JP4788500B2 - Reformed gas internal combustion engine - Google Patents

Reformed gas internal combustion engine Download PDF

Info

Publication number
JP4788500B2
JP4788500B2 JP2006182743A JP2006182743A JP4788500B2 JP 4788500 B2 JP4788500 B2 JP 4788500B2 JP 2006182743 A JP2006182743 A JP 2006182743A JP 2006182743 A JP2006182743 A JP 2006182743A JP 4788500 B2 JP4788500 B2 JP 4788500B2
Authority
JP
Japan
Prior art keywords
reforming
reformed gas
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006182743A
Other languages
Japanese (ja)
Other versions
JP2008014138A (en
Inventor
進 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006182743A priority Critical patent/JP4788500B2/en
Publication of JP2008014138A publication Critical patent/JP2008014138A/en
Application granted granted Critical
Publication of JP4788500B2 publication Critical patent/JP4788500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Description

本発明は、排気熱を利用して改質原料を水蒸気改質する改質ガス内燃機関に関する。   The present invention relates to a reformed gas internal combustion engine that uses an exhaust heat to steam reform a reformed raw material.

ガソリンなどの炭化水素系(Cmn)の液体燃料や天然ガスなど水蒸気改質することで、水素などの発熱量を増加させた改質ガスを得て、これを内燃機関の燃料として用いることでエンジンの熱効率の向上を図ることが従来より提案されている。また、このような水蒸気改質には、少なくとも改質触媒を活性化させるための熱と、吸熱反応である上記水蒸気改質を実行するための反応熱が必要とされるが、その熱を排気ガスから回収し、熱の有効利用を図る。例えば特許文献1は、燃料として天然ガスを用い、排気ガスの熱エネルギをこの天然ガスを水蒸気改質に利用している。 By steam reforming, such as liquid fuel or natural gas hydrocarbon (C m H n), such as gasoline, to obtain a reformed gas with an increased heating value, such as hydrogen, used as a fuel for an internal combustion engine Thus, it has been conventionally proposed to improve the thermal efficiency of the engine. Such steam reforming requires at least heat for activating the reforming catalyst and reaction heat for executing the steam reforming, which is an endothermic reaction. Recover from gas and use heat effectively. For example, Patent Document 1 uses natural gas as a fuel, and uses the heat energy of exhaust gas for steam reforming.

特開2005−30243号公報Japanese Patent Laying-Open No. 2005-30243 特開2004−300004号公報JP 2004-300004 A

しかし、上記特許文献1では、排気ガス温度が700℃〜900℃といった高温であることを利用し、このような高温を活性温度範囲とするいわゆる高温改質触媒を用いて、改質反応を行っている。   However, in the above-mentioned Patent Document 1, utilizing the fact that the exhaust gas temperature is as high as 700 ° C. to 900 ° C., a reforming reaction is performed using a so-called high temperature reforming catalyst that makes such a high temperature an active temperature range. ing.

一方で、水素を含む改質ガスは、ガソリン燃料などと比較して燃焼性に優れており、当量比1未満の希薄燃焼に適している。このような希薄燃焼を行った場合、当量比1以上の過濃燃焼させた場合と比較して、排気ガス温度を低くすることができる。しかし、上記特許文献1のように、従来、ガソリンや天然ガスなどの改質に採用されている高温の活性化温度を備える改質触媒は、低温下では活性がない。したがって、改質ガスの混合気を希薄燃焼させた場合のような低温の排気ガスからは、十分な熱エネルギを回収できず、改質反応を効率的に実行することができない。排気ガスの熱エネルギは改質原料の昇温・気化に利用することができるだけとなり、内燃機関全体の熱効率の向上への寄与は非常に小さいものとなる。また、エンジン始動時や、低温環境下などでは、排気ガス温度が低く、その温度が改質に必要な高温になるまで暖機運転などを実行する必要が発生し、改質ガスを利用した低燃費の内燃機関の意義が薄れてしまう。   On the other hand, the reformed gas containing hydrogen is excellent in combustibility compared with gasoline fuel and the like, and is suitable for lean combustion with an equivalence ratio of less than 1. When such lean combustion is performed, the exhaust gas temperature can be lowered as compared with the case where the rich combustion with an equivalence ratio of 1 or more is performed. However, as in Patent Document 1, a reforming catalyst having a high activation temperature that is conventionally used for reforming gasoline or natural gas is not active at low temperatures. Therefore, sufficient heat energy cannot be recovered from the low-temperature exhaust gas such as when the reformed gas mixture is lean burned, and the reforming reaction cannot be performed efficiently. The thermal energy of the exhaust gas can only be used for raising the temperature and vaporizing the reforming raw material, and the contribution to improving the thermal efficiency of the entire internal combustion engine is very small. Also, when starting the engine or in a low temperature environment, the exhaust gas temperature is low, and it is necessary to perform warm-up operation until the temperature reaches the high temperature required for reforming. The significance of a fuel-efficient internal combustion engine is diminished.

さらに、特許文献1に紹介されているように、メタノール燃料について、300℃程度を活性化温度範囲とする触媒を用いて改質することが知られている。しかし、この300℃程度の低温で活性な改質触媒は、高温環境に晒されると熱劣化が発生する。したがって、特許文献1のように、改質触媒部と熱交換する排気ガス室に350℃以上の排気ガスが流入するような運転条件が存在する場合、低温で活性の優れた改質触媒を使用することはできない。   Furthermore, as introduced in Patent Document 1, it is known to reform methanol fuel using a catalyst having an activation temperature range of about 300 ° C. However, when this reforming catalyst active at a low temperature of about 300 ° C. is exposed to a high temperature environment, thermal degradation occurs. Therefore, as in Patent Document 1, when there is an operating condition in which exhaust gas of 350 ° C. or higher flows into an exhaust gas chamber that exchanges heat with the reforming catalyst unit, a reforming catalyst having excellent activity at a low temperature is used. I can't do it.

一方、特許文献2では、改質反応を低温条件で実行するために、炭化水素系燃料と水との改質を行う改質反応器を高圧状態とすることが提案されている。しかし、このような高圧状態での改質を実現するためには、炭化水素系燃料と水をそれぞれ汲み上げて改質反応器に向けて高圧で吐出させる必要があり、非常に大きな動力を必要とする。また、改質反応器は、低温条件といっても反応温度は200℃〜600℃程度であり、かつ十分な耐圧性を実現するため、この改質反応器は非常に大きな質量を持つことになる。したがって、高効率で簡易かつ小型の改質反応器とすることはできず、自動車のような移動体の内燃機関用に採用することは、非常に困難である。   On the other hand, Patent Document 2 proposes that a reforming reactor for reforming a hydrocarbon-based fuel and water be in a high pressure state in order to execute the reforming reaction under a low temperature condition. However, in order to realize such high pressure reforming, it is necessary to pump up hydrocarbon fuel and water respectively and discharge them to the reforming reactor at high pressure, which requires very large power. To do. In addition, the reforming reactor has a very large mass in order to achieve a sufficient pressure resistance even if the reaction temperature is low temperature, and the reaction temperature is about 200 ° C to 600 ° C. Become. Therefore, it cannot be a highly efficient, simple and small reforming reactor, and it is very difficult to adopt it for a moving internal combustion engine such as an automobile.

本発明は、改質ガスを気筒内に供給して動力を得る内燃機関であって、前記改質ガスは、改質原料を水蒸気改質によって生成した水素を含むガスであり、改質部は、気筒からの排気経路に設けられ、排気ガスと熱交換して吸熱反応である前記水蒸気改質を実行し、該改質部は、高温用改質部と低温用改質部とを備え、前記低温用改質部の改質触媒は、その活性温度上限が、前記高温用改質部の改質触媒の活性温度上限よりも低く、前記低温用改質部よりも前記排気経路の上流側に前記高温用改質部が設けられている。さらに、前記高温用改質部よりも前記排気経路の下流側であって、前記低温用改質部よりも前記排気経路の上流側に、前記気筒への空気を過給する過給機が設けられ、前記過給機は、吸気管への空気過給を行うと共に、前記高温用改質部を通った排気ガスの熱エネルギを回収して排気ガス温度を低下させ、前記過給機で降温された前記排気ガスが前記低温用改質部に供給される。 The present invention is an internal combustion engine for obtaining power by supplying a reformed gas into a cylinder, wherein the reformed gas is a gas containing hydrogen generated by steam reforming of a reformed raw material, The steam reforming, which is provided in the exhaust path from the cylinder and exchanges heat with the exhaust gas and performs an endothermic reaction, the reforming unit includes a reforming unit for high temperature and a reforming unit for low temperature, The reforming catalyst for the low temperature reforming section has an upper limit of the activation temperature lower than the upper limit of the activation temperature of the reforming catalyst for the high temperature reforming section, and is upstream of the exhaust path from the low temperature reforming section. The high temperature reforming section is provided. Furthermore, a supercharger for supercharging air to the cylinder is provided downstream of the high-temperature reforming section and downstream of the exhaust path and upstream of the low-temperature reforming section. The supercharger performs air supercharging to the intake pipe, collects heat energy of the exhaust gas that has passed through the high-temperature reforming section, lowers the exhaust gas temperature, and lowers the temperature by the supercharger. The exhaust gas thus supplied is supplied to the low temperature reforming section.

本発明の他の態様では、上記改質ガス内燃機関において、前記改質燃料のエタノール濃度は、70体積%〜80体積%である。   In another aspect of the present invention, in the reformed gas internal combustion engine, the ethanol concentration of the reformed fuel is 70% by volume to 80% by volume.

本発明の他の態様では、上記いずれかの改質ガス内燃機関において、前記気筒の外部の燃焼室周辺に、少なくとも、前記改質原料の蒸発熱と、前記改質原料を前記水蒸気改質する際の吸熱反応熱とを、前記気筒の冷却に用いるための冷却機構が設けられている。   In another aspect of the present invention, in any one of the above-described reformed gas internal combustion engines, at least the heat of vaporization of the reforming material and the steam reforming of the reforming material are performed around the combustion chamber outside the cylinder. A cooling mechanism is provided for using the endothermic reaction heat at the time of cooling the cylinder.

本発明では、改質原料の水蒸気改質を実行して水素を含む改質ガスを得る内燃機関において、排気熱を利用した改質部に低温用改質部を採用する。さらに高温用改質部又は過給機のいずれか又は両方をこの低温用改質部より排気側の上流側(気筒側)に設ける。このため、例えば、負荷変動で数100℃以上も温度変化する排気ガスと熱交換するような内燃機関においても、低温用改質部に、高温用改質部と過給機のいずれか又は両方を通過した排気ガスが供給されることとなり、低温用改質部に流入する排気ガス温度を確実に低下させることができる。   In the present invention, a low temperature reforming section is adopted as a reforming section using exhaust heat in an internal combustion engine that obtains reformed gas containing hydrogen by performing steam reforming of the reforming raw material. Further, either or both of the high temperature reforming section and the supercharger are provided on the upstream side (cylinder side) on the exhaust side from the low temperature reforming section. For this reason, for example, even in an internal combustion engine that exchanges heat with exhaust gas whose temperature changes by several hundred degrees Celsius or more due to load fluctuations, either or both of the high temperature reforming unit and the supercharger are included in the low temperature reforming unit. Thus, the exhaust gas that has passed through is supplied, and the temperature of the exhaust gas flowing into the low temperature reforming section can be reliably reduced.

高温用改質部を低温用改質部より排気経路の上流側に設けることで、排気ガス温度が高い場合にも、この高温用改質部で効率的に排気ガスと熱交換して、吸熱反応である水蒸気改質が行われると共に、排気ガス温度を低下させることができる。   By providing the high-temperature reforming section upstream of the low-temperature reforming section, even when the exhaust gas temperature is high, the high-temperature reforming section efficiently exchanges heat with the exhaust gas and absorbs heat. Steam reforming, which is a reaction, is performed, and the exhaust gas temperature can be lowered.

低温用改質部より排気経路の上流側に過給機を設けることで、排気ガスの熱エネルギーを確実に奪って排気温度を低下させることができ、低温用改質部を熱劣化させることなく、低温用改質触媒の交換頻度の低減し、或いは触媒の交換を不要とすることも可能とできる。   By providing a turbocharger upstream of the exhaust path from the low temperature reforming section, the exhaust gas can be surely deprived of heat energy and the exhaust temperature can be lowered without causing thermal degradation of the low temperature reforming section. In addition, it is possible to reduce the replacement frequency of the low-temperature reforming catalyst or make it unnecessary to replace the catalyst.

さらに、過給機の排気タービンは、過給コンプレッサを回転させ吸気管への空気を過給する。ガスエンジンでは、例えば、吸気ポート噴射するシステムの場合、燃料としてガスを用いるが故に、吸込み空気量が減少し、直噴エンジンや液体燃料ポート噴射エンジンに比べて最大トルクが低下する傾向を持つ。しかし、過給機を設けることで、ガスエンジンのポート噴射の場合であっても、空気流量低下を払拭でき、低燃費と高出力を両立することが可能となる。   Further, the exhaust turbine of the supercharger rotates the supercharged compressor to supercharge the air to the intake pipe. In a gas engine, for example, in the case of a system that performs intake port injection, gas is used as fuel, so the amount of intake air decreases, and the maximum torque tends to decrease compared to a direct injection engine or a liquid fuel port injection engine. However, by providing the supercharger, even in the case of port injection of a gas engine, it is possible to wipe down the decrease in the air flow rate and to achieve both low fuel consumption and high output.

低温用改質部により、排気ガス温度が低い状態でも確実に改質原料の水蒸気改質を実行することができ、燃費の向上に寄与できる。また、排気ガス温度が高い場合でも、確実に低下させてから低温改質部に供給できる。このため低温用改質部には、350℃以下の低温で極めて高効率に水蒸気改質を実行できるCuを触媒成分として含む改質触媒を採用することができる。改質燃料として、例えばエタノールと水の混合液を用いた場合など、この銅を含む改質触媒を用いることで、エタノールを低温(200〜350℃)で非常に効率的に水蒸気改質することができる。したがって、例えばエタノール等を改質原料に用いた改質ガスエンジン車の燃費を大幅向上することが可能となる。   The low-temperature reforming section can reliably perform steam reforming of the reforming raw material even when the exhaust gas temperature is low, and can contribute to improvement in fuel consumption. Even when the exhaust gas temperature is high, the exhaust gas temperature can be reliably lowered before being supplied to the low temperature reforming section. For this reason, a reforming catalyst containing Cu as a catalyst component that can perform steam reforming at a low temperature of 350 ° C. or less and extremely high efficiency can be employed in the low temperature reforming section. For example, when using a reforming catalyst containing copper as a reformed fuel, for example, when a mixed solution of ethanol and water is used, ethanol is steam reformed very efficiently at a low temperature (200 to 350 ° C.). Can do. Therefore, for example, the fuel efficiency of a reformed gas engine vehicle using ethanol or the like as a reforming material can be greatly improved.

以下、図面を参照して本発明の実施の形態(以下、実施形態)について説明する。   Embodiments (hereinafter, embodiments) of the present invention will be described below with reference to the drawings.

[実施形態1]
図1は、本実施形態に係る内燃機関の概略構成を表している。この内燃機関(エンジン)では、気筒10の排気ポートに連接された排気管40に改質部400を設け、排気ガスの熱を用いて改質原料の水蒸気改質(吸熱反応)を実行する。
[Embodiment 1]
FIG. 1 shows a schematic configuration of the internal combustion engine according to the present embodiment. In this internal combustion engine (engine), the reforming section 400 is provided in the exhaust pipe 40 connected to the exhaust port of the cylinder 10, and steam reforming (endothermic reaction) of the reforming material is performed using the heat of the exhaust gas.

改質部400は、低温用改質部30と高温用改質部32を備え、低温用改質部30は、高温用改質部32よりもその活性温度範囲の上限が低い改質触媒が用いられ、低温用改質部30よりも排気経路の上流側(気筒10側)に高温用改質部32が設けられている。   The reforming unit 400 includes a low temperature reforming unit 30 and a high temperature reforming unit 32, and the low temperature reforming unit 30 is a reforming catalyst whose upper limit of the active temperature range is lower than that of the high temperature reforming unit 32. A high temperature reforming unit 32 is provided upstream of the low temperature reforming unit 30 in the exhaust path (cylinder 10 side).

また、低温用改質部30より排気経路の上流側であって、高温用改質部32よりも下流側の位置、本実施形態では、高温用改質部32と低温用改質部30との間には、過給機50が設けられている。   Further, a position upstream of the low temperature reforming section 30 and downstream of the high temperature reforming section 32, in the present embodiment, the high temperature reforming section 32 and the low temperature reforming section 30 Between them, a supercharger 50 is provided.

したがって、本実施形態では、排気管40に気筒10から排出された排気ガスは、まず高温用改質部32に流入し、高温用改質部32と熱交換し、高温用改質部32において、高温環境下で改質原料の水蒸気改質が行われる。   Therefore, in the present embodiment, the exhaust gas discharged from the cylinder 10 into the exhaust pipe 40 first flows into the high temperature reforming unit 32 and exchanges heat with the high temperature reforming unit 32, and in the high temperature reforming unit 32. The steam reforming of the reforming raw material is performed in a high temperature environment.

高温用改質部32から流出する排気ガスは、次に過給機50に供給される。過給機50は、排気タービンを備え、排気ガスでこの排気タービンを回転させることで排ガスから熱エネルギを奪ってその温度を低下させる。また、過給機50は、排気管内のタービンをエンジンの排気圧力で高速回転させ、その回転力で圧縮機を駆動することによって吸気管20内を貫流する空気を圧縮し、気筒10内に送り込む。   The exhaust gas flowing out from the high temperature reforming section 32 is then supplied to the supercharger 50. The supercharger 50 includes an exhaust turbine, and rotates the exhaust turbine with exhaust gas, thereby depriving the exhaust gas of thermal energy and lowering its temperature. Further, the supercharger 50 rotates the turbine in the exhaust pipe at a high speed with the exhaust pressure of the engine, and drives the compressor with the rotational force to compress the air flowing through the intake pipe 20 and send it into the cylinder 10. .

過給機50でさらに温度が低下した排気ガスは、次に、低温用改質部30に流入し、低温用改質部30と熱交換し、上記高温用改質部32と比較して低温で改質原料の水蒸気改質が行われる。   The exhaust gas whose temperature has further decreased in the supercharger 50 then flows into the low temperature reforming unit 30, exchanges heat with the low temperature reforming unit 30, and has a lower temperature than the high temperature reforming unit 32. Thus, steam reforming of the reforming raw material is performed.

低温改質部30から流出した排気ガスは、排気管40のさらに下流に設けられた図示しない三元触媒などに供給され、ここで排気ガスの浄化が行われ、その後、大気中に放出される。尚、排気ガス浄化のための触媒は改質部400の上流にあっても、中間にあってもよい。   Exhaust gas flowing out from the low temperature reforming section 30 is supplied to a three-way catalyst (not shown) provided further downstream of the exhaust pipe 40, where exhaust gas is purified, and then released into the atmosphere. . Note that the catalyst for exhaust gas purification may be upstream or in the middle of the reforming unit 400.

ここで、気筒10には、吸気弁14、点火プラグ16、排気弁18、図示しないピストンが設けられている。また、上記改質部400で得られた改質ガスは、アキュムレータ28に蓄積される。このアキュムレータ28には、吸気管20の吸気ポート26付近に設けられたガス噴射弁22が接続されており、改質ガスは、ガス噴射弁22から燃料として吸気ポート26に噴射され、吸気管20に過給される空気と共に気筒10内に供給される。   Here, the cylinder 10 is provided with an intake valve 14, a spark plug 16, an exhaust valve 18, and a piston (not shown). Further, the reformed gas obtained in the reforming unit 400 is accumulated in the accumulator 28. A gas injection valve 22 provided in the vicinity of the intake port 26 of the intake pipe 20 is connected to the accumulator 28, and the reformed gas is injected from the gas injection valve 22 into the intake port 26 as fuel. The air is supplied into the cylinder 10 together with the air supercharged.

本実施形態において、改質原料の水蒸気改質反応は、上述のように排気管40に設けた改質部400において実行するが、改質原料液タンク70から汲み上げた改質原料を改質部400に供給するまでの経路において、改質原料液を加熱し、また気化させることで、改質部400には、改質の容易な改質原料蒸気を供給する。   In the present embodiment, the steam reforming reaction of the reforming material is performed in the reforming unit 400 provided in the exhaust pipe 40 as described above, but the reforming material pumped up from the reforming material liquid tank 70 is reformed. The reforming raw material liquid is heated and vaporized in the route until it is supplied to 400, thereby supplying reforming raw material vapor that is easily reformed to the reforming unit 400.

改質原料液の加熱及び気化には熱が必要であるが、本実施形態では、そのための専用の加熱器を設けることなく、エンジン周囲の冷却または排熱を利用している。具体的には、まず、吸気管20に設けられるいわゆるインタークーラの冷却液としてタンク70から汲み上げた改質原料液を用いて、ここに改質原料液と過給空気との熱交換器60を構成し、吸気管20を流れる過給空気と改質原料液との熱交換を行う。熱交換器60で液温が上昇した改質原料液は、次に、熱交換器62において高温用改質部32から流出する高温の改質ガスと熱交換することで、気化される。   Heat is required for heating and vaporizing the reforming raw material liquid, but in this embodiment, cooling or exhaust heat around the engine is used without providing a dedicated heater for that purpose. Specifically, first, a reforming raw material liquid pumped from the tank 70 is used as a cooling liquid for a so-called intercooler provided in the intake pipe 20, and a heat exchanger 60 between the reforming raw material liquid and the supercharged air is provided here. The heat exchange between the supercharged air flowing through the intake pipe 20 and the reforming raw material liquid is performed. The reforming raw material liquid whose liquid temperature has risen in the heat exchanger 60 is then vaporized by exchanging heat with the high-temperature reformed gas flowing out from the high-temperature reforming section 32 in the heat exchanger 62.

熱交換器62で得られた改質原料蒸気は、先に低温用改質部30に供給され、上述のように排気ガスとの熱交換により吸熱反応である改質反応し水素含有ガスを生成する。低温用改質部30から流出するガス(改質ガスを含む)は、次に、高温用改質部32に流入する。高温用改質部32では、まだ高温の排気ガスとの熱交換が行われ、低温用改質部30から流出したガスの改質反応がさらに進行し、水素濃度やCO濃度が増加する。このように、高温用改質部32において改質程度が一層進んだガス(改質ガス)は、この高温用改質部32から熱交換器62を通って上述のようにアキュムレータ28に供給される。なお、より低温の改質ガスの方が体積が小さいため、アキュームレータ28における蓄積効率が高く、高温用改質部32の出力部に熱交換器62を設けることは、低温用改質部30に供給する改質原料を気化させるだけでなく、高温用改質部32から流出する改質ガス温度を低下させる点でも意義が大きい。
The reforming raw material vapor obtained in the heat exchanger 62 is first supplied to the low temperature reforming unit 30 and undergoes a reforming reaction that is an endothermic reaction through heat exchange with the exhaust gas as described above to generate a hydrogen-containing gas. To do. The gas (including the reformed gas) flowing out from the low temperature reforming unit 30 then flows into the high temperature reforming unit 32. In the high temperature reforming section 32, heat exchange with the still high temperature exhaust gas is performed, and the reforming reaction of the gas flowing out from the low temperature reforming section 30 further proceeds, and the hydrogen concentration and the CO concentration increase. As described above, the gas (reformed gas) whose degree of reforming has further advanced in the high temperature reforming section 32 is supplied from the high temperature reforming section 32 to the accumulator 28 through the heat exchanger 62 as described above. The Since the lower temperature reformed gas has a smaller volume, the accumulation efficiency in the accumulator 28 is higher, and the provision of the heat exchanger 62 at the output of the high temperature reforming unit 32 means that the low temperature reforming unit 30 This is significant not only in vaporizing the reforming raw material to be supplied, but also in reducing the temperature of the reformed gas flowing out from the high temperature reforming section 32.

アキュムレータ28に蓄積された改質ガスは、上述のように、噴射弁22から気筒10内に供給され、気筒10内で空気と燃焼させ、動力を発生する。このように、エンジン周囲の冷却と、排熱を無駄なく回収し、改質によって発熱量を増加させた改質ガスを燃料として燃焼させることで動力を発生するため、本実施形態では、非常に高い熱効率のエンジンの提供を実現している。   As described above, the reformed gas accumulated in the accumulator 28 is supplied from the injection valve 22 into the cylinder 10 and combusted with air in the cylinder 10 to generate power. In this embodiment, since the engine is cooled and the exhaust heat is recovered without waste and the reformed gas whose calorific value is increased by reforming is burned as fuel, power is generated. We have realized the provision of high thermal efficiency engines.

なお、改質ガスは燃焼の燃料だけでなく、気液分離により得たガス成分のみ(例えば水素ガス)を排気管40に供給し、排気ガスの浄化(NOx低減、パティキュレート燃焼)に用いても良い。   The reformed gas is not only a combustion fuel but also a gas component obtained by gas-liquid separation (for example, hydrogen gas) is supplied to the exhaust pipe 40 and used for exhaust gas purification (NOx reduction, particulate combustion). Also good.

ここで、改質原料液としては、ガソリン、メタノール、エタノール、ジメチルエーテル、或いは軽油、重油などが挙げられる。このような有機化合物系液体燃料を改質して得られるガス成分は水素や、一酸化炭素を含む。本実施形態では、改質原料液として、エタノールを採用しており、さらに具体的には、無水エタノールよりも蒸気圧が低い30v/v%(体積%)〜96v/v%の濃度のエタノールと水との混合液を採用している。エバポエミッションを低減し、かつ効率的な改質を実行する上で、エタノール濃度は70v/v%〜80v/v%とすることがより好適であり、本実施形態では一例としてエタノール濃度77v/v%のエタノール水を改質原料として用い、これのエタノール水をタンク70内に備蓄している。バイオ技術により製造されるエタノールは多量の水分中にあることが多く、無水エタノールまで精製するには多大なエネルギーを要する。しかし、本実施形態のように水分の多いエタノール水は燃料の製造コスト低減にも好適である。   Here, examples of the reforming raw material liquid include gasoline, methanol, ethanol, dimethyl ether, light oil and heavy oil. The gas component obtained by reforming such an organic compound liquid fuel contains hydrogen and carbon monoxide. In the present embodiment, ethanol is used as the reforming raw material liquid, and more specifically, ethanol having a concentration of 30 v / v% (volume%) to 96 v / v%, which has a vapor pressure lower than that of absolute ethanol, and A liquid mixture with water is used. The ethanol concentration is more preferably 70 v / v% to 80 v / v% in order to reduce the evaporation emission and perform efficient reforming. In this embodiment, the ethanol concentration is 77 v / v as an example. % Ethanol water is used as a reforming raw material, and this ethanol water is stored in the tank 70. Ethanol produced by biotechnology is often in a large amount of water, and it requires a great deal of energy to purify it to absolute ethanol. However, ethanol water with a large amount of water as in this embodiment is also suitable for reducing the manufacturing cost of fuel.

次に、本実施形態において採用する改質触媒について説明する。図2は、改質触媒活性の温度特性を示しており、この特性は、固定床流通式反応管にて実験した結果である。   Next, the reforming catalyst employed in the present embodiment will be described. FIG. 2 shows the temperature characteristic of the reforming catalyst activity, and this characteristic is the result of experiments in a fixed bed flow type reaction tube.

実験に使用した触媒は、Cu触媒((株)東洋CCI製の銅亜鉛触媒MDC−4)とRh触媒(第一希元素(株)製のCa5mol%ZrO2に硝酸Rh溶液にてRhを3wt%担持したもの)である。篩を用い、目開き1mmと1.7mmの間の破砕ペレットを使用した。内径φ9.8mmの石英製反応管に、Cu触媒は1.15g、Rh触媒は1.14gを充填した。電気炉により改質熱(吸熱)を供給した。エタノールは和光純薬1級で、イオン交換水と混合され、気化して供給した。実験は、S/C=0.5〜2.0 (Steam/Carbonモル比)の範囲で行い反応管から出る水素含有ガスの乾きガス成分のガス組成をガスクロマトグラフで測定した。同時に乾きガスの流量を測定した。 The catalyst used in the experiment was a Cu catalyst (copper zinc catalyst MDC-4 manufactured by Toyo CCI Co., Ltd.) and an Rh catalyst (Ca5 mol% ZrO 2 manufactured by Daiichi Rare Element Co., Ltd.) in a Rh nitrate solution with 3 wt% Rh. Supported). Using a sieve, crushed pellets having an opening of 1 mm and 1.7 mm were used. A quartz reaction tube having an inner diameter of 9.8 mm was filled with 1.15 g of the Cu catalyst and 1.14 g of the Rh catalyst. Reforming heat (endothermic) was supplied by an electric furnace. Ethanol was the first grade of Wako Pure Chemicals, mixed with ion-exchanged water, vaporized and supplied. The experiment was performed in the range of S / C = 0.5 to 2.0 (Steam / Carbon molar ratio), and the gas composition of the dry gas component of the hydrogen-containing gas exiting from the reaction tube was measured with a gas chromatograph. At the same time, the flow rate of the dry gas was measured.

図2では、S/C=1の混合液(エタノール0.185g/min、イオン交換水0.146g/min)と希釈のために窒素ガスを0.8L/min供給した。温度は石英管の外壁にφ1mmのCA熱電対を接触させ測定した。分解率は、C含有出ガス濃度をC1換算したものの総和に出ガスのモル流量を乗じた後、投入したエタノールモル流量をC1換算したもので除した値である。エタノールが完全に別の物質に変化すると分解率100%となる。ただし、Cu触媒では、乾きガス成分として、ほぼ水素のみしか検出できなかったため、エタノールが下記式(1)のように水素とアセトアルデヒドに分解したとして、水素モル流量をアセトアルデヒドモル流量と等しく置いて整理した。   In FIG. 2, a mixture of S / C = 1 (ethanol 0.185 g / min, ion-exchanged water 0.146 g / min) and nitrogen gas 0.8 L / min were supplied for dilution. The temperature was measured by bringing a CA thermocouple having a diameter of 1 mm into contact with the outer wall of the quartz tube. The decomposition rate is a value obtained by multiplying the sum of the C-containing output gas concentration by C1 by the molar flow rate of the output gas and then dividing the ethanol molar flow rate added by the C1 conversion. When ethanol completely changes to another substance, the decomposition rate becomes 100%. However, in the Cu catalyst, only hydrogen was detected almost as a dry gas component. Therefore, assuming that ethanol was decomposed into hydrogen and acetaldehyde as shown in the following formula (1), the hydrogen molar flow rate was set equal to the acetaldehyde molar flow rate. did.

25OH → H2+CH3CHO ・・・(1)
この結果、350℃付近にて両触媒は活性のあることがわかる。Cu触媒は同一質量でRh触媒よりも分解活性があるが、Cu触媒は、350℃以上の長時間使用で熱劣化する。
C 2 H 5 OH → H 2 + CH 3 CHO (1)
As a result, it can be seen that both catalysts are active at around 350 ° C. Although the Cu catalyst has the same mass and is more decomposable than the Rh catalyst, the Cu catalyst is thermally deteriorated when used for a long time at 350 ° C. or more.

したがって、Cu触媒を改質触媒として用いた場合、その触媒床の温度管理は重要である。本実施形態では、このCu触媒を低温用改質部30の改質触媒として用いるが、上述のように高温用改質部32及び過給機50が低温用改質部30よりも排気経路の上流側に設けることで、低温用改質部30に流入する排気ガス温度を350℃以下になるようにすることができる。   Therefore, when a Cu catalyst is used as a reforming catalyst, temperature management of the catalyst bed is important. In the present embodiment, this Cu catalyst is used as the reforming catalyst of the low temperature reforming unit 30, but the high temperature reforming unit 32 and the supercharger 50 are located in the exhaust path more than the low temperature reforming unit 30 as described above. By providing it on the upstream side, the temperature of the exhaust gas flowing into the reforming section 30 for low temperature can be made 350 ° C. or lower.

一方、高温用改質部32の改質触媒としては、上記Rh触媒など、Cu触媒よりも活性温度範囲、特にその活性温度上限がCu触媒よりも高い改質触媒を採用する。例えば上記Rh触媒の活性化温度の上限は、800〜900℃程度であり、低温用改質部30と比較して高温の排気ガスが供給される高温用改質部32にこのような高温活性の触媒を用いることで、高効率の水蒸気改質反応を実行できる。また、内燃機関への要求トルクが大きく排気ガス温度が上昇するような状況下であっても、この高温用改質部32で、確実に水蒸気改質反応を実行することができる。   On the other hand, as the reforming catalyst of the high-temperature reforming section 32, a reforming catalyst such as the Rh catalyst, which has an active temperature range higher than that of the Cu catalyst, in particular, an upper limit of the active temperature thereof, is employed. For example, the upper limit of the activation temperature of the Rh catalyst is about 800 to 900 ° C., and the high temperature reforming section 32 to which high temperature exhaust gas is supplied as compared with the low temperature reforming section 30 has such a high temperature activity. By using this catalyst, a highly efficient steam reforming reaction can be performed. Even in a situation where the required torque to the internal combustion engine is large and the exhaust gas temperature rises, the high temperature reforming section 32 can reliably execute the steam reforming reaction.

ここで上記のようなCu触媒、Rh触媒を用いたエタノールの水蒸気改質は、以下の反応式(i)(ii)で示される。   Here, the steam reforming of ethanol using the above Cu catalyst and Rh catalyst is represented by the following reaction formulas (i) and (ii).

25OH → H2+CH3CHO ・・・(i)
CH3CHO + H2O → 3H2+2CO ・・・(ii)
(i)式(ii)式を総合すると、最終的に水蒸気改質反応は、
25OH + H2O → 4H2+2CO ・・・(iii)
で表される。反応式(i)における発熱量増加率は109%であり、反応式(iii)で表されるトータルの反応での発熱量増加率は123%である。なお、発熱量増加率は、(改質ガス低位発熱量/投入燃料低位発熱量)×100%で求めている。ここで、上述のように、エタノール濃度が70v/v%〜80v/v%のエタノールと水との混合液を改質原料として採用し、これを改質することで、改質反応は、上記反応式(iii)の当量比におおよそ一致することとなり、改質効率の向上を図ることができる(エタノール1molと水1mol当量比は約77v/v%)。
C 2 H 5 OH → H 2 + CH 3 CHO (i)
CH 3 CHO + H 2 O → 3H 2 + 2CO (ii)
(I) Summarizing formula (ii), the steam reforming reaction is finally
C 2 H 5 OH + H 2 O → 4H 2 + 2CO (iii)
It is represented by The rate of increase in calorific value in reaction formula (i) is 109%, and the rate of increase in calorific value in the total reaction represented by reaction formula (iii) is 123%. The calorific value increase rate is obtained by (reformed gas lower calorific value / input fuel lower calorific value) × 100%. Here, as described above, the reforming reaction is performed by adopting a mixed solution of ethanol and water having an ethanol concentration of 70 v / v% to 80 v / v% as a reforming raw material, and reforming this. This roughly corresponds to the equivalent ratio in the reaction formula (iii), and the reforming efficiency can be improved (the equivalent ratio of 1 mol of ethanol to 1 mol of water is about 77 v / v%).

低温用改質部30における改質触媒壁温については、最高温度部位の温度を計測し、温度に応じて低温用改質部30や、排気ガスを冷却水や改質原料液の循環により冷却する構成を採用することもできる。しかし、本実施形態では、低温用改質部30よりも上流側に過給機50を設け、高温の排気ガスで排気タービンを回転させることで熱エネルギーを奪い、温度低下させる。よって、排気ガスの持つ熱エネルギを捨てることなく効率的に改質、冷却、吸気等に利用できる。   Regarding the reforming catalyst wall temperature in the low temperature reforming section 30, the temperature of the highest temperature portion is measured, and the low temperature reforming section 30 and the exhaust gas are cooled by circulation of cooling water or reforming raw material liquid according to the temperature. It is also possible to adopt a configuration that does this. However, in this embodiment, the supercharger 50 is provided on the upstream side of the low-temperature reforming unit 30, and the exhaust turbine is rotated by the high-temperature exhaust gas, thereby depriving the heat energy and lowering the temperature. Therefore, the heat energy of the exhaust gas can be efficiently used for reforming, cooling, intake, and the like without being discarded.

図3は、排気タービンのTs線図であり、図4は、所定圧力比の場合の排気タービンの入口出口温度を示す。図3に示すように、排気タービンへの入口と出口の排気ガスの温度差(T4−T6)は、下記式(2)のように、排気タービンへの入口圧力P4、出口圧力P6との(圧力比)に応じて決まる。   FIG. 3 is a Ts diagram of the exhaust turbine, and FIG. 4 shows the inlet / outlet temperature of the exhaust turbine in the case of a predetermined pressure ratio. As shown in FIG. 3, the temperature difference (T4−T6) between the exhaust gas at the inlet and the outlet to the exhaust turbine is the difference between the inlet pressure P4 and the outlet pressure P6 to the exhaust turbine as shown in the following equation (2). It depends on the pressure ratio.

T4−T6=(1−1/(P4/P6)((k-1)/k)× ηt ・・・(2)
なお、上記式(2)において、ηtは、タービン効率、kは、比熱比である。
T4−T6 = (1-1 / (P4 / P6) ((k−1) / k) × ηt (2)
In the above formula (2), ηt is the turbine efficiency and k is the specific heat ratio.

したがって、排気タービンに入力される排気ガスの想定温度範囲と、排気タービンから出て低温用改質部30に供給される排気ガスの要求温度範囲とに基づいて適切な圧力比の排気タービンを採用することで、所望の出口温度(T6)が実現されることが理解できる。   Therefore, an exhaust turbine having an appropriate pressure ratio is adopted based on the assumed temperature range of the exhaust gas input to the exhaust turbine and the required temperature range of the exhaust gas that comes out of the exhaust turbine and is supplied to the low temperature reforming unit 30 Thus, it can be understood that a desired outlet temperature (T6) is realized.

図4(a)に示すように、例えば圧力比2を採用した場合(タービン効率が80%の時)、高温用改質部32の出口、つまり排気タービンの入口で450℃(723K)の排気ガスは、排気タービンにおいて温度低下し、排気タービン出口、つまり低温用改質触媒の入口での排気ガス温度は、350℃(623K)以下が達成されている。ここで、一例として、Rh触媒を高温用改質部32に採用した場合、上記720K付近が、このRh触媒の活性範囲の下限である。つまり、Rh触媒による効率的な改質が実行されるような条件で該触媒から流出する排気ガスが排気タービンに供給された場合にも、この排気タービンにより、低温用改質部30のCu触媒活性範囲内の温度の排気ガスをこの低温用改質部30に供給することができ、Cu触媒の熱劣化を避けることができる。   As shown in FIG. 4A, for example, when a pressure ratio of 2 is adopted (when the turbine efficiency is 80%), the exhaust at 450 ° C. (723 K) is discharged at the outlet of the high temperature reforming section 32, that is, at the inlet of the exhaust turbine. The temperature of the gas is lowered in the exhaust turbine, and the exhaust gas temperature at the outlet of the exhaust turbine, that is, the inlet of the low-temperature reforming catalyst, is 350 ° C. (623 K) or less. Here, as an example, when an Rh catalyst is employed in the high-temperature reforming section 32, the vicinity of the above 720K is the lower limit of the active range of the Rh catalyst. That is, even when the exhaust gas flowing out from the catalyst is supplied to the exhaust turbine under the condition that the efficient reforming by the Rh catalyst is performed, the Cu catalyst of the low-temperature reforming unit 30 is also provided by the exhaust turbine. Exhaust gas having a temperature within the active range can be supplied to the low-temperature reforming unit 30, and thermal deterioration of the Cu catalyst can be avoided.

また、図4(b)に示すように、同一のタービン効率でも圧力比が3の場合には、タービンへの入口温度が圧力比2の場合より高くとも(例えば790K)、低温用改質部30に対し、その触媒活性上限である350℃(623K)程度以下の排気ガスを供給することが可能となっている。   Further, as shown in FIG. 4B, when the pressure ratio is 3 even with the same turbine efficiency, the low temperature reforming section is used even if the inlet temperature to the turbine is higher than the pressure ratio 2 (for example, 790 K). 30 can be supplied with an exhaust gas of 350 ° C. (623 K) or less, which is the upper limit of the catalyst activity.

本実施形態では、このような過給機50を設け、吸気管内の空気を過給することにより、ガスエンジンにおける空気供給量不足による出力不足を払拭できる。ここで、通常、排気タービンはエンジンが低速回転の低負荷時には効率が悪く、排気ガスの熱エネルギーを回収できない。しかし、本実施形態では、低温用改質部30を採用しているため、排気ガス温度の低い運転条件下で、排気タービンで排気ガス温度を低下させずにこれを低温用改質部30に供給しても、供給される排気ガス温度は、低温用改質部30の触媒活性範囲内であり、排気タービンによる排気温度の低下は必要ない。逆に、高速回転、高負荷時の排気ガス温度が高い運転条件下では、排気タービンの効率は高く、排気ガス温度の低下能力を十分発揮することができ、また、過給できるため、低温用改質部30での熱劣化を防止しつつ、内燃機関を高出力とすることができる。   In the present embodiment, by providing such a supercharger 50 and supercharging the air in the intake pipe, the output shortage due to the shortage of the air supply amount in the gas engine can be eliminated. Here, normally, the exhaust turbine is inefficient when the engine is running at a low speed and a low load, and cannot recover the heat energy of the exhaust gas. However, since the low temperature reforming unit 30 is employed in the present embodiment, the low temperature reforming unit 30 can be used without lowering the exhaust gas temperature in the exhaust turbine under operating conditions with a low exhaust gas temperature. Even if it is supplied, the exhaust gas temperature to be supplied is within the catalytic activity range of the low-temperature reforming unit 30, and it is not necessary to lower the exhaust temperature by the exhaust turbine. Conversely, under operating conditions where the exhaust gas temperature at high speed and high load is high, the efficiency of the exhaust turbine is high, the exhaust gas temperature lowering ability can be fully demonstrated, and supercharging can be performed. The internal combustion engine can have a high output while preventing thermal deterioration in the reforming unit 30.

また、本実施形態において、過給機50に、排気ターボの圧力比を可変な機構を設けても良い。このような圧力比可変機構を備え、排気タービンの出口温度を検知して、その出口温度が350℃以下になるように可変機構で圧力比を調節することで、より高い熱効率での運転範囲が広がる。   In the present embodiment, the turbocharger 50 may be provided with a mechanism that can change the pressure ratio of the exhaust turbo. By providing such a pressure ratio variable mechanism, detecting the outlet temperature of the exhaust turbine, and adjusting the pressure ratio with the variable mechanism so that the outlet temperature becomes 350 ° C. or less, the operating range with higher thermal efficiency can be achieved. spread.

なお、低温用改質部30への供給排気ガス温度がこの低温用改質部30の適性温度範囲となるようにするためには、上記過給機50の圧力比の設定の他、高温用改質部32における熱交換性を最適化することがより好ましい。   In addition, in order to make the supply exhaust gas temperature to the low temperature reforming unit 30 fall within the proper temperature range of the low temperature reforming unit 30, in addition to setting the pressure ratio of the supercharger 50, It is more preferable to optimize the heat exchange property in the reforming section 32.

また、高温用改質部32の上流に、さらに排気タービンを配置し、高温用改質部32への流入する排気ガス温度を低下させることにより、高温用改質触媒の熱劣化を防止することも可能となる。また、このように高温用改質部32についても熱劣化しない貴金属触媒を使用しなくとも良いという利点がある。   Further, an exhaust turbine is further arranged upstream of the high temperature reforming section 32 to reduce the temperature of the exhaust gas flowing into the high temperature reforming section 32, thereby preventing thermal degradation of the high temperature reforming catalyst. Is also possible. Further, the high temperature reforming section 32 has an advantage that it is not necessary to use a noble metal catalyst that does not thermally deteriorate.

ここで、本実施形態に係る内燃機関は、エンジン制御部(ECU)300で制御され運転される。エンジン制御部300は、高負荷運転した後のアクセルペダルオフ時の低負荷や無負荷、エンジンブレーキへの移行期間、改質部400が改質反応可能な温度を維持している間、これを冷却するために、改質原料液を多く供給するような制御を行う。また、エンジン制御部300は、多く生成した改質ガスは開弁圧を調整された蓄圧用導管からアキュムレータ(蓄圧部)28に貯めるように制御する。エンジンの温度が低いときや、加速時にはこの蓄圧した改質ガスを吸気管内に噴射すると、未燃炭化水素や一酸化炭素、窒素酸化物といった有害燃焼排気成分を大幅に低減できる。とくに冷始動時には、従来のガソリンエンジンで実施されてきた多大な燃料増量が必要なく、アイドルストップにも非常に都合がよい。   Here, the internal combustion engine according to the present embodiment is controlled and operated by an engine control unit (ECU) 300. The engine control unit 300 performs low load or no load when the accelerator pedal is turned off after a high load operation, a transition period to the engine brake, while the reforming unit 400 maintains a temperature at which the reforming reaction can be performed. In order to cool, control is performed so that a large amount of the reforming raw material liquid is supplied. Further, the engine control unit 300 controls so that a large amount of the reformed gas generated is stored in the accumulator (pressure accumulating unit) 28 from a pressure accumulating conduit whose valve opening pressure is adjusted. When the stored reformed gas is injected into the intake pipe when the engine temperature is low or during acceleration, harmful combustion exhaust components such as unburned hydrocarbons, carbon monoxide, and nitrogen oxides can be greatly reduced. In particular, at the time of cold start, the great fuel increase that has been carried out in the conventional gasoline engine is not necessary, and it is very convenient for idling stop.

また、過給機50の排気タービンの回転動力は、空気過給に利用するだけでなく、吸気ポートに供給する改質ガス圧力上昇のための改質ガス用コンプレッサ動力として利用することも可能である。このように改質ガス用コンプレッサ動力にも利用すれば、改質ガスの吸気管20への噴射量を制御するためのガス噴射弁22の制御性を高めることができる(噴射期間の長さの変化幅が大きく取れる)。また、改質原料液の供給圧力を低下させ、図示しない改質原料液供給ポンプの負荷を減少することができ、或いはポンプを小型化することができる。   Further, the rotational power of the exhaust turbine of the supercharger 50 can be used not only for air supercharging but also as reformed gas compressor power for increasing the reformed gas pressure supplied to the intake port. is there. If used for the reformed gas compressor power in this way, the controllability of the gas injection valve 22 for controlling the injection amount of the reformed gas into the intake pipe 20 can be enhanced (the length of the injection period). The change is large.) Further, the supply pressure of the reforming raw material liquid can be reduced, the load of the reforming raw material liquid supply pump (not shown) can be reduced, or the pump can be downsized.

また、本実施形態のように、改質部400と過給機50を組み合わせ、空気を過給することを前提とした場合、エンジンの燃焼の当量比が、1未満、さらには0.8以下のいわゆる希薄燃焼条件下においても、十分なトルクを発生でき、かつ、このような運転を、NOx排出量を低減できる当量比で実行することができる。   Further, as in the present embodiment, when the reforming unit 400 and the supercharger 50 are combined and it is assumed that the air is supercharged, the engine combustion equivalence ratio is less than 1, and further 0.8 or less. Even under the so-called lean combustion conditions, sufficient torque can be generated, and such an operation can be performed at an equivalent ratio that can reduce the NOx emission amount.

さらに、エンジンの燃焼の当量比を1.5以下の設定とする場合には、筒内直噴燃料噴射弁、または、液体燃料ポート噴射弁を設けても良い。このようにガソリン、エタノールなどの有機化合物系の液体燃料を改質ガスと併用することにより、改質ガスを供給することで吸入空気量が減少し、出力がでない運転領域をカバーすることが容易となる。なお、このときは、当量比1.0のストイキ燃焼を中心とすることで、通常のガソリンエンジンのごとく3元触媒による排気ガス浄化を実施できる。   Furthermore, when the engine combustion equivalence ratio is set to 1.5 or less, an in-cylinder direct injection fuel injection valve or a liquid fuel port injection valve may be provided. By using organic compound liquid fuel such as gasoline and ethanol in combination with reformed gas in this way, the amount of intake air is reduced by supplying the reformed gas, and it is easy to cover the operating range where there is no output. It becomes. At this time, exhaust gas purification by a three-way catalyst can be performed like a normal gasoline engine by focusing on stoichiometric combustion with an equivalence ratio of 1.0.

[実施形態2]
図5は、実施形態2に係る内燃機関の概略構成を示している。実施形態1では、低温用改質部30の排気経路の上流側に過給機50と高温用改質部32を設けているが、本実施形態2では、図5のように、高温用改質部32を省略し、排気管40には低温用改質部30と過給機50を設け、過給機50を低温用改質部30よりも排気経路の上流に設けている。なお、改質原料タンク70から汲み上げ、熱交換器60で昇温した改質原料液の気化は、実施形態1では、高温用改質部32からの改質ガスとの熱交換で行っている。本実施形態2では、排気管40に排気ガスとの熱交換を行う熱交換器66を設け、この熱交換器で排気ガスの熱を利用して気化させている。そして熱交換器66で得られた改質原料蒸気を低温改質部30に供給している。さらに、低温用改質部30から流出する改質ガス温度は350℃程度と低いことから、実施形態1のように熱交換器等を設けて冷却することなく、自然冷却してアキュムレータ28に供給する。
[Embodiment 2]
FIG. 5 shows a schematic configuration of the internal combustion engine according to the second embodiment. In the first embodiment, the supercharger 50 and the high-temperature reforming unit 32 are provided upstream of the exhaust path of the low-temperature reforming unit 30, but in the second embodiment, as shown in FIG. The low temperature reforming unit 30 and the supercharger 50 are provided in the exhaust pipe 40, and the supercharger 50 is provided upstream of the low temperature reforming unit 30 in the exhaust path. In the first embodiment, vaporization of the reforming raw material liquid pumped from the reforming raw material tank 70 and heated by the heat exchanger 60 is performed by heat exchange with the reformed gas from the high temperature reforming unit 32. . In the second embodiment, the exhaust pipe 40 is provided with a heat exchanger 66 that performs heat exchange with the exhaust gas, and the heat of the exhaust gas is vaporized by the heat exchanger. The reforming raw material vapor obtained by the heat exchanger 66 is supplied to the low temperature reforming unit 30. Further, since the reformed gas temperature flowing out from the low temperature reforming section 30 is as low as about 350 ° C., it is naturally cooled and supplied to the accumulator 28 without providing a heat exchanger or the like as in the first embodiment for cooling. To do.

改質原料液としては、実施形態1においても説明したが、改質効率の高いエタノール濃度が70v/v%〜80v/v%のエタノール水を採用する。また、低温用改質部30の改質触媒としては、350℃以下が適性活性化温度範囲であるCuを触媒成分とする改質触媒を用いている。   As the reforming raw material liquid, as described in the first embodiment, ethanol water having a high reforming efficiency with an ethanol concentration of 70 v / v% to 80 v / v% is employed. Moreover, as the reforming catalyst of the reforming section 30 for low temperature, a reforming catalyst having Cu as a catalyst component having a suitable activation temperature range of 350 ° C. or lower is used.

エタノール水を水蒸気改質して得た改質ガスは、発熱量が高く、また燃焼性の高い水素を多く含むため、改質ガスを燃料として用いた内燃機関は、当量比1未満の希薄燃焼条件でも、ノッキングが少なく、かつ、NOx排出量を低減できる当量比で実行することができる。一方で、希薄燃焼条件で燃焼させるので、排気ガス温度は、例えば当量比が0.4〜0.5程度の場合には、600℃〜400℃程度か、それ以下、例えば350℃程度となる。   A reformed gas obtained by steam reforming ethanol water has a high calorific value and contains a large amount of highly combustible hydrogen. Therefore, an internal combustion engine using the reformed gas as a fuel has a lean combustion with an equivalence ratio of less than 1. Even under the conditions, it is possible to carry out at an equivalent ratio that can reduce knocking and reduce NOx emission. On the other hand, since combustion is performed under lean combustion conditions, the exhaust gas temperature is about 600 ° C. to 400 ° C. or lower, for example, about 350 ° C. when the equivalence ratio is about 0.4 to 0.5, for example. .

一方で、希薄燃焼の場合、要求トルクが増大しても、出力が得られにくい特性があるが、本実施形態のように、過給機50を採用し、吸気管20への空気を過給することで、内燃機関の出力を増大させることが可能となる。   On the other hand, in the case of lean combustion, there is a characteristic that it is difficult to obtain an output even if the required torque increases. However, as in the present embodiment, the supercharger 50 is used to supercharge the air to the intake pipe 20. As a result, the output of the internal combustion engine can be increased.

また、上記のように希薄燃焼条件を採用すれば、排気ガス温度が700℃〜900℃というような高温となることはなく、一例として、600℃〜400℃程度以下の排気温度が達成される。   Further, when the lean combustion condition is employed as described above, the exhaust gas temperature does not become as high as 700 ° C. to 900 ° C. As an example, an exhaust temperature of about 600 ° C. to 400 ° C. or less is achieved. .

つまり、図4において説明したように、600℃程度以下の排気ガスが過給機50に供給されることとなり、過給機50の上流に高温用改質部を設けることなく、過給機50のみによって排気ガスを低温用改質部30の触媒活性範囲の上限以下にすることができる。   That is, as described in FIG. 4, exhaust gas of about 600 ° C. or less is supplied to the supercharger 50, and the supercharger 50 is provided without providing a high-temperature reforming unit upstream of the supercharger 50. Only by this, the exhaust gas can be made to be equal to or lower than the upper limit of the catalytic activity range of the low temperature reforming section 30.

なお、当量比が1.0未満、より好適には、0.8以下となるような運転の制御は、エンジン制御部300により、ガス噴射弁22からの改質ガス噴射量、吸気量等を制御することにより達成可能である。   The operation control such that the equivalence ratio is less than 1.0, more preferably 0.8 or less is performed by the engine control unit 300 by adjusting the reformed gas injection amount, the intake air amount, etc. from the gas injection valve 22. It can be achieved by controlling.

[実施形態3]
図6は、実施形態3に係る内燃機関の概略構成を示している。実施形態3では、上実施形態1のように排気管40に排気熱を利用して改質原料を水蒸気改質する改質部400及び過給機50を設けると共に、気筒10の外側の燃焼室周辺に、改質原料液の蒸発部120及び改質原料蒸気の改質部130が設けられ、改質原料液の気化熱と、改質部での水蒸気改質(吸熱反応)における反応熱が気筒10の冷却に用いられている。
[Embodiment 3]
FIG. 6 shows a schematic configuration of the internal combustion engine according to the third embodiment. In the third embodiment, as in the first embodiment, the exhaust pipe 40 is provided with the reforming section 400 and the supercharger 50 for steam reforming the reforming raw material using exhaust heat, and the combustion chamber outside the cylinder 10. A reforming raw material liquid evaporation section 120 and a reforming raw material steam reforming section 130 are provided in the periphery, and the heat of vaporization of the reforming raw material liquid and the heat of reaction in steam reforming (endothermic reaction) in the reforming section are provided. It is used for cooling the cylinder 10.

ここで、気筒の外側とは、より具体的には気筒10の気筒内壁を規定するシリンダライナーの外側部分である。シリンダライナーは、シリンダブロック内に挿入され、又はシリンダブロック形成時に同時に鋳込まれ、このシリンダライナー及びシリンダブロックのライナー側の中空部に、蒸発部120、改質部130等を形成している。以下、このライナー及びシリンダブロックのライナー側をライナー部100として説明する。   Here, the outside of the cylinder is, more specifically, an outside portion of the cylinder liner that defines the cylinder inner wall of the cylinder 10. The cylinder liner is inserted into the cylinder block or cast at the same time when the cylinder block is formed, and the evaporation portion 120, the reforming portion 130, and the like are formed in the hollow portion of the cylinder liner and the liner side of the cylinder block. Hereinafter, the liner and the liner side of the cylinder block will be described as a liner portion 100.

ライナー部100には、さらに、改質原料液を加熱する液体加熱部110が設けられており、この液体加熱部110には、タンク70から汲み上げて供給される改質原料液が循環し、気筒と改質原料液との熱交換が行われ、その結果、気筒は冷却され、改質原料液は加熱される。加熱部110で加熱された改質原料液は、蒸発部120に供給され、ここでさらに気筒の熱により気化される。蒸発部120で得られた改質原料蒸気は、次に改質部130に供給され、改質部130に設けられた改質触媒によって水蒸気改質が行われる。   The liner unit 100 is further provided with a liquid heating unit 110 that heats the reforming raw material liquid. The reforming raw material liquid that is pumped from the tank 70 and supplied to the liquid heating unit 110 circulates. Is exchanged with the reforming raw material liquid. As a result, the cylinder is cooled and the reforming raw material liquid is heated. The reforming raw material liquid heated by the heating unit 110 is supplied to the evaporation unit 120 where it is further vaporized by the heat of the cylinder. The reforming raw material vapor obtained in the evaporation unit 120 is then supplied to the reforming unit 130, and steam reforming is performed by the reforming catalyst provided in the reforming unit 130.

ライナー部100において、蒸発部120は、ライナーの上部であって、燃焼室の周囲に相当する位置に設けられており、改質部130は蒸発部120と液体加熱部110との間に配置している。蒸発部120は、蒸発室と、この蒸発室内に改質原料液を噴射する噴射弁124を備える。噴射弁124の噴射タイミング、噴射量は、エンジン制御部(ECU)300の管理の下制御され、気化熱を利用して、気筒の冷却を防止すると共に、ノッキングや異常燃焼の発生も防止している。   In the liner unit 100, the evaporation unit 120 is provided at a position above the liner and corresponding to the periphery of the combustion chamber, and the reforming unit 130 is disposed between the evaporation unit 120 and the liquid heating unit 110. ing. The evaporation unit 120 includes an evaporation chamber and an injection valve 124 that injects the reforming raw material liquid into the evaporation chamber. The injection timing and injection amount of the injection valve 124 are controlled under the control of the engine control unit (ECU) 300, and the heat of vaporization is used to prevent the cooling of the cylinder and also to prevent the occurrence of knocking or abnormal combustion. Yes.

また、本実施形態3では、ラジエータ82の冷却液として、エタノール水からなる改質原料液を用いており、タンク70から供給ポンプ80によって汲み上げられた改質原料液はラジエータ82に供給され、ラジエータの冷却用循環路88を循環する。この循環液の一部が、液体加熱部110に供給される。液体加熱部110において気筒10との熱交換により液温の上昇した改質原料液は、減圧弁126で減圧され、液体噴射弁124から蒸発部120の蒸発室122内に噴射される。なお、気筒10をさらに冷却する必要がある場合や、液体加熱部110から蒸発部120への改質原料液供給量を調整する場合には、液体加熱部110から流出する改質原料液を、液循環ポンプ84を経てラジエータ82に戻し、ラジエータ82で冷却して、再び液体加熱部110に循環する。   In the third embodiment, a reforming raw material liquid made of ethanol water is used as a cooling liquid for the radiator 82, and the reforming raw material liquid pumped up from the tank 70 by the supply pump 80 is supplied to the radiator 82. The cooling circuit 88 is circulated. A part of the circulating liquid is supplied to the liquid heating unit 110. The reforming raw material liquid whose liquid temperature has risen due to heat exchange with the cylinder 10 in the liquid heating unit 110 is decompressed by the decompression valve 126 and injected from the liquid injection valve 124 into the evaporation chamber 122 of the evaporation unit 120. When it is necessary to further cool the cylinder 10 or when the amount of reforming raw material liquid supplied from the liquid heating unit 110 to the evaporation unit 120 is adjusted, the reforming raw material liquid flowing out from the liquid heating unit 110 is The liquid is returned to the radiator 82 via the liquid circulation pump 84, cooled by the radiator 82, and circulated again to the liquid heating unit 110.

蒸発部120において、液体噴射弁124から蒸発室122内に噴射された改質原料液は、噴射によりさらに減圧され、蒸発室の壁面に衝突した後、または、噴射後すぐに気化する。そして、この気化熱により、ライナー部100の最上部が冷却される。ここで、点火位置から遠い燃焼室の壁面付近での温度上昇は、ノッキングや異常燃焼の原因の一つであるが、本実施形態では、ライナー部100の最上部に設けた蒸発部120によって、この燃焼室の壁面を冷却することができ、燃焼室壁温度の低下、すなわち、ノッキング等の防止に寄与する。   In the evaporation unit 120, the reforming raw material liquid injected from the liquid injection valve 124 into the evaporation chamber 122 is further decompressed by the injection, and vaporizes after colliding with the wall surface of the evaporation chamber or immediately after the injection. And the uppermost part of the liner part 100 is cooled by this vaporization heat. Here, the temperature rise near the wall of the combustion chamber far from the ignition position is one of the causes of knocking and abnormal combustion, but in the present embodiment, by the evaporation unit 120 provided at the top of the liner unit 100, The wall surface of the combustion chamber can be cooled, which contributes to the reduction of the combustion chamber wall temperature, that is, prevention of knocking and the like.

ノッキングや異常燃焼は、気筒の圧縮上死点(TDC:top dead center) 付近が最も発生しやすい期間である。したがって、蒸発部120での改質原料液の噴射は、この圧縮TDC付近とすることが効果的である。特に、噴射タイミングを圧縮TDCの少し前のタイミングとすることで、燃焼室壁温が最も高くなるタイミングに合わせて改質原料液を気化させ、気化熱により燃焼室壁温を効率的に冷却することが可能となる。   Knocking or abnormal combustion is the period most likely to occur near the compression top dead center (TDC) of the cylinder. Therefore, it is effective that the reforming raw material liquid is injected near the compression TDC in the evaporation unit 120. In particular, by setting the injection timing to a timing slightly before the compression TDC, the reforming raw material liquid is vaporized at the timing when the combustion chamber wall temperature becomes the highest, and the combustion chamber wall temperature is efficiently cooled by the heat of vaporization. It becomes possible.

気筒の改質部130の近くには、さらに改質触媒を冷却するための冷却部が設けられ、この冷却部として、改質原料液を循環させて触媒を冷却する触媒冷却用循環部144が採用されている。触媒冷却用循環部144には、液体加熱部110を通った改質原料液が供給され、触媒冷却用循環部144を経てここから流出する改質原料液の一部は、そのまま減圧弁126を介して液体噴射弁124から蒸発室に噴射され、残りは冷却液循環路88を経てラジエータ82で冷却され、再び液体加熱部110に戻る。   A cooling unit for cooling the reforming catalyst is further provided near the reforming unit 130 of the cylinder. As this cooling unit, a catalyst cooling circulation unit 144 that circulates the reforming raw material liquid and cools the catalyst is provided. It has been adopted. The reforming raw material liquid that has passed through the liquid heating unit 110 is supplied to the catalyst cooling circulation unit 144, and a part of the reforming raw material liquid that flows out of the catalyst cooling circulation unit 144 passes through the pressure reducing valve 126 as it is. Then, the liquid is injected from the liquid injection valve 124 into the evaporation chamber, and the rest is cooled by the radiator 82 via the coolant circulation path 88 and returned to the liquid heating unit 110 again.

なお、液体加熱部110を通った改質原料液の一部は、液体加熱部110と触媒冷却用循環部144との間に設けられた循環量制御弁146を介して触媒冷却用循環部144に供給され、残りはラジエータ82に戻る。改質触媒温度の検出結果に応じて、循環部144へ改質原料液の流量は、この循環量制御弁146によって制御される。   A part of the reforming raw material liquid that has passed through the liquid heating unit 110 passes through a circulation amount control valve 146 provided between the liquid heating unit 110 and the catalyst cooling circulation unit 144, so that the catalyst cooling circulation unit 144. And the rest returns to the radiator 82. In accordance with the detection result of the reforming catalyst temperature, the flow rate of the reforming raw material liquid to the circulation unit 144 is controlled by the circulation amount control valve 146.

改質部130と蒸発部120との間には、蒸気通路が設けられており、この蒸気通路を通って改質部130に流入した改質原料蒸気は、改質部130内に設けられた改質触媒によって水蒸気改質される。この改質触媒としては、上記排気部の低温用改質部30に採用した例えばCuを触媒成分とする触媒であり、触媒温度が350℃程度以下となるように、上記触媒冷却用循環部144が設けられている。   A steam passage is provided between the reforming unit 130 and the evaporation unit 120, and the reforming raw material steam that has flowed into the reforming unit 130 through the steam passage is provided in the reforming unit 130. Steam reforming is performed by the reforming catalyst. The reforming catalyst is a catalyst that uses, for example, Cu as the catalyst component employed in the low temperature reforming section 30 of the exhaust section, and the catalyst cooling circulation section 144 so that the catalyst temperature is about 350 ° C. or less. Is provided.

改質部130において得られた改質ガスは、改質部130のライナー下側に設けられた改質ガス流出通路からアキュムレータ28(図5参照)へ供給される。   The reformed gas obtained in the reforming unit 130 is supplied to the accumulator 28 (see FIG. 5) from a reformed gas outflow passage provided below the liner of the reforming unit 130.

また、改質部130からの改質ガスの一部は、流量制御弁136を介し、排気側の改質部400に供給される。具体的には、この流量制御弁136を介して改質部400に供給されるガスは、改質部130の触媒温度が350℃程度に制限されていることから、そのまま低温用改質部30に供給される。   A part of the reformed gas from the reforming unit 130 is supplied to the reforming unit 400 on the exhaust side via the flow rate control valve 136. Specifically, the gas supplied to the reforming unit 400 via the flow rate control valve 136 has the catalyst temperature of the reforming unit 130 limited to about 350 ° C. To be supplied.

低温用改質部30から流出するガスは、熱交換器68で、高温用改質部32から流出するより高温のガスと熱交換させ、昇温してから高温用改質部32に供給する。そして、高温用改質部32でさらに改質反応を進行させる。   The gas flowing out from the low-temperature reforming unit 30 is heat-exchanged with a higher-temperature gas flowing out from the high-temperature reforming unit 32 by the heat exchanger 68 and is supplied to the high-temperature reforming unit 32 after the temperature is raised. . Then, the reforming reaction is further advanced in the reforming section 32 for high temperature.

高温用改質部32から流出する改質ガスは熱交換器68を通り、次に熱交換器64を通過してアキュムレータ28に供給され、アキュムレータ28に、ライナー部100の改質部130で得た改質ガスと共に蓄積される。   The reformed gas flowing out from the high-temperature reforming section 32 passes through the heat exchanger 68, then passes through the heat exchanger 64, and is supplied to the accumulator 28. The accumulator 28 is obtained by the reforming section 130 of the liner section 100. Accumulated with the reformed gas.

熱交換器64には、ラジエータ82に連通された冷却循環路88に設けられており、上記高温用改質部32からの改質ガスと、ライナー部100の改質部130から改質ガスの両方が、この冷却循環路88を流れる改質原料液との熱交換によって冷却される。なお、熱交換器64を通った改質原料液は、液循環ポンプ84を経てラジエータ82に戻り、ラジエータ82で冷却される。   The heat exchanger 64 is provided in a cooling circuit 88 communicated with the radiator 82, and the reformed gas from the high temperature reforming unit 32 and the reformed gas from the reforming unit 130 of the liner unit 100 are supplied to the heat exchanger 64. Both are cooled by heat exchange with the reforming raw material liquid flowing through the cooling circuit 88. The reforming raw material liquid that has passed through the heat exchanger 64 returns to the radiator 82 via the liquid circulation pump 84 and is cooled by the radiator 82.

図6に示す構成においても、吸気管20には、流入する空気を冷却するためのいわゆるインタークーラからなる熱交換器60が設けられ、この熱交換器60の冷却液としても改質原料液が採用されている。そして、ラジエータ82から送出され循環経路88を経て上記熱交換器60を通過した改質原料液は、液循環ポンプ84を経て再びラジエータ82に戻り、ここで冷却される。   Also in the configuration shown in FIG. 6, the intake pipe 20 is provided with a heat exchanger 60 composed of a so-called intercooler for cooling the inflowing air, and the reforming raw material liquid is also used as a cooling liquid for the heat exchanger 60. It has been adopted. Then, the reforming raw material liquid sent from the radiator 82 and passed through the heat exchanger 60 via the circulation path 88 returns to the radiator 82 again via the liquid circulation pump 84 and is cooled here.

上述のように、液循環ポンプ84には、ラジエータ82から送出され、液体加熱部110を循環した改質原料液(循環液)、触媒冷却用循環部144を循環した改質原料液、上記熱交換器60,64を循環した改質原料液等が戻る。ここで液体加熱部110を循環する改質原料液は、その後、蒸発部120で効率的に気化するように、気筒によって加熱することを主たる目的としている。一方、熱交換器60、64、触媒冷却用循環部144では、改質原料液によって対象を冷却することを主たる目的としており、これらを循環した改質原料液は、液体加熱部110を循環する原料液よりも優先してラジエータ82に戻す必要がある。そこで、図6に示すように、液体加熱部110から液循環ポンプ84に向かう流路にはオリフィスなどの圧力損失部86を設け、他の熱交換器64等からの循環液が冷却循環路88に優先して流れ込めるようにしている。   As described above, the liquid circulation pump 84 is fed from the radiator 82 and reformed raw material liquid (circulated liquid) circulated through the liquid heating unit 110, reformed raw material liquid circulated through the catalyst cooling circulation unit 144, and the heat The reforming raw material liquid and the like circulated through the exchangers 60 and 64 are returned. Here, the main purpose of the reforming raw material liquid circulating through the liquid heating unit 110 is to be heated by the cylinder so as to be efficiently vaporized in the evaporation unit 120 thereafter. On the other hand, in the heat exchangers 60 and 64 and the catalyst cooling circulation unit 144, the main purpose is to cool the target with the reforming raw material liquid, and the reforming raw material liquid circulated through these circulates in the liquid heating unit 110. It is necessary to return to the radiator 82 in preference to the raw material liquid. Therefore, as shown in FIG. 6, a pressure loss unit 86 such as an orifice is provided in the flow path from the liquid heating unit 110 to the liquid circulation pump 84, and the circulating liquid from the other heat exchanger 64 or the like is supplied to the cooling circuit 88. It has been made to flow in preference to.

以上図6を参照して説明したように、本実施形態3では、気筒側に改質部130、蒸発部120、液体加熱部110を設け、気筒の熱を利用して改質原料液の加熱、気化、そして水蒸気改質を実行し、同時に気筒の冷却を行う。そして、気筒側の改質部130で得た改質ガスを排気管側の改質部400に供給し、排気熱を利用してさらに改質を進行させる。これにより、内燃機関で発生する熱を、極めて効率的に、改質に必要な熱として利用し、かつ気筒や内燃機関の必要な部分を確実に冷却することができる。したがって、改質原料から得る改質ガスに含まれる水素、一酸化炭素の濃度を非常に高くすることができ、かつ、内燃機関の熱効率、燃費を飛躍的に上昇させることが可能となる。   As described above with reference to FIG. 6, in Embodiment 3, the reforming unit 130, the evaporation unit 120, and the liquid heating unit 110 are provided on the cylinder side, and heating of the reforming raw material liquid is performed using the heat of the cylinder. , Vaporization, and steam reforming are performed, and at the same time, the cylinder is cooled. Then, the reformed gas obtained in the cylinder-side reforming section 130 is supplied to the exhaust pipe-side reforming section 400, and the reforming is further advanced using the exhaust heat. As a result, the heat generated in the internal combustion engine can be utilized extremely efficiently as the heat necessary for reforming, and the necessary portions of the cylinder and the internal combustion engine can be reliably cooled. Therefore, the concentration of hydrogen and carbon monoxide contained in the reformed gas obtained from the reforming raw material can be made extremely high, and the thermal efficiency and fuel consumption of the internal combustion engine can be dramatically increased.

また、内燃機関の各部を冷却するための冷却液として、最終的には加熱し、蒸発させ、さらに改質反応を行う改質原料液を採用することで、内燃機関の冷却を効率的に行うことができる。もちろん、気筒10の冷却を、改質原料液の液温上昇、蒸発、吸熱の水蒸気改質反応によって実行することで、ラジエータの負荷を最小限とでき、ラジエータの小型化等を達成することも可能となる。また、ラジエータ用の冷却水と改質原料液を別に備蓄する必要がなく、内燃機関の小型化を図ることができる。   Further, as a cooling liquid for cooling each part of the internal combustion engine, the internal combustion engine is efficiently cooled by adopting a reforming raw material liquid that is finally heated and evaporated and further undergoes a reforming reaction. be able to. Of course, the cooling of the cylinder 10 is performed by the steam reforming reaction of the reforming raw material liquid temperature rise, evaporation, and endothermic, so that the load on the radiator can be minimized and the size of the radiator can be reduced. It becomes possible. Further, there is no need to separately store the cooling water for the radiator and the reforming raw material liquid, and the internal combustion engine can be downsized.

なお、排気管側に設ける改質部400として実施形態2のように、高温用改質部32を省略する構成を採用することも可能である。   In addition, it is also possible to employ | adopt the structure which abbreviate | omits the high temperature reforming part 32 like Embodiment 2 as the reforming part 400 provided in an exhaust pipe side.

実施形態1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to a first embodiment. 改質触媒の活性特性を示す図である。It is a figure which shows the active characteristic of a reforming catalyst. 排気タービンのTs線図である。It is a Ts diagram of an exhaust turbine. 所定圧力比における排気タービンの入口出口温度の特性を示す図である。It is a figure which shows the characteristic of the inlet-outlet temperature of an exhaust turbine in a predetermined pressure ratio. 実施形態2の変形例に係る内燃機関の概略構成を示す図である。FIG. 6 is a diagram illustrating a schematic configuration of an internal combustion engine according to a modification of the second embodiment. 実施形態3に係る内燃機関の概略構成を示す図である。FIG. 5 is a diagram illustrating a schematic configuration of an internal combustion engine according to a third embodiment.

符号の説明Explanation of symbols

10 気筒、14 吸気弁、16 点火プラグ、18 排気弁、20 吸気管、22 ガス噴射弁、30 低温用改質部、32 高温用改質部、40 排気管、50 過給機、60,62,64,66,68 熱交換器、70 改質原料タンク、80 供給ポンプ、82 ラジエータ、84 液循環ポンプ、88 冷却循環路、100 ライナー部、110 液体加熱部、120 蒸発部、124 液体噴射弁、126 減圧弁、130 改質部、144 触媒冷却用循環部、146 循環量制御弁、160 障壁、200 シリンダブロック、300 エンジン制御部(エンジンECU)。   10 cylinder, 14 intake valve, 16 spark plug, 18 exhaust valve, 20 intake pipe, 22 gas injection valve, 30 low temperature reforming section, 32 high temperature reforming section, 40 exhaust pipe, 50 supercharger, 60, 62 , 64, 66, 68 Heat exchanger, 70 Reforming raw material tank, 80 Supply pump, 82 Radiator, 84 Liquid circulation pump, 88 Cooling circuit, 100 Liner part, 110 Liquid heating part, 120 Evaporating part, 124 Liquid injection valve , 126 Pressure reducing valve, 130 reforming section, 144 catalyst cooling circulation section, 146 circulation amount control valve, 160 barrier, 200 cylinder block, 300 engine control section (engine ECU).

Claims (14)

改質ガスを気筒内に供給して動力を得る内燃機関であって、
前記改質ガスは、改質原料を水蒸気改質によって生成した水素を含むガスであり、
改質部は、気筒からの排気経路に設けられ、排気ガスと熱交換して吸熱反応である前記水蒸気改質を実行し、該改質部は、高温用改質部と低温用改質部とを備え、
前記低温用改質部の改質触媒は、その活性温度上限が、前記高温用改質部の改質触媒の活性温度上限よりも低く、
前記低温用改質部よりも前記排気経路の上流側に前記高温用改質部が設けられ
さらに、
前記高温用改質部よりも前記排気経路の下流側であって、前記低温用改質部よりも前記排気経路の上流側に、前記気筒への空気を過給する過給機が設けられ、
前記過給機は、吸気管への空気過給を行うと共に、前記高温用改質部を通った排気ガスの熱エネルギを回収して排気ガス温度を低下させ、前記過給機で降温された前記排気ガスが前記低温用改質部に供給されることを特徴とする改質ガス内燃機関。
An internal combustion engine that obtains power by supplying reformed gas into a cylinder,
The reformed gas is a gas containing hydrogen generated by steam reforming the reforming raw material,
The reforming unit is provided in an exhaust path from the cylinder and performs the steam reforming which is an endothermic reaction by exchanging heat with the exhaust gas, and the reforming unit includes a high temperature reforming unit and a low temperature reforming unit. And
The reforming catalyst for the reforming part for low temperature has an upper limit of the activation temperature lower than the upper limit of the activation temperature of the reforming catalyst for the reforming part for high temperature,
The high temperature reforming section is provided on the upstream side of the exhaust path from the low temperature reforming section ,
further,
A turbocharger that supercharges the air to the cylinder is provided downstream of the high-temperature reforming section and downstream of the low-temperature reforming section and upstream of the exhaust path;
The supercharger performs air supercharging to the intake pipe, recovers heat energy of the exhaust gas that has passed through the high-temperature reforming section, lowers the exhaust gas temperature, and is cooled by the supercharger A reformed gas internal combustion engine, wherein the exhaust gas is supplied to the low temperature reforming section .
請求項に記載の改質ガス内燃機関において、
前記過給機は、排気タービンの入口と出口の排気ガス圧力の圧力比の可変機構を備え、
該過給機からの排気ガス出口温度に応じて前記排気タービンの圧力比を調整し、前記過給器から前記低温用改質部に供給される排気ガス温度が、前記低温用改質部の前記改質触媒の活性温度範囲の上限を超えないように制御されることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to claim 1 ,
The supercharger comprises a variable mechanism of the pressure ratio of the exhaust gas pressure at the inlet and outlet of the exhaust turbine,
The pressure ratio of the exhaust turbine is adjusted according to the exhaust gas outlet temperature from the supercharger, and the exhaust gas temperature supplied from the supercharger to the low temperature reforming unit is A reformed gas internal combustion engine controlled so as not to exceed an upper limit of an active temperature range of the reforming catalyst.
請求項1または請求項に記載の改質ガス内燃機関において、
前記改質原料は、改質原料流路を経て前記低温用改質部に供給されてから前記高温用改質部に供給され、
前記高温用改質部からの改質ガス流路と、前記低温用改質部への前記改質原料流路との間には、熱交換器が設けられ、前記改質ガスの熱を利用して前記低温用改質部に供給する前記改質原料を昇温させることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to claim 1 or 2 ,
The reforming material is supplied to the high temperature reforming unit after being supplied to the low temperature reforming unit via the reforming material channel,
A heat exchanger is provided between the reformed gas flow path from the high temperature reforming section and the reforming raw material flow path to the low temperature reforming section, and uses the heat of the reformed gas. A reformed gas internal combustion engine characterized in that the temperature of the reforming material supplied to the reforming section for low temperature is raised.
請求項1〜請求項のいずれか一項に記載の改質ガス内燃機関において、
前記高温用改質部は、350℃より高い温度で改質反応を実行し、
前記低温用改質部は、350℃以下の温度で改質反応を実行することを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to any one of claims 1 to 3 ,
The high-temperature reforming unit performs a reforming reaction at a temperature higher than 350 ° C.,
The reformed gas internal combustion engine, wherein the low temperature reforming section performs a reforming reaction at a temperature of 350 ° C. or lower.
請求項に記載の改質ガス内燃機関において、
前記過給機からの排気ガス温度が前記350℃以下となるように、前記高温用改質部の熱交換性と、前記過給機の排気タービンの入口と出口の排気ガス圧力の圧力比が設定されていることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to claim 4 ,
The pressure ratio between the heat exchange performance of the high temperature reforming section and the exhaust gas pressure at the inlet and outlet of the exhaust turbine of the supercharger is such that the exhaust gas temperature from the supercharger is 350 ° C. or less. A reformed gas internal combustion engine characterized by being set.
請求項、請求項及び請求項のいずれか一項に記載の改質ガス内燃機関において、
さらに、前記過給機の前記排気タービンの回転動力を利用して前記気筒に供給する前記改質ガスの圧力を上昇させる改質ガス用コンプレッサを備えることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to any one of claims 1, 2, and 5 ,
Furthermore, by utilizing the rotational power of the exhaust turbine of the turbocharger, the reformed gas internal combustion engine, comprising a reformed gas compressor to raise the pressure of the reformed gas supplied to the cylinder.
請求項1〜請求項のいずれか一項に記載の改質ガス内燃機関において、
前記改質原料は、エタノール、または、エタノールと水との混合液であることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to any one of claims 1 to 6 ,
A reformed gas internal combustion engine, wherein the reforming raw material is ethanol or a mixed liquid of ethanol and water.
請求項に記載の改質ガス内燃機関において、
前記改質原料のエタノール濃度は30体積%〜96体積%であることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to claim 7 ,
The reformed gas internal combustion engine, wherein the reformed raw material has an ethanol concentration of 30% by volume to 96% by volume.
請求項1〜請求項のいずれか一項に記載の改質ガス内燃機関において、
前記低温用改質部の前記改質触媒は、触媒成分として銅を含有することを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to any one of claims 1 to 8 ,
The reformed gas internal combustion engine, wherein the reforming catalyst of the low temperature reforming section contains copper as a catalyst component.
請求項1〜請求項のいずれか一項に記載の改質ガス内燃機関において、
前記気筒での燃焼の当量比は、1未満であることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to any one of claims 1 to 9 ,
A reformed gas internal combustion engine, wherein an equivalence ratio of combustion in the cylinder is less than 1.
請求項1〜請求項10のいずれか一項に記載の改質ガス内燃機関において、
前記気筒での燃焼の当量比は、1.5以下に設定され、
前記気筒には、前記改質ガスの他に、液体燃料が供給されることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to any one of claims 1 to 10 ,
The equivalent ratio of combustion in the cylinder is set to 1.5 or less,
A reformed gas internal combustion engine, wherein a liquid fuel is supplied to the cylinder in addition to the reformed gas.
請求項に記載の改質ガス内燃機関において、
前記改質燃料のエタノール濃度は、70体積%〜80体積%であることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to claim 7 ,
The reformed gas internal combustion engine, wherein the reformed fuel has an ethanol concentration of 70 vol% to 80 vol%.
請求項1〜請求項12のいずれか一項に記載の改質ガス内燃機関において、
前記気筒の外部の燃焼室周辺に、少なくとも、前記改質原料の蒸発熱と、前記改質原料を前記水蒸気改質する際の吸熱反応熱とを、前記気筒の冷却に用いるための冷却機構が設けられていることを特徴とする改質ガス内燃機関。
The reformed gas internal combustion engine according to any one of claims 1 to 12 ,
A cooling mechanism for cooling at least the heat of evaporation of the reforming material and the endothermic reaction heat when steam reforming the reforming material around the combustion chamber outside the cylinder. A reformed gas internal combustion engine characterized by being provided.
請求項13に記載の内燃機関において、
前記気筒の外側の燃焼室周辺には、さらに、前記気筒内との熱交換により前記改質原料液を加熱する液体加熱部が設けられていることを特徴とする改質ガス内燃機関。
The internal combustion engine according to claim 13 ,
A reformed gas internal combustion engine, further comprising a liquid heating unit that heats the reforming raw material liquid by heat exchange with the inside of the cylinder around the combustion chamber outside the cylinder.
JP2006182743A 2006-06-30 2006-06-30 Reformed gas internal combustion engine Expired - Fee Related JP4788500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006182743A JP4788500B2 (en) 2006-06-30 2006-06-30 Reformed gas internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182743A JP4788500B2 (en) 2006-06-30 2006-06-30 Reformed gas internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008014138A JP2008014138A (en) 2008-01-24
JP4788500B2 true JP4788500B2 (en) 2011-10-05

Family

ID=39071412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182743A Expired - Fee Related JP4788500B2 (en) 2006-06-30 2006-06-30 Reformed gas internal combustion engine

Country Status (1)

Country Link
JP (1) JP4788500B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523978B2 (en) * 2008-03-28 2010-08-11 株式会社日立製作所 Engine system
JP4637200B2 (en) * 2008-04-04 2011-02-23 株式会社日立製作所 Engine system
US9121370B2 (en) 2011-11-15 2015-09-01 Denso Corporation Combustion system
JP5621752B2 (en) * 2011-11-15 2014-11-12 株式会社デンソー Combustion system
JP5916109B2 (en) * 2012-03-29 2016-05-11 株式会社日立製作所 Ethanol engine system
JP6298612B2 (en) * 2013-10-17 2018-03-20 株式会社日立製作所 Methane reforming engine system
AU2015249640B2 (en) 2014-04-23 2019-05-23 Pinliang Fan Fuel control systems for operating gasoline engines based on ethanol-water-hydrogen mixture fuels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator

Also Published As

Publication number Publication date
JP2008014138A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4449956B2 (en) Internal combustion engine
JP4788500B2 (en) Reformed gas internal combustion engine
US7195006B2 (en) Exhaust gas recirculation system with control of EGR gas temperature
US8463529B2 (en) System and method of operating internal combustion engines at fuel rich low-temperature- combustion mode as an on-board reformer for solid oxide fuel cell-powered vehicles
KR101784021B1 (en) Reformed ethanol engines
US10247144B2 (en) Engine exhaust gas recirculation cooling system with integrated latent heat storage device
JP2008267268A (en) Fuel supply device of internal combustion engine
Unni et al. Development of Hydrogen Fuelled Low NOₓ Engine with Exhaust Gas Recirculation and Exhaust after Treatment
EP1725749B1 (en) Warm-up method and warm-up system for internal combustion engine
WO2018147896A1 (en) Dual stage internal combustion engine aftertreatment system using common radiator cooling fluid circuits for exhaust gas intercooling and charger-driven ejector
KR102575182B1 (en) Fuel injection control method of fuel reformer and fuel reforming system
JP2010270664A (en) Exhaust gas purification system for internal combustion engine
JP2007187111A (en) Internal combustion engine by use of hydrogen
CN103210193B (en) Fuel reformer
JP2008014139A (en) Internal combustion engine
US20230010136A1 (en) System for controlling hydrogen combustion in a hydrogen internal combustion engine
JP2007138799A (en) Internal combustion engine using hydrogen
JP5604912B2 (en) Automotive exhaust purification system
JP2005105909A (en) Engine system
US20040038094A1 (en) Fuel cell system
US10280856B2 (en) Exhaust purification system of internal combustion engine
JP4506416B2 (en) Internal combustion engine
JP2011247174A (en) Method of recovering moisture in internal combustion engine exhaust gas
JP3551757B2 (en) Compression ignition type internal combustion engine
US11719199B2 (en) Combustion engine assembly with an ethanol reformer unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees