JP4785711B2 - Phosphor and light emitting device using the same - Google Patents

Phosphor and light emitting device using the same Download PDF

Info

Publication number
JP4785711B2
JP4785711B2 JP2006308330A JP2006308330A JP4785711B2 JP 4785711 B2 JP4785711 B2 JP 4785711B2 JP 2006308330 A JP2006308330 A JP 2006308330A JP 2006308330 A JP2006308330 A JP 2006308330A JP 4785711 B2 JP4785711 B2 JP 4785711B2
Authority
JP
Japan
Prior art keywords
phosphor
content
light
light emitting
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006308330A
Other languages
Japanese (ja)
Other versions
JP2008120949A (en
JP2008120949A5 (en
Inventor
昌嗣 増田
賢二 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006308330A priority Critical patent/JP4785711B2/en
Publication of JP2008120949A publication Critical patent/JP2008120949A/en
Publication of JP2008120949A5 publication Critical patent/JP2008120949A5/ja
Application granted granted Critical
Publication of JP4785711B2 publication Critical patent/JP4785711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、主として発光装置に用いられる酸窒化物蛍光体および窒化物蛍光体に関し、さらには前記蛍光体を用いた波長変換部を備えた発光装置に関するものである。   The present invention relates to an oxynitride phosphor and a nitride phosphor mainly used for a light emitting device, and further relates to a light emitting device including a wavelength conversion unit using the phosphor.

半導体発光素子と蛍光体を組み合わせた発光装置は、低消費電力、小型、高輝度かつ広範囲な色再現性が期待される次世代の発光装置として注目され、活発に研究、開発が行われている。発光素子から発せられる一次は、通常長波長の紫外線から青色の範囲、即ち380nmから480nmのものが用いられる。また、この用途に適合した様々な蛍光体を用いた波長変換部も提案されている。   Light-emitting devices combining semiconductor light-emitting elements and phosphors are attracting attention as next-generation light-emitting devices that are expected to have low power consumption, small size, high brightness, and wide color reproducibility, and are actively researched and developed. . The primary light emitted from the light emitting element is usually in the range of long wavelength ultraviolet to blue, that is, 380 nm to 480 nm. In addition, wavelength converters using various phosphors suitable for this application have been proposed.

さらには、最近この種の発光装置に対して変換効率(明るさ)のみならず、入力のエネルギーをより高くし、さらに明るくしようとする試みがなされている。入力エネルギ−を高くした場合、波長変換部を含めた発光装置全体の効率的な放熱が必要となってくる。このために、発光装置全体の構造、材質などの開発も進められているが、動作時における発光素子及び波長変換部の温度上昇は避けられないのが現状である。   Furthermore, recently, attempts have been made to increase not only the conversion efficiency (brightness) but also the input energy to make this type of light emitting device brighter. When the input energy is increased, efficient heat radiation of the entire light emitting device including the wavelength conversion unit is required. For this reason, the structure and material of the entire light emitting device are being developed, but the current situation is that an increase in temperature of the light emitting element and the wavelength conversion unit during operation is unavoidable.

現在白色の発光装置としては、青色発光の発光素子(ピ−ク波長、450nm前後)とその青色により励起され黄色発光を示す3価のセリウムで付活された(Y,Gd)3(Al,Ga)512蛍光体あるいは2価のユ−ロピウムで付活された(Sr,Ba,Ca)2SiO4蛍光体との組み合わせが主として用いられている。 Currently, white light-emitting devices include blue light-emitting elements (peak wavelength, around 450 nm) and (Y, Gd) 3 (Al, activated by trivalent cerium excited by the blue light and emitting yellow light. A combination with a Ga) 5 O 12 phosphor or a (Sr, Ba, Ca) 2 SiO 4 phosphor activated with divalent europium is mainly used.

しかしながら、特に3価のセリウムで付活された(Y,Gd)3(Al,Ga)512蛍光体においては、100℃では25℃での輝度(明るさ)を100%とした時に、その輝度は85%前後に低下するために、入力エネルギ−を高く設定出来ないという技術課題を有している。そのために、温度特性が良好な酸窒化物蛍光体あるいは窒化物蛍光体が注目され、活発に開発が行われている。 However, in the case of (Y, Gd) 3 (Al, Ga) 5 O 12 phosphor activated by trivalent cerium, when the luminance (brightness) at 25 ° C. is 100% at 100 ° C., Since the luminance decreases to around 85%, there is a technical problem that the input energy cannot be set high. For this reason, oxynitride phosphors or nitride phosphors having good temperature characteristics are attracting attention and are being actively developed.

しかしながら、この種の酸窒化物蛍光体あるいは窒化物蛍光体においては、特性は良好であるが、特性の変動、特に輝度特性の変動が大きいと言う技術課題を有している。従って、この種の酸窒化物蛍光体あるいは窒化物蛍光体において、特性の安定化、特に輝度特性の安定化が急務となっている。   However, this type of oxynitride phosphor or nitride phosphor has good characteristics, but has a technical problem that fluctuations in characteristics, particularly fluctuations in luminance characteristics, are large. Therefore, in this type of oxynitride phosphor or nitride phosphor, it is an urgent task to stabilize the characteristics, particularly the luminance characteristics.

この種の酸窒化物蛍光体あるいは窒化物蛍光体に関しては、たとえば特開2002−363554号公報(特許文献1)において、α型SIALON(サイアロン)の記載がある。即ち、代表的なものとしてEu2+イオンの付活量を変化させたCa−アルファサイアロン蛍光体について言及した記載がある。しかしながら、特許文献1には、発光強度の安定性あるいは発光強度に及ぼす不純物元素の影響については、言及されてはいない。 Regarding this type of oxynitride phosphor or nitride phosphor, for example, JP-A 2002-363554 (Patent Document 1) describes α-type SIALON. That is, as a representative example, there is a description referring to a Ca-alpha sialon phosphor in which the activation amount of Eu 2+ ions is changed. However, Patent Document 1 does not mention the stability of the emission intensity or the influence of the impurity element on the emission intensity.

また、特開2006−89547号公報(特許文献2)においては、緑色蛍光体としてβ−サイアロン:Euあるいは黄色蛍光体としてCa−α−サイアロン:Euの記載がある。しかしながら、特許文献2においても、発光強度の安定性あるいは発光強度に及ぼす不純物元素の影響については、言及されてはいない。   Japanese Patent Laid-Open No. 2006-89547 (Patent Document 2) describes β-sialon: Eu as a green phosphor or Ca-α-sialon: Eu as a yellow phosphor. However, Patent Document 2 does not mention the stability of the emission intensity or the influence of the impurity element on the emission intensity.

さらには、特開2004−182780号公報(特許文献3)においては、Lxy((2/3)x+(4/3)y):R、または、Lxyz((2/3)x+(4/3)y-(2/3)z):Rで表される黄色から赤色領域に発光する窒化物蛍光体の記載がある。また特許文献3には、第V族元素(V、Nb、Ta)、第VI族元素(Cr、Mo、W)、第VII族元素(Re)、第VIII族元素(Fe、Co、Ir、Ni、Pd、Pt、Ru)を添加した窒化物蛍光体と、該元素を添加していない窒化物蛍光体とを比べると、残光を短くすることができるという効果を有することが記載されている。また、これらの元素も、輝度の調整を行うことができる。ここで、前記窒化物蛍光体の組成に含まれる元素と異なる第V族元素、第VI族元素、第VII族元素、第VIII族元素は、前記窒化物蛍光体の組成に含まれる元素の重量に対して100ppm以下であることが好ましい。これは第V族元素、第VI族元素、第VII族元素、第VIII族元素は、本窒化物蛍光体の発光を阻害するキラー元素であり、発光効率を大幅に下げるため、系外に除去しておくことが好ましいからである、と記載されている。しかしながら、各第V族元素、第VI族元素、第VII族元素、第VIII族元素について、発光を阻害する程度およびMnについては、詳細に言及されていない。
特開2002−363554号公報 特開2006−89547号公報 特開2004−182780号公報
Furthermore, in JP 2004-182780 (Patent Document 3), L x M y N ((2/3) x + (4/3) y): R or,, L x M y O z N ( (2/3) x + (4/3) y- (2/3) z) : There is a description of a nitride phosphor that emits light in the red to yellow region represented by R. Patent Document 3 discloses a Group V element (V, Nb, Ta), a Group VI element (Cr, Mo, W), a Group VII element (Re), a Group VIII element (Fe, Co, Ir, It is described that when a nitride phosphor added with Ni, Pd, Pt, Ru) is compared with a nitride phosphor not added with the element, afterglow can be shortened. Yes. In addition, these elements can also adjust the luminance. Here, Group V elements, Group VI elements, Group VII elements, and Group VIII elements different from the elements included in the composition of the nitride phosphor are the weights of the elements included in the composition of the nitride phosphor. 100 ppm or less is preferable. This is a group V element, group VI element, group VII element, and group VIII element, which is a killer element that inhibits the light emission of the nitride phosphor. It is described that this is preferable. However, for each Group V element, Group VI element, Group VII element, and Group VIII element, the degree of light emission inhibition and Mn are not described in detail.
JP 2002-363554 A JP 2006-89547 A JP 2004-182780 A

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、半導体発光素子からの430〜480nmの範囲の光によって高効率で安定に発光する窒化物蛍光体および酸窒化物蛍光体、ならびに、これらの蛍光体を用いた、高効率で特性の安定した発光装置を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a nitride phosphor that emits light efficiently and stably with light in a range of 430 to 480 nm from a semiconductor light emitting device, and It is an object to provide an oxynitride phosphor and a light-emitting device having high efficiency and stable characteristics using these phosphors.

上記目的を達成するために、本発明者らは特定の2価のユ−ロピウム付活の窒化物及び酸窒化物蛍光体において、粉体特性(特に輝度特性)に悪影響を及ぼす不純物元素について詳細に調査、実験、検討を重ねた結果、特定の不純物を精度良く制御することにより、輝度特性の安定した窒化物及び酸窒化物蛍光体を得ることが出来ることを見出したものである。特にMnはユーロピウムサイトの吸収したエネルギーを吸収し、不要な遷移を引き起こすことから、精度良く制御する必要がある。すなわち、本発明は以下のとおりである。   In order to achieve the above object, the present inventors have described in detail about impurity elements that adversely affect powder characteristics (particularly luminance characteristics) in specific divalent europium activated nitrides and oxynitride phosphors. As a result of repeated investigations, experiments, and studies, it has been found that nitrides and oxynitride phosphors having stable luminance characteristics can be obtained by controlling specific impurities with high accuracy. In particular, Mn absorbs the energy absorbed by the europium site and causes unnecessary transitions, so it must be controlled with high precision. That is, the present invention is as follows.

本発明は、
一般式(A):EuSiAl
(一般式(A)中、0.005≦a≦0.4、b+c=12、d+e=16を満足する数である)で表されるβ型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下であることを特徴とする2価のユーロピウム付活酸窒化物蛍光体である。
The present invention
Formula (A): Eu a Si b Al c O d N e
A β-type SIALON are tables in (in the general formula (A), 0.005 ≦ a ≦ 0.4, is a number satisfying b + c = 12, d + e = 16), the content of Fe is 20ppm or less And the content rate of Mn is 10 ppm or less, It is a bivalent europium activated oxynitride fluorescent substance characterized by the above-mentioned.

また本発明は、
一般式(B):MIEuSiAl
(一般式(B)中、MIはLi、Na、K、Cs、Mg、Ca、Sr及びBaから選ばれる少なくとも1種の元素を示し、0<f≦3.0、0.005≦g≦0.4、h+k=12、m+n=16を満足する数である)で表されるα型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下であることを特徴とする2価のユーロピウム付活酸窒化物蛍光体である。ここにおいて、MIはLiおよびCaから選ばれる少なくとも1種の元素であることが、好ましい。
The present invention also provides
General formula (B): MI f Eu g Si h Al k O m N n
(In the general formula (B), MI represents at least one element selected from Li, Na, K, Cs, Mg, Ca, Sr and Ba, and 0 <f ≦ 3.0, 0.005 ≦ g ≦ 0.4, a α-type SIALON being Table by the number a is) which satisfies h + k = 12, m + n = 16, the Fe content is 20ppm or less, and the content of Mn is 10ppm or less It is a characteristic divalent europium activated oxynitride phosphor. Here, MI is preferably at least one element selected from Li and Ca.

また、本発明は、
一般式(C):(MII1−pEu)MIIISiN
(一般式(C)中、MIIはアルカリ土類金属元素であり、Mg、Ca、SrおよびBa
から選ばれる少なくとも1種の元素を示し、MIIIは3価の金属元素からなり、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、0.001≦p≦0.05を満足する数である)で表され、Feの含有率が10ppm以下、かつ、Mnの含有率が5ppm以下であることを特徴とする2価のユーロピウム付活窒化物蛍光体である。ここにおいて、MIIIがAl、GaおよびInから選ばれる少なくとも1種の元素であることが好ましい。
The present invention also provides:
Formula (C): (MII 1-p Eu p ) MIIISiN 3
(In the general formula (C), MII is an alkaline earth metal element, Mg, Ca, Sr and Ba
At least one element selected from the group consisting of trivalent metal elements, MIII represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd and Lu, and 0.001 ≦ p ≦ 0.05 is a number satisfying) in the table, the content of Fe is 10ppm or less, and a divalent europium activated nitride phosphor, wherein the content of Mn is 5ppm or less Is the body. Here, MIII is preferably at least one element selected from Al, Ga and In.

本発明はまた、一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備えた発光装置であって、前記波長変換部は緑色系発光蛍光体、黄色系発光蛍光体および赤色系発光蛍光体から選ばれる少なくともいずれかを含み、前記緑色系発光蛍光体は、
一般式(A):EuSiAl
(一般式(A)中、0.005≦a≦0.4、b+c=12、d+e=16を満足する数である)で表されるβ型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下である2価のユーロピウム付活酸窒化物蛍光体であり、前記黄色系発光蛍光体は、
一般式(B):MIEuSiAl
(一般式(B)中、MIはLi、Na、K、Cs、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、0<f≦3.0、0.005≦g≦0.4、h+k=12、m+n=16を満足する数である)で表されるα型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下である2価のユーロピウム付活酸窒化物蛍光体であり、前記赤色系発光蛍光体は、
一般式(C):(MII1−pEu)MIIISiN
(一般式(C)中、MIIはアルカリ土類金属元素であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、MIIIは3価の金属元素からなり、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、0.001≦p≦0.05を満足する数である)で表され、Feの含有率が10ppm以下、かつ、Mnの含有率が5ppm以下である2価のユーロピウム付活窒化物蛍光体である、発光装置についても提供する。
The present invention is also a light emitting device comprising: a light emitting element that emits primary light; and a wavelength converter that absorbs part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. The wavelength conversion unit includes at least one selected from a green light-emitting phosphor, a yellow light-emitting phosphor, and a red light-emitting phosphor,
Formula (A): Eu a Si b Al c O d N e
A β-type SIALON are tables in (in the general formula (A), 0.005 ≦ a ≦ 0.4, is a number satisfying b + c = 12, d + e = 16), the content of Fe is 20ppm or less And a divalent europium-activated oxynitride phosphor having a Mn content of 10 ppm or less, and the yellow light-emitting phosphor is:
General formula (B): MI f Eu g Si h Al k O m N n
(In the general formula (B), MI represents at least one element selected from Li, Na, K, Cs, Mg, Ca, Sr and Ba, and 0 <f ≦ 3.0, 0.005 ≦ g ≦ 0.4, h + k = 12, is a number satisfying m + n = 16) a α-type SIALON being Table, the content of Fe is 20ppm or less, and a divalent Mn content is 10ppm or less Europium-activated oxynitride phosphor, the red light-emitting phosphor,
Formula (C): (MII 1-p Eu p ) MIIISiN 3
(In the general formula (C), MII is an alkaline earth metal element and represents at least one element selected from Mg, Ca, Sr and Ba, MIII is composed of a trivalent metal element, Al, Ga, an in, Sc, Y, La, represents at least one element selected from Gd, and Lu, are tables by the number a is) that satisfies 0.001 ≦ p ≦ 0.05, the content of Fe is 10ppm or less, Also provided is a light-emitting device that is a divalent europium-activated nitride phosphor having a Mn content of 5 ppm or less.

本発明の発光装置は、前記黄色系発光蛍光体として、上記一般式(B)中、MIがLiおよびCaから選ばれる少なくとも1種の元素である、2価のユーロピウム付活酸窒化物蛍光体を用いたものであることが好ましい。   The light-emitting device of the present invention is a divalent europium-activated oxynitride phosphor in which MI is at least one element selected from Li and Ca in the general formula (B) as the yellow light-emitting phosphor. It is preferable to use this.

また本発明の発光装置は、前記赤色系発光蛍光体として、上記一般式(C)中、MIIIがAl、GaおよびInから選ばれる少なくとも1種の元素である、2価のユーロピウム付活窒化物蛍光体を用いたものであることが好ましい。   In the light emitting device of the present invention, as the red light emitting phosphor, a divalent europium activated nitride in which MIII is at least one element selected from Al, Ga and In in the general formula (C) It is preferable to use a phosphor.

本発明の発光装置において、前記発光素子は窒化ガリウム系半導体素子であり、当該発光素子からの一次光が波長430〜480nmの範囲内にあることが、好ましい。   In the light emitting device of the present invention, it is preferable that the light emitting element is a gallium nitride based semiconductor element, and primary light from the light emitting element is in a wavelength range of 430 to 480 nm.

本発明の蛍光体は430〜480nmの範囲の光によって、高効率で安定に発光するとともに、本発明の蛍光体を有する波長変換部を用いた発光装置は、発光素子からの発光を効率良く吸収して、高効率で安定した白色光を得ることができる。   The phosphor of the present invention emits light efficiently and stably with light in the range of 430 to 480 nm, and the light emitting device using the wavelength conversion unit having the phosphor of the present invention efficiently absorbs light emitted from the light emitting element. Thus, highly efficient and stable white light can be obtained.

本発明は、〔1〕β型SIALONである2価のユーロピウム付活酸窒化物蛍光体(以下、「第1の蛍光体」と呼称する。)、〔2〕α型SIALONである2価のユーロピウム付活酸窒化物蛍光体(以下、「第2の蛍光体」と呼称する。)、ならびに〔3〕2価のユーロピウム付活窒化物蛍光体(以下、「第3の蛍光体」と呼称する。)について提供するものである。以下、各蛍光体について詳しく説明する。   The present invention provides [1] a divalent europium-activated oxynitride phosphor (hereinafter referred to as “first phosphor”) that is β-type SIALON, and [2] a divalent that is α-type SIALON. Europium activated oxynitride phosphor (hereinafter referred to as “second phosphor”) and [3] divalent europium activated nitride phosphor (hereinafter referred to as “third phosphor”) Is provided). Hereinafter, each phosphor will be described in detail.

〔1〕第1の蛍光体
本発明の第1の蛍光体は、下記一般式(A)で実質的に表されるβ型SIALON(サイアロン)である2価のユーロピウム付活酸窒化物蛍光体である。
[1] First phosphor The first phosphor of the present invention is a β-type SIALON (sialon) substantially represented by the following general formula (A), a divalent europium activated oxynitride phosphor It is.

一般式(A):EuaSibAlcde
上記一般式中、aの値は、0.005≦a≦0.4であり、0.01≦a≦0.2であるのが好ましい。aの値が0.005未満であると、十分な明るさが得られないという不具合があり、またaの値が0.4を超えると、濃度消光などにより、明るさが大きく低下するという不具合がある。また、上記一般式中、b+c=12であり、d+e=16である。
Formula (A): Eu a Si b Al c O d N e
In the above general formula, the value of a is 0.005 ≦ a ≦ 0.4, and preferably 0.01 ≦ a ≦ 0.2. If the value of a is less than 0.005, there is a problem that sufficient brightness cannot be obtained, and if the value of a exceeds 0.4, the brightness is greatly reduced due to concentration quenching or the like. There is. In the above general formula, b + c = 12, and d + e = 16.

このようなβ型SIALONである2価のユーロピウム付活酸窒化物蛍光体としては、具体的には、Eu0.03Si11.63Al0.370.0315.97、Eu0.05Si11.50Al0.500.0515.95、Eu0.10Si11.00Al1.000.1015.90、Eu0.30Si9.80Al2.200.3015.70、Eu0.005Si11.70Al0.300.0315.97、Eu0.01Si11.60Al0.400.0115.99、Eu0.15Si10.00Al2.000.2015.80などを挙げることができるが、勿論これらに限定されるものではない。 Specific examples of such a β-type SIALON divalent europium-activated oxynitride phosphor include Eu 0.03 Si 11.63 Al 0.37 O 0.03 N 15.97 , Eu 0.05 Si 11.50 Al 0.50 O 0.05 N 15.95 , Eu 0.10 Si 11.00 Al 1.00 O 0.10 N 15.90 , Eu 0.30 Si 9.80 Al 2.20 O 0.30 N 15.70 , Eu 0.005 Si 11.70 Al 0.30 O 0.03 N 15.97 , Eu 0.01 Si 11.60 Al 0.40 O 0.01 N 15.99 , Eu 0.15 Si 10.00 Al 2.00 O Although 0.20 N 15.80 etc. can be mentioned, Of course, it is not limited to these.

本発明の第1の蛍光体は、Feの含有率が20ppm以下、好ましくは10ppm以下である。第1の蛍光体中におけるFeの含有率が20ppmを超えると、明るさの低下が大きくなり、実用的ではないためである。なお、第1の蛍光体中におけるFeの含有率は、たとえば質量分析計を備えたICP分析装置を用いて微量分析を行うことにより、その値を算出することができる。   The first phosphor of the present invention has an Fe content of 20 ppm or less, preferably 10 ppm or less. This is because when the content of Fe in the first phosphor exceeds 20 ppm, the brightness is greatly reduced, which is not practical. Note that the Fe content in the first phosphor can be calculated by performing a microanalysis using, for example, an ICP analyzer equipped with a mass spectrometer.

また、本発明の第1の蛍光体は、Mnの含有率が10ppm以下、好ましくは5ppm以下である。第1の蛍光体中におけるMnの含有率が10ppmを超えると、明るさの低下が大きくなり、実用的ではないためである。なお、第1の蛍光体中におけるMnの含有率についても、たとえば質量分析計を備えたICP分析装置を用いて微量分析を行うことにより、その値を算出することができる。   In the first phosphor of the present invention, the Mn content is 10 ppm or less, preferably 5 ppm or less. This is because if the content of Mn in the first phosphor exceeds 10 ppm, the brightness is greatly reduced, which is not practical. The value of Mn content in the first phosphor can also be calculated by performing a microanalysis using, for example, an ICP analyzer equipped with a mass spectrometer.

本発明の第1の蛍光体は、その粒径については特に制限されるものではないが、通気法により測定された平均粒径が2〜8μmの範囲内であるのが好ましく、3〜6μmの範囲内であるのがより好ましい。第1の蛍光体の平均粒径が2μm未満であると、結晶成長が不十分であり、これを用いた発光装置において明るさが大きく低下する傾向にある。一方、第1の蛍光体の平均粒径が8μmを超えると、異常成長した粗大粒子が生成し易く実用的ではない。   The particle diameter of the first phosphor of the present invention is not particularly limited, but the average particle diameter measured by the aeration method is preferably in the range of 2 to 8 μm, and preferably 3 to 6 μm. More preferably within the range. When the average particle size of the first phosphor is less than 2 μm, crystal growth is insufficient, and brightness tends to be greatly reduced in a light emitting device using the first phosphor. On the other hand, if the average particle diameter of the first phosphor exceeds 8 μm, abnormally grown coarse particles are likely to be generated, which is not practical.

〔2〕第2の蛍光体
本発明の第2の蛍光体は、下記一般式(B)で実質的に表されるα型SIALONである2価のユーロピウム付活酸窒化物蛍光体である。
[2] Second Phosphor The second phosphor of the present invention is a divalent europium-activated oxynitride phosphor that is an α-type SIALON substantially represented by the following general formula (B).

一般式(B):MIfEugSihAlkmn
上記一般式(B)中、MIは、Li、Na、K、Cs、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。中でも、LiおよびCaから選ばれる少なくとも1種を用いることにより、これを用いた発光装置においてより明るく発光するものを得ることができることから、MIがLiおよびCaから選ばれる少なくとも1種であることが好ましい。
General formula (B): MI f Eu g Si h Al k O m N n
In the general formula (B), MI represents at least one element selected from Li, Na, K, Cs, Mg, Ca, Sr and Ba. Among these, by using at least one selected from Li and Ca, it is possible to obtain a light emitting device that emits light more brightly, so that MI is at least one selected from Li and Ca. preferable.

また、上記一般式(B)中、fの値は0<f≦3.0であり、0.1≦f≦2.0であるのが好ましい。fの値が0である(すなわち、MIが含まれない)場合、またfの値が3.0を超える場合には、十分な明るさが得られないという不具合がある。   Moreover, in the said general formula (B), the value of f is 0 <f <= 3.0 and it is preferable that it is 0.1 <= f <= 2.0. If the value of f is 0 (that is, MI is not included) or if the value of f exceeds 3.0, there is a problem that sufficient brightness cannot be obtained.

また上記一般式(B)中、gの値は0.005≦g≦0.4であり、0.02≦g≦0.2であるのが好ましい。gの値が0.005未満である場合には、十分な明るさが得られないという不具合があり、gの値が0.4を超える場合には、濃度消光などにより、明るさが大きく低下するという不具合がある。   In the general formula (B), the value of g is 0.005 ≦ g ≦ 0.4, and preferably 0.02 ≦ g ≦ 0.2. If the value of g is less than 0.005, there is a problem that sufficient brightness cannot be obtained. If the value of g exceeds 0.4, the brightness is greatly reduced due to concentration quenching or the like. There is a problem of doing.

また、上記一般式(B)中、h+k=12であり、m+n=16である。
このようなα型SIALONである2価のユーロピウム付活酸窒化物蛍光体としては、具体的には、Ca0.6Eu0.05Si10.50Al1.500.7015.30、Ca0.2Eu0.01Si10.10Al1.900.8015.20、Ca1.0Eu0.06Si0.70Al1.301.2014.80、Ca0.3Eu0.10Si10.20Al1.800.4015.60、Ca0.4Mg0.1Eu0.03Si10.00Al2.001.1014.90、Ca0.75Eu0.01Si9.75Al2.250.7615.24、Ca0.50Li0.10Eu0.01Si11.50Al0.500.2015.80、Ca1.00Sr0.10Eu0.20Si10.00Al2.000.3015.70などを挙げることができるが、勿論これらに限定されるものではない。
In the general formula (B), h + k = 12, and m + n = 16.
Specific examples of such α-type SIALON divalent europium-activated oxynitride phosphors include Ca 0.6 Eu 0.05 Si 10.50 Al 1.50 O 0.70 N 15.30 , Ca 0.2 Eu 0.01 Si 10.10 Al 1.90 O 0.80. N 15.20 , Ca 1.0 Eu 0.06 Si 0.70 Al 1.30 O 1.20 N 14.80 , Ca 0.3 Eu 0.10 Si 10.20 Al 1.80 O 0.40 N 15.60 , Ca 0.4 Mg 0.1 Eu 0.03 Si 10.00 Al 2.00 O 1.10 N 14.90 , Ca 0.75 Eu 0.01 Si 9.75 Examples include Al 2.25 O 0.76 N 15.24 , Ca 0.50 Li 0.10 Eu 0.01 Si 11.50 Al 0.50 O 0.20 N 15.80 , Ca 1.00 Sr 0.10 Eu 0.20 Si 10.00 Al 2.00 O 0.30 N 15.70, etc. It is not a thing.

本発明の第2の蛍光体は、Feの含有率が20ppm以下、好ましくは10ppm以下である。第2の蛍光体中におけるFeの含有率が20ppmを超えると、明るさの低下が大きくなり、実用的ではないためである。なお、第2の蛍光体中におけるFeの含有率は、第1の蛍光体について上述したのと同様の方法にて測定することができる。   The second phosphor of the present invention has an Fe content of 20 ppm or less, preferably 10 ppm or less. This is because when the content of Fe in the second phosphor exceeds 20 ppm, the brightness is greatly reduced, which is not practical. In addition, the content rate of Fe in a 2nd fluorescent substance can be measured by the method similar to having mentioned above about the 1st fluorescent substance.

また、本発明の第2の蛍光体は、Mnの含有率が10ppm以下、好ましくは5ppm以下である。第2の蛍光体中におけるMnの含有率が10ppmを超えると、明るさの低下が大きくなり、実用的ではないためである。なお、第2の蛍光体中におけるMnの含有率は、第1の蛍光体について上述したのと同様の方法にて測定することができる。   In the second phosphor of the present invention, the Mn content is 10 ppm or less, preferably 5 ppm or less. This is because when the content of Mn in the second phosphor exceeds 10 ppm, the brightness is greatly reduced, which is not practical. The Mn content in the second phosphor can be measured by the same method as described above for the first phosphor.

また、本発明の第2の蛍光体は、その粒径については特に制限されるものではないが、通気法により測定された平均粒径が2〜8μmの範囲内であるのが好ましく、3〜6μmの範囲内であるのがより好ましい。第2の蛍光体の平均粒径が2μm未満であると、結晶成長が不十分であり、これを用いた発光装置において明るさが大きく低下する傾向にある。一方、第2の蛍光体の平均粒径が8μmを超えると、異常成長した粗大粒子が生成しやすく、実用的ではないという傾向にある。   The particle size of the second phosphor of the present invention is not particularly limited, but the average particle size measured by the aeration method is preferably in the range of 2 to 8 μm. More preferably, it is in the range of 6 μm. When the average particle diameter of the second phosphor is less than 2 μm, crystal growth is insufficient, and brightness tends to be greatly reduced in a light emitting device using the second phosphor. On the other hand, if the average particle size of the second phosphor exceeds 8 μm, abnormally grown coarse particles are likely to be generated, which tends to be impractical.

〔3〕第3の蛍光体
本発明の第3の蛍光体は、下記一般式(C)で実質的に表される2価のユーロピウム付活窒化物蛍光体である。
[3] Third phosphor The third phosphor of the present invention is a divalent europium activated nitride phosphor substantially represented by the following general formula (C).

一般式(C):(MII1-pEup)MIIISiN3
上記一般式(C)中、MIIはアルカリ土類金属であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す。
Formula (C): (MII 1-p Eu p ) MIIISiN 3
In the general formula (C), MII is an alkaline earth metal and represents at least one element selected from Mg, Ca, Sr, and Ba.

また一般式(C)中、MIIIは3価の金属元素であり、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示す。中でも、より一層高効率に赤色系を発光することができることから、MIIIはAl、GaおよびInから選ばれる少なくとも1種の元素であることが好ましい。   In general formula (C), MIII is a trivalent metal element and represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd, and Lu. Among these, MIII is preferably at least one element selected from Al, Ga, and In because red light can be emitted more efficiently.

また上記一般式(C)中、pの値は、0.001≦p≦0.05であり、0.005≦p≦0.02であるのが好ましい。pの値が0.001未満であると、十分な明るさが得られないという不具合があり、pの値が0.05を越えると、濃度消光などにより、明るさが大きく低下するという不具合がある。   Moreover, in the said general formula (C), the value of p is 0.001 <= p <= 0.05, and it is preferable that it is 0.005 <= p <= 0.02. When the value of p is less than 0.001, there is a problem that sufficient brightness cannot be obtained, and when the value of p exceeds 0.05, there is a problem that the brightness is greatly reduced due to concentration quenching or the like. is there.

このような2価のユーロピウム付活窒化物蛍光体としては、具体的には、Ca0.990Eu0.010SiAlN3、(Ca0.97Mg0.02Eu0.01)(Al0.99Ga0.01)SiN3、(Ca0.98Eu0.02)AlSiN3、(Ca0.97Sr0.01Eu0.02)(Al0.98In0.02)SiN3、(Ca0.999Eu0.001)AlSiN3、(Ca0.895Mg0.100Eu0.005)AlSiN3、(Ca0.79Sr0.20Eu0.01)AlSiN3、(Ca0.98Eu0.02)(Al0.95Ga0.05)SiN3などを挙げることができるが、勿論これらに限定されるものではない。 As such a divalent europium activated nitride phosphor, specifically, Ca 0.990 Eu 0.010 SiAlN 3 , (Ca 0.97 Mg 0.02 Eu 0.01 ) (Al 0.99 Ga 0.01 ) SiN 3 , (Ca 0.98 Eu 0.02 ) AlSiN 3 , (Ca 0.97 Sr 0.01 Eu 0.02 ) (Al 0.98 In 0.02 ) SiN 3 , (Ca 0.999 Eu 0.001 ) AlSiN 3 , (Ca 0.895 Mg 0.100 Eu 0.005 ) AlSiN 3 , (Ca 0.79 Sr 0.20 Eu 0.01 ) AlSiN 3 , (Ca 0.98 Eu 0.02 ) (Al 0.95 Ga 0.05 ) SiN 3 and the like, but of course not limited thereto.

本発明の第3の蛍光体は、Feの含有率が10ppm以下、好ましくは5ppm以下である。第3の蛍光体中におけるFeの含有率が10ppmを超えると、明るさの低下が大きくなり、実用的ではないためである。なお、第3の蛍光体中におけるFeの含有率は、第1の蛍光体について上述したのと同様の方法にて測定することができる。   The third phosphor of the present invention has an Fe content of 10 ppm or less, preferably 5 ppm or less. This is because if the content of Fe in the third phosphor exceeds 10 ppm, the brightness is greatly reduced, which is not practical. In addition, the content rate of Fe in a 3rd fluorescent substance can be measured by the method similar to having mentioned above about the 1st fluorescent substance.

また、本発明の第3の蛍光体は、Mnの含有率が5ppm以下、好ましくは1ppm以下である。第3の蛍光体中におけるMnの含有率が5ppmを超えると、明るさの低下が大きくなり、実用的ではないためである。なお、第3の蛍光体中におけるMnの含有率は、第1の蛍光体について上述したのと同様の方法にて測定することができる。   In the third phosphor of the present invention, the Mn content is 5 ppm or less, preferably 1 ppm or less. This is because when the content of Mn in the third phosphor exceeds 5 ppm, the brightness is greatly reduced, which is not practical. Note that the Mn content in the third phosphor can be measured by the same method as described above for the first phosphor.

また、本発明の第3の蛍光体は、その粒径については特に制限されるものではないが、通気法により測定された平均粒径が3〜10μmの範囲内であるのが好ましく、4〜7μmの範囲内であるのがより好ましい。第3の蛍光体の平均粒径が3μm未満であると、結晶成長が不十分であり、これを用いた発光装置において明るさが大きく低下する傾向にある。一方、第3の蛍光体の平均粒径が10μmを超えると、異常成長した粗大粒子が生成しやすく、実用的ではないという傾向にある。   The particle diameter of the third phosphor of the present invention is not particularly limited, but the average particle diameter measured by the aeration method is preferably in the range of 3 to 10 μm. More preferably, it is in the range of 7 μm. When the average particle diameter of the third phosphor is less than 3 μm, crystal growth is insufficient, and brightness tends to be greatly reduced in a light emitting device using the third phosphor. On the other hand, when the average particle diameter of the third phosphor exceeds 10 μm, abnormally grown coarse particles are likely to be generated, which tends to be impractical.

本発明は、上述した本発明の第1〜第3の蛍光体を用いた発光装置についても提供するものである。すなわち、本発明の発光装置は、一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長以上の長さの波長を有する二次光を発する波長変換部とを基本的に備え、当該波長変換部が、上述した第1の蛍光体を緑色系発光蛍光体として、上述した第2の蛍光体を黄色系発光蛍光体として、上述した第3の蛍光体を赤色系発光蛍光体として、これらの第1〜第3の蛍光体のうちの少なくともいずれかを含むものである。ここで、図1は、本発明の好ましい一例の発光装置1を模式的に示す断面図である。また、図2は、本発明の好ましい他の例の発光装置21を模式的に示す断面図である。図1に示す例の発光装置1は、発光素子2と波長変換部3とを基本的に備え、波長変換部3が緑色系発光蛍光体4として上述した第1の蛍光体を含み、赤色系発光蛍光体5として上述した第2の蛍光体を含む。また、図2に示す例の発光装置21は、発光素子2と波長変換部22とを基本的に備え、波長変換部22が、黄色系発光蛍光体23として上述した第3の蛍光体を含む。このように本発明の発光装置は、波長変換部が、(1)緑色系発光蛍光体(上述した第1の蛍光体)および赤色系発光蛍光体(上述した第3の蛍光体)を含む(図1に示す例)か、または、(2)黄色系発光蛍光体(上述した第2の蛍光体)を含む(図2に示す例)ように実現されてなることが好ましい。   The present invention also provides a light emitting device using the above-described first to third phosphors of the present invention. That is, the light-emitting device of the present invention includes a light-emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. Basically, the wavelength conversion unit includes the above-described first phosphor as a green light-emitting phosphor, the above-described second phosphor as a yellow light-emitting phosphor, and the above-described third phosphor as a red light. The system light emitting phosphor includes at least one of the first to third phosphors. Here, FIG. 1 is a cross-sectional view schematically showing a light emitting device 1 of a preferred example of the present invention. Moreover, FIG. 2 is sectional drawing which shows typically the light-emitting device 21 of the other preferable example of this invention. The light emitting device 1 of the example shown in FIG. 1 basically includes a light emitting element 2 and a wavelength conversion unit 3, and the wavelength conversion unit 3 includes the first phosphor described above as the green light emitting phosphor 4, and the red type The light emitting phosphor 5 includes the second phosphor described above. 2 basically includes the light-emitting element 2 and the wavelength conversion unit 22, and the wavelength conversion unit 22 includes the third phosphor described above as the yellow light-emitting phosphor 23. . Thus, in the light-emitting device of the present invention, the wavelength conversion unit includes (1) a green light-emitting phosphor (the first phosphor described above) and a red light-emitting phosphor (the third phosphor described above) ( 1) or (2) a yellow light-emitting phosphor (second phosphor described above) is preferably included (example shown in FIG. 2).

本発明の発光装置1,21に用いられる第1〜第3の蛍光体は、いずれも、FeおよびMnの含有率が一定以下であるものである。このように、特定の2価のユーロピウム付活の酸窒化物蛍光体および窒化物蛍光体において、粉体特性(特に輝度特性)に影響を及ぼす不純物元素であるFeおよびMnの含有率を一定以下に制御することにより、輝度特性の安定した酸窒化物蛍光体および窒化物蛍光体が実現される。したがって、このような第1〜第3の蛍光体を用いた本発明の発光装置1,21では、発光素子2からの光を効率よく吸収し、高効率で安定した白色光を得ることができるものである。   Each of the first to third phosphors used in the light emitting devices 1 and 21 of the present invention has an Fe and Mn content of not more than a certain value. In this way, in specific divalent europium-activated oxynitride phosphors and nitride phosphors, the content of Fe and Mn, which are impurity elements that affect powder characteristics (particularly luminance characteristics), is less than a certain level. By controlling to, an oxynitride phosphor and a nitride phosphor having stable luminance characteristics are realized. Therefore, in the light emitting devices 1 and 21 of the present invention using such first to third phosphors, the light from the light emitting element 2 can be efficiently absorbed, and highly efficient and stable white light can be obtained. Is.

また本発明の発光装置1,21において用いられる本発明の第1〜第3の蛍光体はセラミックス材料であるので耐熱性が高く、また、熱膨張係数が小さい材料なので、バンドギャップの変異が小さい。本発明の発光装置1,21では、このような第1の蛍光体および第3の蛍光体を用いることで、温度に対する蛍光発光の効率低下が小さく、従来と比較して温度特性が格段に改善された発光装置を実現することができるという利点がある。   In addition, since the first to third phosphors of the present invention used in the light emitting devices 1 and 21 of the present invention are ceramic materials, the heat resistance is high, and since the material has a small thermal expansion coefficient, the variation in the band gap is small. . In the light emitting devices 1 and 21 of the present invention, the use of the first phosphor and the third phosphor makes it possible to reduce the efficiency of fluorescence emission with respect to temperature and to improve the temperature characteristics dramatically compared to the conventional one. There is an advantage that the light emitting device can be realized.

また図1に示す例の発光装置1において緑色系発光蛍光体4として用いられる本発明の蛍光体は、発光スペクトルの半値幅が狭いため、上述した温度特性が良好であると同時に、色再現性(NTSC比)も良好である。したがって、このような本発明の発光装置1は、発光素子2からの発光を効率よく吸収して、高効率な白色光を発光するとともに、色再現性(NTSC比)が著しく良好な白色を得ることができ、さらには、平均演色評価数(Ra)も優れており、一般照明用としても良好な白色を得ることができる。このような本発明の発光装置1は、白色LEDとして実現されることが好ましく、中でも、LCD用のバックライト用光源として特に好適に用いることができるものである。   In addition, the phosphor of the present invention used as the green light-emitting phosphor 4 in the light-emitting device 1 shown in FIG. 1 has a narrow half-value width of the emission spectrum. (NTSC ratio) is also good. Therefore, such a light emitting device 1 of the present invention efficiently absorbs light emitted from the light emitting element 2, emits highly efficient white light, and obtains white with extremely good color reproducibility (NTSC ratio). Furthermore, the average color rendering index (Ra) is excellent, and a good white color can be obtained for general illumination. Such a light emitting device 1 of the present invention is preferably realized as a white LED, and can be particularly suitably used as a backlight light source for LCD.

図2に示す例の発光装置21において、波長変換部22中に含有される黄色系発光蛍光体(本発明の第2の蛍光体)23は、上述と同様の理由から、一般式(B)中におけるMIはLiおよびCaから選ばれる少なくとも1種の元素であることが好ましい。また、本発明の発光装置21において、波長変換部22中に含有される赤色系発光蛍光体(本発明の第3の蛍光体)23は、上述と同様の理由から、一般式(C)中におけるMIIIはAl、GaおよびInから選ばれる少なくとも1種の元素であることが好ましい。   In the light emitting device 21 of the example shown in FIG. 2, the yellow light emitting phosphor (second phosphor of the present invention) 23 contained in the wavelength conversion unit 22 is represented by the general formula (B) for the same reason as described above. MI in the inside is preferably at least one element selected from Li and Ca. Further, in the light emitting device 21 of the present invention, the red light emitting phosphor (third phosphor of the present invention) 23 contained in the wavelength conversion unit 22 is in the general formula (C) for the same reason as described above. MIII in is preferably at least one element selected from Al, Ga and In.

図1に示す例の本発明の発光装置1において、波長変換部3は、たとえば媒体として熱硬化型シリコーン封止材を用い、これに緑色系発光蛍光体および赤色系発光蛍光体を混練し、発光素子2を封止して成形することで作製できる。緑色系発光蛍光体および赤色系発光蛍光体それぞれの配合比率は特に制限されるものではないが、所望の色度の白色光を得るために、たとえば、緑色系発光蛍光体を媒体に対する重量比で1/10、赤色系発光蛍光体を媒体に対する重量比で1/50として波長変換部を作製する場合が例示される(この場合、7、750Kの白色光を得ることができる。)。   In the light emitting device 1 of the present invention shown in FIG. 1, the wavelength conversion unit 3 uses, for example, a thermosetting silicone sealing material as a medium, kneaded a green light emitting phosphor and a red light emitting phosphor, It can be manufactured by sealing and molding the light emitting element 2. The mixing ratio of each of the green light-emitting phosphor and the red light-emitting phosphor is not particularly limited, but in order to obtain white light having a desired chromaticity, for example, the green light-emitting phosphor is used in a weight ratio with respect to the medium. A case where the wavelength conversion unit is manufactured with a weight ratio of 1/10 and red light emitting phosphor to the medium being 1/50 is exemplified (in this case, white light of 7,750K can be obtained).

本発明の発光装置1,21における波長変換部3,22は、上述した緑色系発光蛍光体4、黄色系発光蛍光体23および赤色系発光蛍光体5から選ばれる少なくともいずれかを含有し、発光素子2から発せられる一次光の一部を吸収して、一次光の波長以上の長さの波長を有する二次光を発し得るものであれば、その媒質6は特に制限されるものではない。媒質(透明樹脂)6としては、たとえばエポキシ樹脂、シリコーン樹脂、尿素樹脂等を用いることができるが、これらに限定されるものではない。   The wavelength conversion units 3 and 22 in the light emitting devices 1 and 21 of the present invention contain at least one selected from the green light emitting phosphor 4, the yellow light emitting phosphor 23, and the red light emitting phosphor 5 described above, and emit light. The medium 6 is not particularly limited as long as it can absorb a part of the primary light emitted from the element 2 and emit secondary light having a wavelength longer than the wavelength of the primary light. As the medium (transparent resin) 6, for example, an epoxy resin, a silicone resin, a urea resin, or the like can be used, but is not limited thereto.

また、波長変換部は、上述した蛍光体および媒質以外に、本発明の効果を阻害しない範囲で、適宜のSiO2、TiO2、ZrO2、Al23、Y23などの添加剤を含有していても勿論よい。 In addition to the phosphor and the medium described above, the wavelength conversion unit is a suitable additive such as SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , and Y 2 O 3 as long as the effects of the present invention are not impaired. Of course, it may be contained.

本発明の発光装置1,21に用いられる発光素子2としては、効率の観点から、窒化ガリウム(GaN)系半導体を好ましく用いることができる。また、本発明の発光装置1を効率的に発光させる観点から、本発明の発光装置1,21に用いられる発光素子2はピーク波長が430〜480nmの範囲の一次光を発するものであることが好ましく、440〜470nmの範囲の一次光を発するものであることがより好ましい。発光素子2が発する一次光のピーク波長が430nm未満の場合には、演色性が悪くなり、実用的ではない。また、480nmを超えると、白色での明るさが低下し、実用的でなくなる傾向にある。   As the light emitting element 2 used in the light emitting devices 1 and 21 of the present invention, a gallium nitride (GaN) based semiconductor can be preferably used from the viewpoint of efficiency. Further, from the viewpoint of efficiently emitting the light emitting device 1 of the present invention, the light emitting element 2 used in the light emitting devices 1 and 21 of the present invention emits primary light having a peak wavelength in the range of 430 to 480 nm. Preferably, it emits primary light in the range of 440 to 470 nm. When the peak wavelength of the primary light emitted from the light emitting element 2 is less than 430 nm, the color rendering property is deteriorated, which is not practical. On the other hand, if it exceeds 480 nm, the brightness in white tends to be reduced, which tends to be impractical.

本発明の発光装置1に用いられる緑色系発光蛍光体4、黄色系発光蛍光体23および赤色系発光蛍光体5は、不純物元素であるFeおよびMnの含有率が一定以下となるように制御すること以外は、従来公知の適宜の方法にて作製することができる。また、本発明の発光装置における波長変換部は、上述した緑色系発光蛍光体4、黄色系発光蛍光体23および赤色系発光蛍光体5を適宜の樹脂中に分散させ、適宜の条件で成形することによって作製することが可能であり、その作製方法は特に制限されるものではない。   The green light-emitting phosphor 4, the yellow light-emitting phosphor 23, and the red light-emitting phosphor 5 used in the light-emitting device 1 of the present invention are controlled so that the content ratios of Fe and Mn as impurity elements are below a certain level. Except for this, it can be produced by a conventionally known appropriate method. In addition, the wavelength conversion unit in the light emitting device of the present invention is formed by dispersing the above-described green light emitting phosphor 4, yellow light emitting phosphor 23, and red light emitting phosphor 5 in an appropriate resin, and molding under appropriate conditions. The manufacturing method is not particularly limited.

以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
Fe含有率が10ppm、Mn含有率が2ppmである窒化珪素(Si34)粉末143.73g、Fe含有率が5ppm、Mn含有率が1ppmである窒化アルミニウム(AlN)粉末5.06g、Fe含有率が2ppm、Mn含有率が0.5ppmである酸化ユーロピウム(Eu23)粉末1.22gをボールミルにより十分混合した。得られた混合物を窒化ホウ素製の坩堝に入れ10気圧の窒素雰囲気中で、2000℃、8時間焼成した。得られた焼成物をボールミルなどにより粉砕した。この粉砕した粉末を窒化ホウ素製の坩堝に入れ、5気圧の窒素雰囲気中で、1700℃、10時間焼成した。得られた焼成物をボールミルにより粉砕した。粉砕後、1Lのビーカ中に純水1Lを入れ、さらに焼成物を投入し、撹拌を行う。所定時間撹拌後、撹拌を止め静置することによって、粉砕時生じた微粒子成分を除去した。この洗浄操作を繰り返し行うことによって、大部分の微粒子成分を除去した。その後、濾過、乾燥(110℃、16時間)した。得られた蛍光体はFe含有率が10ppm、Mn含有率が2ppmであるEu0.03Si11.63Al0.370.0315.97で表されるβ型SIALONであった。
<Example 1>
143.73 g of silicon nitride (Si 3 N 4 ) powder with Fe content of 10 ppm and Mn content of 2 ppm, 5.06 g of aluminum nitride (AlN) powder with Fe content of 5 ppm and Mn content of 1 ppm, Fe 1.22 g of europium oxide (Eu 2 O 3 ) powder having a content of 2 ppm and a Mn content of 0.5 ppm was sufficiently mixed by a ball mill. The obtained mixture was put into a crucible made of boron nitride and baked at 2000 ° C. for 8 hours in a nitrogen atmosphere of 10 atm. The obtained fired product was pulverized by a ball mill or the like. The pulverized powder was placed in a boron nitride crucible and baked at 1700 ° C. for 10 hours in a nitrogen atmosphere of 5 atm. The obtained fired product was pulverized by a ball mill. After pulverization, 1 L of pure water is put into a 1 L beaker, and the fired product is further added and stirred. After stirring for a predetermined time, the stirring was stopped and the mixture was allowed to stand to remove the fine particle components generated during pulverization. By repeating this washing operation, most of the fine particle components were removed. Then, it filtered and dried (110 degreeC, 16 hours). The obtained phosphor was β-type SIALON represented by Eu 0.03 Si 11.63 Al 0.37 O 0.03 N 15.97 having an Fe content of 10 ppm and an Mn content of 2 ppm.

<比較例1>
実施例1と同様の方法によって、Fe含有率が50ppm、Mn含有率が15ppmであるEu0.03Si11.63Al0.370.0315.97で表される蛍光体を作製した。
<Comparative Example 1>
In the same manner as in Example 1, a phosphor represented by Eu 0.03 Si 11.63 Al 0.37 O 0.03 N 15.97 having an Fe content of 50 ppm and an Mn content of 15 ppm was produced.

<実施例2>
Fe含有率が15ppm、Mn含有率が6ppmである窒化珪素(Si34)粉末158.14g、Fe含有率が4ppm、Mn含有率が1ppmである窒化アルミニウム(AlN)粉末19.75g、Fe含有率が2ppm、Mn含有率が0.3ppmである酸化ユ−ロピウム(Eu23)粉末2.83g、Fe含有率が1ppm、Mn含有率が0.3ppmである炭酸カルシウム(CaCO3)粉末19.29gをボールミルにより十分混合した。得られた混合物を窒化ホウ素製の坩堝に入れ10気圧の窒素雰囲気中で、1700℃、12時間焼成した。得られた焼成物をボールミルにより粉砕した。粉砕後、1Lのビ−カ中に純水1Lを入れ、さらに焼成物を投入し、撹拌を行った。所定時間撹拌後、撹拌を止め静置することによって、粉砕時生じた微粒子成分を除去した。この洗浄操作を繰り返し行うことによって、大部分の微粒子成分を除去した。その後、濾過、乾燥(110℃、16時間)した。得られた蛍光体はFe含有率が12ppm、Mn含有率が5ppmであるCa0.6Eu0.05Si10.50Al1.500.7015.30で表されるα型SIALONであった。
<Example 2>
158.14 g of silicon nitride (Si 3 N 4 ) powder with Fe content of 15 ppm and Mn content of 6 ppm, 19.75 g of aluminum nitride (AlN) powder with Fe content of 4 ppm and Mn content of 1 ppm, Fe 2.83 g of europium oxide (Eu 2 O 3 ) powder having a content rate of 2 ppm and Mn content of 0.3 ppm, calcium carbonate (CaCO 3 ) having a Fe content of 1 ppm and a Mn content of 0.3 ppm 19.29 g of the powder was thoroughly mixed by a ball mill. The obtained mixture was placed in a boron nitride crucible and baked at 1700 ° C. for 12 hours in a nitrogen atmosphere of 10 atm. The obtained fired product was pulverized by a ball mill. After pulverization, 1 L of pure water was put into a 1 L beaker, and the fired product was further added and stirred. After stirring for a predetermined time, the stirring was stopped and the mixture was allowed to stand to remove the fine particle components generated during pulverization. By repeating this washing operation, most of the fine particle components were removed. Then, it filtered and dried (110 degreeC, 16 hours). The obtained phosphor was α-type SIALON represented by Ca 0.6 Eu 0.05 Si 10.50 Al 1.50 O 0.70 N 15.30 having an Fe content of 12 ppm and an Mn content of 5 ppm.

<比較例2>
実施例2と同様の方法によって、Fe含有率が74ppm、Mn含有率が21ppmであるCa0.6Eu0.05Si10.50Al1.500.7015.30で表されるα型SIALONを作製した。
<Comparative example 2>
In the same manner as in Example 2, an α-type SIALON represented by Ca 0.6 Eu 0.05 Si 10.50 Al 1.50 O 0.70 N 15.30 having an Fe content of 74 ppm and an Mn content of 21 ppm was produced.

<実施例3>
Fe含有率が3ppm、Mn含有率が1ppmである窒化カルシウム(Ca32)粉末35.34g、Fe含有率が4ppm、Mn含有率が1ppmである窒化アルミニウム(AlN)粉末29.61g、Fe含有率が9ppm、Mn含有率が5ppmである窒化珪素(Si34)粉末33.78g、Fe含有率が2ppm、Mn含有率が0.3ppmである酸化ユ−ロピウム(Eu23)1.27gをボールミルにより十分混合した。得られた混合物を窒化ホウ素製の坩堝に入れ、窒素雰囲気中で、1500℃、5時間焼成した。得られた焼成物をボールミルにより粉砕した。粉砕後、1Lのビ−カ中に純水1Lを入れ、さらに焼成物を投入し、撹拌を行った。所定時間撹拌後、撹拌を止め静置することによって、粉砕時生じた微粒子成分を除去した。この洗浄操作を繰り返し行うことによって、大部分の微粒子成分を除去した。その後、濾過、乾燥(110℃、16時間)する。得られた蛍光体はFe含有率が5ppm、Mn含有率が2ppmであるCa0.990Eu0.010SiAlN3で表される窒化物蛍光体であった。
<Example 3>
35.34 g of calcium nitride (Ca 3 N 2 ) powder with Fe content of 3 ppm and Mn content of 1 ppm, 29.61 g of aluminum nitride (AlN) powder with Fe content of 4 ppm and Mn content of 1 ppm, Fe 33.78 g of silicon nitride (Si 3 N 4 ) powder with 9 ppm content and 5 ppm Mn content, europium oxide (Eu 2 O 3 ) with 2 ppm Fe content and 0.3 ppm Mn content 1.27 g was thoroughly mixed by a ball mill. The obtained mixture was put into a boron nitride crucible and baked in a nitrogen atmosphere at 1500 ° C. for 5 hours. The obtained fired product was pulverized by a ball mill. After pulverization, 1 L of pure water was put into a 1 L beaker, and the fired product was further added and stirred. After stirring for a predetermined time, the stirring was stopped and the mixture was allowed to stand to remove the fine particle components generated during pulverization. By repeating this washing operation, most of the fine particle components were removed. Then, it is filtered and dried (110 ° C., 16 hours). The obtained phosphor was a nitride phosphor represented by Ca 0.990 Eu 0.010 SiAlN 3 having an Fe content of 5 ppm and an Mn content of 2 ppm.

<比較例3>
実施例3と同様の方法によって、Fe含有率が21ppm、Mn含有率が10ppmであるCa0.990Eu0.010SiAlN3蛍光体を作製した。
<Comparative Example 3>
By the same method as in Example 3, a Ca 0.990 Eu 0.010 SiAlN 3 phosphor having an Fe content of 21 ppm and an Mn content of 10 ppm was produced.

<評価試験1>
実施例1〜3、比較例1〜3で得られた蛍光体を用い、日立製分光光度計(F−2500)にて450nmの励起光を照射し、540nm付近の発光のピーク高さを測定した。結果を表1に示す。
<Evaluation test 1>
Using the phosphors obtained in Examples 1 to 3 and Comparative Examples 1 to 3, irradiated with 450 nm excitation light with a Hitachi spectrophotometer (F-2500), and measured the peak height of light emission near 540 nm. did. The results are shown in Table 1.

Figure 0004785711
Figure 0004785711

表1から、本発明の蛍光体は従来品に比し、特性の安定性、特に輝度特性の安定性に優れていることが判る。   From Table 1, it can be seen that the phosphor of the present invention is superior in stability of characteristics, in particular, stability of luminance characteristics, as compared with the conventional product.

<実施例4〜14、比較例4〜14>
表2に示すような各種蛍光体について、実施例1〜3とそれぞれ同様な方法で作製し、評価試験を行った。
<Examples 4-14, Comparative Examples 4-14>
Various phosphors as shown in Table 2 were produced in the same manner as in Examples 1 to 3, and evaluated.

Figure 0004785711
Figure 0004785711

表2から、本発明の蛍光体は従来品に比し、特性の安定性、特に輝度特性の安定性に優れていることが判る。   From Table 2, it can be seen that the phosphor of the present invention is superior in stability of characteristics, particularly brightness characteristics, as compared with the conventional product.

<実施例15>
発光素子として、440nmにピ−ク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、黄色系発光蛍光体としてFe含有率が12ppm、Mn含有率が5ppmであるCa0.6Eu0.05Si10.50Al1.500.7015.30(α型SIALON)なる組成のもの(実施例2)を用いた。この蛍光体を所定のシリコーン樹脂中に分散して波長変換部を形成し、発光装置を作製した。
<Example 15>
As the light emitting element, a gallium nitride (GaN) based semiconductor having a peak wavelength at 440 nm was used. The wavelength conversion part has a composition of Ca 0.6 Eu 0.05 Si 10.50 Al 1.50 O 0.70 N 15.30 (α-type SIALON) having a Fe content of 12 ppm and a Mn content of 5 ppm as a yellow light-emitting phosphor (Example 2). ) Was used. This phosphor was dispersed in a predetermined silicone resin to form a wavelength conversion part, and a light emitting device was manufactured.

<比較例15>
Fe含有率が74ppm、Mn含有率が21ppmであるCa0.6Eu0.05Si10.50Al1.500.7015.30(α型SIALON)で表される黄色系発光蛍光体を波長変換部に用いたこと以外は、実施例15と同様にして発光装置を作製した。
<Comparative Example 15>
Except for using a yellow light-emitting phosphor represented by Ca 0.6 Eu 0.05 Si 10.50 Al 1.50 O 0.70 N 15.30 (α-type SIALON) having an Fe content of 74 ppm and an Mn content of 21 ppm in the wavelength converter, A light emitting device was fabricated in the same manner as in Example 15.

<評価試験2>
実施例15、比較例15で作製した発光装置について、順電流20mAを通電し、その特性(光度)を評価した。その結果を表3に示す。
<Evaluation Test 2>
For the light emitting devices manufactured in Example 15 and Comparative Example 15, a forward current of 20 mA was applied, and the characteristics (luminosity) were evaluated. The results are shown in Table 3.

Figure 0004785711
Figure 0004785711

表3から、本発明の発光装置は従来品に比し、特性の安定性、特に輝度特性の安定性に優れていることが判る。   From Table 3, it can be seen that the light emitting device of the present invention is superior in stability of characteristics, in particular, stability of luminance characteristics, as compared with the conventional product.

<実施例16〜18、比較例16〜18>
表4に示すような発光素子と蛍光体の組み合わせで、実施例15と同様の方法で発光装置を作製し、評価試験を行った。
<Examples 16-18, Comparative Examples 16-18>
A light emitting device was manufactured in the same manner as in Example 15 using a combination of a light emitting element and a phosphor as shown in Table 4, and an evaluation test was performed.

Figure 0004785711
Figure 0004785711

表4から、本発明の発光装置は従来品に比し、特性の安定性、特に輝度特性の安定性に優れていることが判る。   From Table 4, it can be seen that the light-emitting device of the present invention is superior in stability of characteristics, in particular, stability of luminance characteristics, as compared with the conventional product.

今回開示された実施の形態、実施例および比較例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments, examples and comparative examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の好ましい一例の発光装置1を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 1 of a preferable example of this invention. 本発明の好ましい他の例の発光装置21を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 21 of the other preferable example of this invention.

符号の説明Explanation of symbols

1,21 発光装置、2 発光素子、3,22 波長変換部、4 緑色系発光蛍光体、5 赤色系発光蛍光体、6 媒体、23 黄色系発光蛍光体。   1,21 light emitting device, 2 light emitting element, 3,22 wavelength conversion unit, 4 green light emitting phosphor, 5 red light emitting phosphor, 6 medium, 23 yellow light emitting phosphor.

Claims (9)

一般式(A):EuSiAl
(一般式(A)中、0.005≦a≦0.4、b+c=12、d+e=16を満足する数である)
で表されるβ型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下であることを特徴とする2価のユーロピウム付活酸窒化物蛍光体。
Formula (A): Eu a Si b Al c O d N e
(In the general formula (A), 0.005 ≦ a ≦ 0.4, b + c = 12, d + e = 16)
In a β type SIALON being Table, the Fe content is 20ppm or less, and a divalent europium-activated oxynitride phosphor, wherein the content of Mn is 10ppm or less.
一般式(B):MIEuSiAl
(一般式(B)中、MIはLi、Na、K、Cs、Mg、Ca、Sr及びBaから選ばれる少なくとも1種の元素を示し、0<f≦3.0、0.005≦g≦0.4、h+k=12、m+n=16を満足する数である)
で表されるα型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下であることを特徴とする2価のユーロピウム付活酸窒化物蛍光体。
General formula (B): MI f Eu g Si h Al k O m N n
(In the general formula (B), MI represents at least one element selected from Li, Na, K, Cs, Mg, Ca, Sr and Ba, and 0 <f ≦ 3.0, 0.005 ≦ g ≦ 0.4, h + k = 12, m + n = 16)
In a α-type SIALON being Table, the Fe content is 20ppm or less, and a divalent europium-activated oxynitride phosphor, wherein the content of Mn is 10ppm or less.
前記MIはLiおよびCaから選ばれる少なくとも1種の元素であることを特徴とする請求項2に記載のα型SIALONである2価のユ−ロピウム付活酸窒化物蛍光体。 The divalent europium activated oxynitride phosphor according to claim 2, wherein the MI is at least one element selected from Li and Ca. 一般式(C):(MII1−pEu)MIIISiN
(一般式(C)中、MIIはアルカリ土類金属元素であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、MIIIは3価の金属元素からなり、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、0.001≦p≦0.05を満足する数である)
で表され、Feの含有率が10ppm以下、かつ、Mnの含有率が5ppm以下であることを特徴とする2価のユーロピウム付活窒化物蛍光体。
Formula (C): (MII 1-p Eu p ) MIIISiN 3
(In the general formula (C), MII is an alkaline earth metal element and represents at least one element selected from Mg, Ca, Sr and Ba, MIII is composed of a trivalent metal element, Al, Ga, (Indicates at least one element selected from In, Sc, Y, La, Gd and Lu, and is a number satisfying 0.001 ≦ p ≦ 0.05)
In the table, the content of Fe is 10ppm or less, and a divalent europium activated nitride phosphor content, characterized in that at 5ppm or less of Mn.
前記MIIIがAl、GaおよびInから選ばれる少なくとも1種の元素であることを特徴とする請求項4に記載の2価のユーロピウム付活窒化物蛍光体。 The divalent europium activated nitride phosphor according to claim 4, wherein the MIII is at least one element selected from Al, Ga and In. 一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備えた発光装置であって、前記波長変換部は緑色系発光蛍光体、赤色系発光蛍光体および黄色系発光蛍光体から選ばれる少なくともいずれかを含み、
前記緑色系発光蛍光体は、
一般式(A):EuSiAl
(一般式(A)中、0.005≦a≦0.4、b+c=12、d+e=16を満足する数である)
で表されるβ型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下である2価のユーロピウム付活酸窒化物蛍光体であり、
前記黄色系発光蛍光体は、
一般式(B):MIEuSiAl
(一般式(B)中、MIはLi、Na、K、Cs、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、0<f≦3.0、0.005≦g≦0.4、h+k=12、m+n=16を満足する数である)
で表されるα型SIALONであって、Feの含有率が20ppm以下、かつ、Mnの含有率が10ppm以下である2価のユーロピウム付活酸窒化物蛍光体であり、
前記赤色系発光蛍光体は、
一般式(C):(MII1−pEu)MIIISiN
(一般式(C)中、MIIはアルカリ土類金属元素であり、Mg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、MIIIは3価の金属元素からなり、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、0.001≦p≦0.05を満足する数である)
で表され、Feの含有率が10ppm以下、かつ、Mnの含有率が5ppm以下である2価のユーロピウム付活窒化物蛍光体である、発光装置。
A light-emitting device comprising: a light-emitting element that emits primary light; and a wavelength conversion unit that absorbs part of the primary light and emits secondary light having a wavelength longer than that of the primary light, the wavelength conversion device The portion includes at least one selected from a green light-emitting phosphor, a red light-emitting phosphor and a yellow light-emitting phosphor,
The green light-emitting phosphor is
Formula (A): Eu a Si b Al c O d N e
(In the general formula (A), 0.005 ≦ a ≦ 0.4, b + c = 12, d + e = 16)
In a β type SIALON being Table, the Fe content is 20ppm or less, and a divalent europium-activated oxynitride phosphor content of Mn is 10ppm or less,
The yellow light-emitting phosphor is
General formula (B): MI f Eu g Si h Al k O m N n
(In the general formula (B), MI represents at least one element selected from Li, Na, K, Cs, Mg, Ca, Sr and Ba, and 0 <f ≦ 3.0, 0.005 ≦ g ≦ 0.4, h + k = 12, m + n = 16)
In a α-type SIALON being Table, the Fe content is 20ppm or less, and a divalent europium-activated oxynitride phosphor content of Mn is 10ppm or less,
The red light emitting phosphor is
Formula (C): (MII 1-p Eu p ) MIIISiN 3
(In the general formula (C), MII is an alkaline earth metal element and represents at least one element selected from Mg, Ca, Sr and Ba, MIII is composed of a trivalent metal element, Al, Ga, (Indicates at least one element selected from In, Sc, Y, La, Gd and Lu, and is a number satisfying 0.001 ≦ p ≦ 0.05)
In the table, the content of Fe is 10ppm or less, and a divalent europium activated nitride phosphor content of Mn is 5ppm or less, the light emitting device.
前記黄色系発光蛍光体として、上記一般式(B)中、MIがLiおよびCaから選ばれる少なくとも1種の元素である、2価のユーロピウム付活酸窒化物蛍光体を用いたことを特徴とする、請求項6に記載の発光装置。   As the yellow light emitting phosphor, a divalent europium activated oxynitride phosphor in which MI is at least one element selected from Li and Ca in the general formula (B) is used. The light emitting device according to claim 6. 前記赤色系発光蛍光体として、上記一般式(C)中、MIIIがAl、GaおよびInから選ばれる少なくとも1種の元素である、2価のユーロピウム付活窒化物蛍光体を用いたことを特徴とする、請求項6に記載の発光装置。   As the red light emitting phosphor, a divalent europium activated nitride phosphor in which MIII is at least one element selected from Al, Ga and In in the above general formula (C) is used. The light emitting device according to claim 6. 前記発光素子が窒化ガリウム系半導体素子であり、当該発光素子からの一次光が波長430〜480nmの範囲内にあることを特徴とする請求項6に記載の発光装置。   The light emitting device according to claim 6, wherein the light emitting element is a gallium nitride based semiconductor element, and primary light from the light emitting element is in a wavelength range of 430 to 480 nm.
JP2006308330A 2006-11-14 2006-11-14 Phosphor and light emitting device using the same Active JP4785711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308330A JP4785711B2 (en) 2006-11-14 2006-11-14 Phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308330A JP4785711B2 (en) 2006-11-14 2006-11-14 Phosphor and light emitting device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010254759A Division JP5331089B2 (en) 2010-11-15 2010-11-15 Phosphor and light emitting device using the same

Publications (3)

Publication Number Publication Date
JP2008120949A JP2008120949A (en) 2008-05-29
JP2008120949A5 JP2008120949A5 (en) 2010-09-16
JP4785711B2 true JP4785711B2 (en) 2011-10-05

Family

ID=39506045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308330A Active JP4785711B2 (en) 2006-11-14 2006-11-14 Phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4785711B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147066A1 (en) * 2012-03-29 2013-10-03 宇部興産株式会社 Oxynitride phosphor powder
EP2868730B1 (en) * 2012-06-27 2016-04-06 National Institute for Materials Science Phosphor, method for producing same, light emitting device, and image display device
JP2014203932A (en) 2013-04-03 2014-10-27 株式会社東芝 Light-emitting device
JP7249121B2 (en) * 2018-10-04 2023-03-30 デンカ株式会社 COMPOSITE, LIGHT-EMITTING DEVICE, AND METHOD FOR MANUFACTURING COMPOSITE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052136B2 (en) * 2003-02-06 2008-02-27 宇部興産株式会社 Sialon oxynitride phosphor and method for producing the same
JP3837588B2 (en) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
JP3921545B2 (en) * 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 Phosphor and production method thereof

Also Published As

Publication number Publication date
JP2008120949A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5367218B2 (en) Method for manufacturing phosphor and method for manufacturing light emitting device
JP5331089B2 (en) Phosphor and light emitting device using the same
JP5547756B2 (en) Phosphor particles and light emitting device using the same
JP4769132B2 (en) Light emitting device
US9331253B2 (en) Light emitting diode (LED) component comprising a phosphor with improved excitation properties
JP4832995B2 (en) Light emitting device
JPWO2009011205A1 (en) Light emitting device
JP2007039517A (en) Blue light-emitting phosphor and light emitter using the same
JP2014209660A (en) Phosphor, light-emitting device, and liquid crystal display device arranged by use thereof
JP6985704B2 (en) Fluorescent material, light emitting device, lighting device and image display device
CN106795429B (en) Phosphor, light emitting device, illumination device, and image display device
WO2010116953A1 (en) Group of phosphor particles, light-emitting device using same, and liquid crystal television receiver
JP4785711B2 (en) Phosphor and light emitting device using the same
WO2012036016A1 (en) Phosphor and light-emitting device
JP2006070088A (en) Oxynitride fluorescent substance, method for producing oxynitride fluorescent substance and white light-emitting element
JP4899433B2 (en) Phosphor, and light emitting device, image display device, and illumination device using the same
WO2016076380A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP2019077800A (en) Phosphor, light-emitting device, illumination device and image display device
JP2015183084A (en) Fluorescent material for violet ray excitation, composition containing fluorescent material and light-emitting device using the fluorescent material and lightening apparatus and picture display unit using the light-emitting device
JP2016124928A (en) Phosphor, light emitting device, illumination device and image display device
JP2016056246A (en) Phosphor, light emitting device, illumination device and image display device
JP2016094533A (en) Phosphor, light emitting device, illumination device and image display device
JP2016124929A (en) Phosphor, light emitting device, illumination device and image display device
JP2011091414A (en) Light-emitting device
JP2017206599A (en) Phosphor, light emitting device, illumination device and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100803

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250