以下に抑制することができる。
As described above, according to the first embodiment of the present invention, even when the high-frequency electrode 6 reaches a high temperature exceeding 200 ° C., the cross-sectional area of the electrode connection side power supply line 51 of the power supply line 5 is connected to the inlet terminal thereof. By making it smaller than the cross-sectional area of the main power supply line 52, the amount of heat transfer from the high frequency electrode 6 side to the power supply line 5 side can be reduced.
Further, by making the surface area of the power supply flange connection side power supply line 53 in the power supply line 5 equal to or larger than the surface area of the main power supply line 52, the self-heating amount of the power supply line 5 accompanying the high frequency power supply from the high frequency electrode 6 can be reduced. It becomes possible to reduce.
Thereby, the maximum temperature of the feeder 5 can be suppressed to 200 to 250 ° C. or less.

従って、上記のような給電線5の温度降下によって、給電線5の主給電線52と外周導体9の内面との間に挿入される絶縁材からなる間隔片91に、加工性の良好な耐熱樹脂材料、例えば、テフロン(登録商標)(PTFE)、ポリアミドイミド(PAI)等の材料を使用することが可能となり、間隔片91の製作コストを低減できるとともに、冷却水等の冷媒を真空容器2内に通水せずに、給電線5における電気抵抗の増大を抑制することが可能となり、真空容器2内での漏水の懸念がない信頼性の高い給電構造が得られる。   Therefore, due to the temperature drop of the power supply line 5 as described above, the space piece 91 made of an insulating material inserted between the main power supply line 52 of the power supply line 5 and the inner surface of the outer peripheral conductor 9 is heat resistant with good workability. It is possible to use a resin material such as Teflon (registered trademark) (PTFE), polyamideimide (PAI), and the like, and the manufacturing cost of the spacing piece 91 can be reduced. It is possible to suppress an increase in electrical resistance in the power supply line 5 without passing water therethrough, and a highly reliable power supply structure without the fear of water leakage in the vacuum vessel 2 can be obtained.

また、給電線5における電極接続側給電線51の板厚、直径等を低減することによってこれの断面積を小さくした場合には、給電線5の可撓性が上昇することになる。例えば、この第1実施形態のような板状の給電線5において、板厚が減少する場合、電極接続側給電線51の板厚を0.5mmから1.5mm程度とすることにより、十分な可撓性が得られる。
かかる給電線5の可撓性の上昇により、給電線5と高周波電極6との接続作業性が向上するとともに、成膜時の温度上昇に伴う熱膨張量を、断面積が小さく柔軟な電極接続側給電線51の部分で吸収することも可能となり、高周波電極6及び給電線5に過大な熱応力が発生するのを防止することができ、高周波電極6及び給電線5の耐久性が向上する。
In addition, when the cross-sectional area of the power supply line 5 is reduced by reducing the plate thickness, diameter, etc. of the electrode connection side power supply line 51, the flexibility of the power supply line 5 is increased. For example, in the plate-like power supply line 5 as in the first embodiment, when the plate thickness decreases, the electrode connection-side power supply line 51 has a thickness of about 0.5 mm to 1.5 mm. Flexibility is obtained.
The increase in flexibility of the power supply line 5 improves the connection workability between the power supply line 5 and the high-frequency electrode 6, and the amount of thermal expansion accompanying the temperature increase during film formation can be reduced and the electrode connection can be made with a small cross-sectional area. It is possible to absorb the portion of the side power supply line 51, and it is possible to prevent excessive thermal stress from being generated in the high frequency electrode 6 and the power supply line 5, and the durability of the high frequency electrode 6 and the power supply line 5 is improved. .

[第2実施形態]
図2は本発明の第2実施形態に係るプラズマCVD装置の概略断面図である。
本発明の第2実施形態においては、給電フランジ54に冷却水通水路10が設けられており、該冷却水通水路10中を流れる冷却水によって、給電線5が冷却されるように構成されている。その他の構成は、図1に示す第1実施形態と同様であり、これと同一の部材は同一の符号で示されている。
[Second Embodiment]
FIG. 2 is a schematic sectional view of a plasma CVD apparatus according to the second embodiment of the present invention.
In the second embodiment of the present invention, the cooling water water passage 10 is provided in the power supply flange 54, and the power supply line 5 is cooled by the cooling water flowing through the cooling water water passage 10. Yes. The other structure is the same as that of 1st Embodiment shown in FIG. 1, and the member same as this is shown with the same code | symbol.

かかる第2実施形態によれば、給電線5の給電フランジ54に設けた冷却水通水路10を通流する冷却水にて給電線5を冷却することにより、給電線5からの放熱を抑制し、放熱による周囲温度への影響を低減できて、より安定した給電線5の温度管理が可能となるとともに、冷却水温度及び冷却水量を調整することにより、給電線5を低温に維持することが可能となり、給電線5の抵抗値の増加を抑制して給電線5の自己発熱量を低減できる。
これにより、給電線5の温度上昇による給電線5周りの絶縁部材の損傷、炭化を防止でき、長期間良好な絶縁性を維持できる。
また、冷却水通水路10は、真空容器2の外部にある給電フランジ54にのみ設けられているので、冷却水通水路10からの真空容器2内への漏水の懸念がなく、信頼性の高いプラズマCVD装置が得られることになる。
According to the second embodiment, by cooling the power supply line 5 with the cooling water flowing through the cooling water flow path 10 provided in the power supply flange 54 of the power supply line 5, heat radiation from the power supply line 5 is suppressed. The influence of the heat radiation on the ambient temperature can be reduced, the power supply line 5 can be controlled more stably, and the power supply line 5 can be kept at a low temperature by adjusting the cooling water temperature and the cooling water amount. Thus, an increase in the resistance value of the feeder line 5 can be suppressed, and the amount of self-heating of the feeder line 5 can be reduced.
Thereby, damage and carbonization of the insulating member around the power supply line 5 due to the temperature rise of the power supply line 5 can be prevented, and good insulation can be maintained for a long time.
Further, since the cooling water passage 10 is provided only on the power supply flange 54 outside the vacuum vessel 2, there is no concern about leakage of water from the cooling water passage 10 into the vacuum vessel 2, and the reliability is high. A plasma CVD apparatus is obtained.

[第3実施形態]
図3は本発明の第3実施形態に係るプラズマCVD装置を示し、(A)は概略断面図(図1に対応した図)、(B)は(A)におけるY部拡大図である。
本発明の第3実施形態においては、給電線5と高周波電極6との接続部がガイドピン式連結構造の電極接続フランジ部11によって構成されている。
即ち、図3(A)、(B)において、かかるガイドピン式連結構造からなる電極接続フランジ部11においては、給電線5の電極接続側給電線51の端部に複数(本実施形態では2本)のガイドピン11bが端部に仮固定された角形状フランジ11aを複数のビス51aで固定して設けられ、角形状フランジ11aは高周波電極6の背面側に設けた角溝部61に嵌め込まれている。
また、ガイドピン11bが挿入されるガイドピン挿入孔11fを有するフランジ11cは、高周波電極6の正面側(基板8に対向する側)に設けた角溝部62に嵌め込まれるようになっている。
[Third Embodiment]
3A and 3B show a plasma CVD apparatus according to a third embodiment of the present invention, in which FIG. 3A is a schematic sectional view (a diagram corresponding to FIG. 1), and FIG. 3B is an enlarged view of a Y portion in FIG.
In 3rd Embodiment of this invention, the connection part of the feeder 5 and the high frequency electrode 6 is comprised by the electrode connection flange part 11 of a guide pin type | mold connection structure.
That is, in FIGS. 3A and 3B, in the electrode connection flange portion 11 having such a guide pin type coupling structure, a plurality (2 in this embodiment) are provided at the end of the electrode connection side power supply line 51 of the power supply line 5. This is provided by fixing a square flange 11a having a guide pin 11b temporarily fixed to the end with a plurality of screws 51a, and the square flange 11a is fitted into a square groove 61 provided on the back side of the high-frequency electrode 6. ing.
Further, the flange 11c having the guide pin insertion hole 11f into which the guide pin 11b is inserted is fitted into a square groove portion 62 provided on the front side of the high frequency electrode 6 (side facing the substrate 8).

そして、角形状フランジ11aとフランジ11Cとは、ガイドピン11bをガイドピン挿入孔11fに挿入することにより位置決めされ、角形状フランジ11aとフランジ11cとで高周波電極6を挟持し、高周波電極6の正面側から締付けねじ11eによって角形状フランジ11aとフランジ11Cとを締め付けることにより、給電線5と高周波電極6とが接続されている。
その他の構成は、図1に示す第1実施形態と同様であり、これと同一の部材は同一の符号で示されている。
The square flange 11a and the flange 11C are positioned by inserting the guide pin 11b into the guide pin insertion hole 11f, and the high frequency electrode 6 is sandwiched between the square flange 11a and the flange 11c. The power supply line 5 and the high frequency electrode 6 are connected by tightening the square flange 11a and the flange 11C from the side with the tightening screw 11e.
The other structure is the same as that of 1st Embodiment shown in FIG. 1, and the member same as this is shown with the same code | symbol.

かかる第3実施形態によれば、ガイドピン11bが仮固定された角形状フランジ11aとガイドピン挿入孔11fを有するフランジ11cとにより高周波電極6を挟み込む形態で、高周波電極6の正面側から締付けねじ11eを締め付けて、給電線5と高周波電極6とを接続することにより、高周波電極6の正面側から高周波電極6と給電線5との接続が可能となるため、高周波電極6の背面側における給電線5の接続スペースを節減できて、真空容器2を小型化できる。
また、高周波電極6の背面側に設けた角溝部61に角形状フランジ11aを嵌め込むことにより、角形状フランジ11aの共回りを防ぐことが可能となるため、かかる共回りに伴うねじりトルクにより給電線5が変形するのを防止できる。
According to the third embodiment, the high-frequency electrode 6 is sandwiched between the rectangular flange 11a on which the guide pin 11b is temporarily fixed and the flange 11c having the guide pin insertion hole 11f, and the tightening screw is inserted from the front side of the high-frequency electrode 6. By tightening 11e and connecting the power supply line 5 and the high frequency electrode 6, the high frequency electrode 6 and the power supply line 5 can be connected from the front side of the high frequency electrode 6; The connection space of the electric wire 5 can be saved and the vacuum vessel 2 can be reduced in size.
Further, by fitting the square flange 11a into the square groove portion 61 provided on the back surface side of the high-frequency electrode 6, it is possible to prevent the square flange 11a from rotating together. It is possible to prevent the electric wire 5 from being deformed.

更に、本発明の第3実施形態によれば、高周波電極6及びフランジ11cを、給電線5側の角形状フランジ11aに固定されたガイドピン11bの長さ調節を行うことにより、ガイドピン11bに沿って高周波電極6の正面側に抜き出すことが可能となるとともに、角形状フランジ11aとガイドピン挿入孔11fを有するフランジ11cとの芯合わせを容易に行うことができる。
しかも、ガイドピン11bは、角形状フランジ11aの端部に仮固定されており、角形状フランジ11aとフランジ11cにより高周波電極6を挟み込む形態で高周波電極6の正面側から締付けねじ11eを締め付けて給電線5と高周波電極6とを接続していることから、ガイドピン11bをガイドにして高周波電極6と給電線5との接続完了後に、プラズマ処理を行う際には、ガイドピン11bを抜き出すことが可能となるので、ガイドピン11bの設置による電解集中等により、成膜に影響を及ぼすのを回避できる。また、ねじ接続等によりガイドピン11bが着脱可能な構成とすれば、取外すことができ、メンテナンス性が良好となる。
Furthermore, according to the third embodiment of the present invention, the high frequency electrode 6 and the flange 11c are adjusted to the guide pin 11b by adjusting the length of the guide pin 11b fixed to the square flange 11a on the power supply line 5 side. Accordingly, it is possible to pull out to the front side of the high-frequency electrode 6 and easily align the square flange 11a and the flange 11c having the guide pin insertion hole 11f.
In addition, the guide pin 11b is temporarily fixed to the end of the square flange 11a, and the high frequency electrode 6 is sandwiched between the square flange 11a and the flange 11c to tighten and supply the tightening screw 11e from the front side of the high frequency electrode 6. Since the electric wire 5 and the high-frequency electrode 6 are connected, the guide pin 11b can be extracted when plasma processing is performed after the connection between the high-frequency electrode 6 and the power supply line 5 using the guide pin 11b as a guide. Therefore, it is possible to avoid the influence on the film formation due to the electrolytic concentration due to the installation of the guide pin 11b. Further, if the guide pin 11b is detachable by screw connection or the like, the guide pin 11b can be removed and the maintainability is improved.

[第4実施形態]
図4は本発明の第4実施形態に係るプラズマCVD装置を示す概略断面図である。
本発明の第4実施形態においては、複数の高周波電極6,6及び複数の接地電極7,7を設けたプラズマCVD装置において、上記第3実施形態と同様に、給電線と高周波電極との接続部がガイドピン式連結構造からなる電極接続フランジ部11によって構成されている。
即ち、この第4実施形態の基本構成は、図8に示されるプラズマCVD装置と同様に、真空室2a内に、高周波電極6,6及び接地電極7,7が2組設置されており、各々の高周波電極6,6に対して配置された高周波電源3,3及び整合回路4,4及び給電線5,5により、それぞれ独立に電力を供給することが可能な構成となっている。そして、かかる第4実施形態では、この基本構成に対して、給電線5,5と高周波電極6,6との接続部が上記第3実施形態と同様なガイドピン式連結構造11,11にて構成されている。このようなガイドピン式連結構造からなる電極接続フランジ部11,11の構造は、図3(B)と同一である。
なお、図4において、図3と同一の部材は同一の符号で示されている。
[Fourth Embodiment]
FIG. 4 is a schematic sectional view showing a plasma CVD apparatus according to the fourth embodiment of the present invention.
In the fourth embodiment of the present invention, in a plasma CVD apparatus provided with a plurality of high-frequency electrodes 6 and 6 and a plurality of ground electrodes 7 and 7, as in the third embodiment, the connection between the feeder line and the high-frequency electrode is performed. The portion is constituted by an electrode connecting flange portion 11 having a guide pin type connecting structure.
That is, the basic configuration of the fourth embodiment is similar to the plasma CVD apparatus shown in FIG. 8, in which two sets of high-frequency electrodes 6 and 6 and ground electrodes 7 and 7 are installed in the vacuum chamber 2a. The high-frequency power sources 3 and 3, the matching circuits 4 and 4, and the feeder lines 5 and 5 arranged with respect to the high-frequency electrodes 6 and 6 can supply power independently. And in this 4th Embodiment, the connection part of the feeders 5 and 5 and the high frequency electrodes 6 and 6 is the guide pin type connection structure 11 and 11 similar to the said 3rd Embodiment with respect to this basic composition. It is configured. The structure of the electrode connection flange portions 11 and 11 having such a guide pin type coupling structure is the same as that shown in FIG.
In FIG. 4, the same members as those in FIG. 3 are denoted by the same reference numerals.

かかる第4実施形態によれば、高周波電極6,6の背面側の電極設置スペースを節減することができ、高周波電極6〜6間の距離を短くすることが可能となるとともに、高周波電極6,6の組立後に、高周波電極6,6の正面側から給電線5,5を接続可能となるため、高周波電極6,6への給電線5,5の接続作業性を向上させることができる。また、給電線5,5の接続状態の目視確認及び増し締めも容易となり、メンテナビリティーが良好な給電構造が得られる。   According to the fourth embodiment, the electrode installation space on the back side of the high-frequency electrodes 6 and 6 can be saved, the distance between the high-frequency electrodes 6 to 6 can be shortened, and the high-frequency electrodes 6 and 6 can be shortened. After the assembly of 6, the feed lines 5, 5 can be connected from the front side of the high-frequency electrodes 6, 6, so that the workability of connecting the feed lines 5, 5 to the high-frequency electrodes 6, 6 can be improved. Further, it is easy to visually check and retighten the connection state of the power supply lines 5 and 5, and a power supply structure with good maintainability can be obtained.

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。   While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.

本発明の第1実施形態に係るプラズマCVD装置を示す概略断面図である。1 is a schematic sectional view showing a plasma CVD apparatus according to a first embodiment of the present invention. 本発明の第2実施形態に係るプラズマCVD装置を示す概略断面図である。It is a schematic sectional drawing which shows the plasma CVD apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るプラズマCVD装置を示し、(A)は概略断面図(図1に対応した図)、(B)は(A)におけるY部拡大図である。The plasma CVD apparatus which concerns on 3rd Embodiment of this invention is shown, (A) is a schematic sectional drawing (figure corresponding to FIG. 1), (B) is the Y section enlarged view in (A). 本発明の第4実施形態に係るプラズマCVD装置を示す概略断面図である。It is a schematic sectional drawing which shows the plasma CVD apparatus which concerns on 4th Embodiment of this invention. 従来技術に係る容量結合型の平行平板プラズマCVD方法によるプラズマ処理装置を示す模式図である。It is a schematic diagram which shows the plasma processing apparatus by the capacitive coupling type parallel plate plasma CVD method which concerns on a prior art. 従来技術における前記高周波電極と給電線との配置関係の他の例を示すプラズマ処理装置の模式図(その1)である。It is the schematic diagram (the 1) of the plasma processing apparatus which shows the other example of arrangement | positioning relationship between the said high frequency electrode and feeder in the prior art. 従来技術における高周波電極と給電線との配置関係の他の例を示すプラズマ処理装置の模式図(その2)である。It is the schematic diagram (the 2) of the plasma processing apparatus which shows the other example of arrangement | positioning relationship between the high frequency electrode and feeder in the prior art. 従来技術における前記高周波電極と給電線との配置関係の他の例を示すプラズマ処理装置の模式図(その3)である。It is the schematic diagram (the 3) of the plasma processing apparatus which shows the other example of the arrangement | positioning relationship between the said high frequency electrode and feeder in the prior art. 従来技術における前記高周波電極と給電線との配置関係の他の例を示すプラズマ処理装置の模式図(その4)である。It is the schematic diagram (the 4) of the plasma processing apparatus which shows the other example of arrangement | positioning relationship between the said high frequency electrode and feeder in the prior art. 従来技術に係る容量結合型の平行平板プラズマCVD方法によるプラズマ処理装置を示す概略断面図である。It is a schematic sectional drawing which shows the plasma processing apparatus by the capacitive coupling type parallel plate plasma CVD method which concerns on a prior art.

符号の説明Explanation of symbols

1 プラズマCVD装置
2 真空容器
2a 真空室
3 高周波電源
4 整合回路
5 給電線
51 電極接続側給電線
52 主給電線
53 給電フランジ接続側給電線
54 給電フランジ
6 高周波電極
61 角溝部(電極背面側)
62 角溝部(電極正面側)
7 接地電極
8 基板
9 外周導体
91 間隔片
10 冷却水通水路
11 電極接続フランジ部
11a 角形状フランジ
11b ガイドピン
11c フランジ
11e 締付けねじ
DESCRIPTION OF SYMBOLS 1 Plasma CVD apparatus 2 Vacuum container 2a Vacuum chamber 3 High frequency power supply 4 Matching circuit 5 Feed line 51 Electrode connection side feed line 52 Main feed line 53 Feed flange connection side feed line 54 Feed flange 6 High frequency electrode 61 Square groove part (electrode back side)
62 Square groove (electrode front side)
7 Ground electrode 8 Substrate 9 Outer conductor 91 Spacing piece 10 Cooling water passage 11 Electrode connection flange 11a Square flange 11b Guide pin 11c Flange 11e Tightening screw

Claims (5)

真空容器内の基板に対向して配置される高周波電極及び接地電極を備え、これら高周波電極と接地電極との間に高周波電源から給電線を経た高周波給電によって電圧を印加するとともにガスを流すことによってプラズマを生成し、前記基板の表面に製膜、エッチング等のプラズマ処理を行うようにしたプラズマ処理装置において、前記給電線は、上流側の前記高周波電源接続側の断面積を大きく、下流側の前記高周波電極接続側の断面積を前記高周波電源接続側の断面積よりも小さく形成したことを特徴とするプラズマ処理装置の給電構造。   By providing a high-frequency electrode and a ground electrode arranged to face the substrate in the vacuum vessel, and applying a voltage and flowing a gas between the high-frequency electrode and the ground electrode by high-frequency power supply from a high-frequency power source through a power supply line In the plasma processing apparatus that generates plasma and performs plasma processing such as film formation and etching on the surface of the substrate, the feeder line has a large cross-sectional area on the high-frequency power source connection side on the upstream side, A power supply structure for a plasma processing apparatus, wherein a cross-sectional area on the high-frequency electrode connection side is smaller than a cross-sectional area on the high-frequency power source connection side. 前記給電線は、前記高周波電源側に接続される給電フランジと、該給電フランジの下流側に接続される給電フランジ接続側給電線と、前記高周波電極に接続される電極接続側給電線と、前記給電フランジ接続側給電線及び電極接続側給電線を接続する主給電線とにより構成され、前記電極接続側給電線の表面積を前記主給電線の表面積と同等、または、大きく形成したことを特徴とする請求項1に記載のプラズマ処理装置の給電構造。   The power supply line includes a power supply flange connected to the high frequency power supply side, a power supply flange connection side power supply line connected to the downstream side of the power supply flange, an electrode connection side power supply line connected to the high frequency electrode, The power supply flange connection side power supply line and the main power supply line that connects the electrode connection side power supply line, and the surface area of the electrode connection side power supply line is equal to or larger than the surface area of the main power supply line, The power supply structure of the plasma processing apparatus according to claim 1. 前記給電線の上流側の前記真空容器に取付けられる給電フランジに、前記給電線を冷却する冷却水が通流する冷却水通水路を設けたことを特徴とする請求項1に記載のプラズマ処理装置の給電構造。   2. The plasma processing apparatus according to claim 1, wherein a cooling water flow path through which cooling water for cooling the power supply line flows is provided in a power supply flange attached to the vacuum vessel on the upstream side of the power supply line. Feeding structure. 前記給電線の下流側の前記高周波電極側端部に、ガイドピンを有する角形状フランジを設けて、前記高周波電極の背面側に設けた角溝部に埋め込むとともに、前記ガイドピンが挿入可能なガイドピン挿入孔を有するフランジと前記角形状フランジとで前記高周波電極を挟持して、前記高周波電極の正面側から前記給電線と前記電極を接続可能に構成したガイドピン式連結構造からなる電極接続フランジ部を備えたことを特徴とする請求項1に記載のプラズマ処理装置の給電構造。   A guide pin into which a square flange having a guide pin is provided at the end of the high-frequency electrode on the downstream side of the power supply line and embedded in a square groove provided on the back side of the high-frequency electrode, and the guide pin can be inserted. An electrode connection flange portion having a guide pin type connecting structure in which the high frequency electrode is sandwiched between the flange having an insertion hole and the square flange so that the power supply line and the electrode can be connected from the front side of the high frequency electrode The power supply structure for a plasma processing apparatus according to claim 1, comprising: 複数の高周波電極及び複数の接地電極を設けたプラズマCVD装置において、前記給電線の前記ガイドピン式連結構造からなる電極接続フランジ部を、前記複数の高周波電極の間の空間に配置したことを特徴とする請求項4に記載のプラズマ処理装置の給電構造。   In the plasma CVD apparatus provided with a plurality of high-frequency electrodes and a plurality of ground electrodes, an electrode connection flange portion composed of the guide pin type connection structure of the power supply line is disposed in a space between the plurality of high-frequency electrodes. The power supply structure of the plasma processing apparatus according to claim 4.
JP2006191151A 2006-07-12 2006-07-12 Power supply structure for plasma processing equipment Expired - Fee Related JP4788504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191151A JP4788504B2 (en) 2006-07-12 2006-07-12 Power supply structure for plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191151A JP4788504B2 (en) 2006-07-12 2006-07-12 Power supply structure for plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2008019470A JP2008019470A (en) 2008-01-31
JP4788504B2 true JP4788504B2 (en) 2011-10-05

Family

ID=39075654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191151A Expired - Fee Related JP4788504B2 (en) 2006-07-12 2006-07-12 Power supply structure for plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4788504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038248A (en) * 2006-07-12 2008-02-21 Fuji Electric Holdings Co Ltd Plasma processing apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372238B2 (en) 2008-05-20 2013-02-12 Nordson Corporation Multiple-electrode plasma processing systems with confined process chambers and interior-bussed electrical connections with the electrodes
CN101882646B (en) * 2010-06-11 2012-01-25 深圳市创益科技发展有限公司 Deposition clamp of film solar cell
CN101882647B (en) * 2010-06-11 2012-01-25 深圳市创益科技发展有限公司 Movable holder for silicon-based film solar cells
CN101857953B (en) * 2010-06-11 2012-04-18 深圳市创益科技发展有限公司 Surface feed-in electrode for thin film solar cell deposition
CN101880868B (en) * 2010-06-11 2012-03-07 深圳市创益科技发展有限公司 Deposition box for silicon-based film solar cells
CN101859801B (en) * 2010-06-11 2013-02-20 深圳市创益科技发展有限公司 Discharge electrode plate array for thin film solar cell settling
JP5666888B2 (en) * 2010-11-25 2015-02-12 東京エレクトロン株式会社 Plasma processing apparatus and processing system
JP6579434B2 (en) 2015-08-21 2019-09-25 シンフォニアテクノロジー株式会社 Non-contact power supply device and processing device provided with non-contact power supply device
JP6858656B2 (en) * 2017-06-26 2021-04-14 東京エレクトロン株式会社 Power supply member and board processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038248A (en) * 2006-07-12 2008-02-21 Fuji Electric Holdings Co Ltd Plasma processing apparatus

Also Published As

Publication number Publication date
JP2008019470A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4788504B2 (en) Power supply structure for plasma processing equipment
KR101763277B1 (en) Antenna for generating a plasma and Plasma processing apparatus having the same
JP5747231B2 (en) Plasma generating apparatus and plasma processing apparatus
US8092640B2 (en) Plasma processing apparatus and semiconductor device manufactured by the same apparatus
KR102325544B1 (en) sputtering device
JP2010003462A (en) Microwave plasma processing apparatus and method of supplying microwave
US20220037127A1 (en) Plasma processing apparatus and plasma processing method
US8629370B2 (en) Assembly for delivering RF power and DC voltage to a plasma processing chamber
JP6931461B2 (en) Antenna for plasma generation, plasma processing device and antenna structure equipped with it
KR20110066105A (en) Plasma process apparatus
TWI689967B (en) Antenna for generating plasma, plasma processing device with the antenna, and antenna structure
KR101200876B1 (en) Plasma processing apparatus
CN113994451A (en) Seamless electric conduit
JP4936129B2 (en) Plasma processing equipment
JP2006319192A (en) Electrode and plasma process unit employing it
US10392703B2 (en) Plasma CVD apparatus
CN101519774B (en) Plasma processing apparatus
JP6473332B2 (en) Segmented antenna assembly and plasma generator
TW201940015A (en) Antenna and plasma processing device
JP5286733B2 (en) Plasma processing equipment
CN109818122A (en) A kind of water-cooling type great-power electronic cyclotron resonance heating system block isolating device
WO2018151114A1 (en) Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma
US20240038509A1 (en) Ceramic susceptor
WO2024181225A1 (en) Ion source
TWI591681B (en) Gas feed insert in a plasma processing chamber and methods therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees