JP4784779B2 - Chrome plated parts - Google Patents

Chrome plated parts Download PDF

Info

Publication number
JP4784779B2
JP4784779B2 JP2008104870A JP2008104870A JP4784779B2 JP 4784779 B2 JP4784779 B2 JP 4784779B2 JP 2008104870 A JP2008104870 A JP 2008104870A JP 2008104870 A JP2008104870 A JP 2008104870A JP 4784779 B2 JP4784779 B2 JP 4784779B2
Authority
JP
Japan
Prior art keywords
stress
cracks
residual stress
mpa
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008104870A
Other languages
Japanese (ja)
Other versions
JP2008174843A (en
JP2008174843A5 (en
Inventor
裕一 小林
聡 大澤
和夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008104870A priority Critical patent/JP4784779B2/en
Publication of JP2008174843A publication Critical patent/JP2008174843A/en
Publication of JP2008174843A5 publication Critical patent/JP2008174843A5/ja
Application granted granted Critical
Publication of JP4784779B2 publication Critical patent/JP4784779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、表面に硬質のクロム層を析出させたクロムめっき部品に関する。   The present invention relates to a chromium plated component having a hard chromium layer deposited on the surface.

ワーク表面に硬質のクロム層を析出させる汎用の硬質クロムめっき処理によれば、得られるクロム層に金属素地に達するクラックが多数存在し、そのままでは、腐食原因となる媒体が金属素地に到達して、耐食性に劣るものとなる。そこで従来、腐食環境で使用される部品に対しては、一般に前処理としてニッケルめっきや銅めっきを施してクロムめっき層と同程度の膜厚の下地を形成し、この下地の上に硬質クロムめっきを施すようにしていた。しかし、このような対策によれば、めっき処理を工程を変えて2回行わなければならないため、工程増加による製造コストの上昇が避けられないようになる。   According to the general-purpose hard chromium plating process that deposits a hard chromium layer on the work surface, there are many cracks that reach the metal substrate in the resulting chromium layer. Inferior to corrosion resistance. Therefore, in the past, for parts used in corrosive environments, nickel plating or copper plating is generally applied as a pretreatment to form a base with the same film thickness as the chromium plating layer, and hard chromium plating is formed on this base. I was going to give. However, according to such a countermeasure, since the plating process must be performed twice while changing the process, an increase in manufacturing cost due to an increase in the process cannot be avoided.

一方、パルス電流を利用して、いわゆるパルスめっき処理を行うことで、クラックのないクロム層を形成できることが既に確認されており(例えば、特開平3−207884号公報)、この方法によれば、耐食性に優れたクロムめっき部品を1工程処理で得ることができるようになる。しかし、このパルスめっき処理によれば、熱履歴を受けるとクロム層に大きなクラック(マクロクラック)が発生し易いという問題があり、熱履歴を受ける部品への適用は断念せざるを得ないものとなっていた。   On the other hand, it has already been confirmed that a chromium layer without cracks can be formed by performing a so-called pulse plating process using a pulse current (for example, Japanese Patent Laid-Open No. 3-207884). It becomes possible to obtain a chromium-plated part having excellent corrosion resistance in a single process. However, according to this pulse plating process, there is a problem that a large crack (macro crack) is likely to occur in the chromium layer when it receives a thermal history, and it must be given up for application to parts that receive the thermal history. It was.

そこで、本発明者等は、上記マクロクラック発生について鋭意検討した結果、クロム層に100MPa以上の圧縮残留応力(−100MPa以下)を付与することで、前記熱履歴に起因するクラック発生を防止できることを見出し、既に特開2000−199095号公報で明らかにしている。
しかしながら、この圧縮残留応力を付与したクロムめっき部品について、その後さらに追加実験をしてみると、めっき処理の直後に100MPaより小さい圧縮残留応力(−100MPa超)を有しているにもかかわらず、条件によっては250℃程度の高温までマクロクラックが発生しないものがあることが分った。
Therefore, as a result of intensive studies on the occurrence of macro cracks, the present inventors have found that crack generation due to the thermal history can be prevented by applying a compressive residual stress (-100 MPa or less) of 100 MPa or more to the chromium layer. The headline has already been clarified in Japanese Patent Laid-Open No. 2000-199095.
However, the chrome-plated parts to which this compressive residual stress was applied were then subjected to further experiments, and despite having a compressive residual stress (over -100 MPa) less than 100 MPa immediately after the plating treatment, It was found that depending on the conditions, macro cracks did not occur up to a high temperature of about 250 ° C.

本発明は、上記した技術的背景に鑑みてなされたもので、その目的とするところは、広範な熱履歴を経る場合にも優れた耐食性を発揮するクロムめっき部品を提供することにある。   The present invention has been made in view of the above-described technical background, and an object of the present invention is to provide a chromium-plated component that exhibits excellent corrosion resistance even when undergoing a wide thermal history.

上記目的を達成するための本発明に係るクロムめっき部品は、パルス電流によるクロムめっき処理によりクラックのないクロム層をワーク表面に形成したクロムめっき部品であって、使用状態において表面の残留応力値が、−100MPaより大きく80MPa以下となるように初期電着応力、最大電流密度及び浴温度を調整したことを特徴とする In order to achieve the above object, a chromium plated part according to the present invention is a chromium plated part in which a chromium layer without cracks is formed on a work surface by a chromium plating process by a pulse current, and the residual stress value of the surface in a use state is The initial electrodeposition stress, the maximum current density, and the bath temperature are adjusted so as to be greater than −100 MPa and less than or equal to 80 MPa .

上記したように、本発明に係るクロムめっき部品によれば、常温付近においてはもちろん、広範な熱履歴を経る場合にも優れた耐食性を発揮するクロムめっき部品を安定して得ることができる。また、めっき条件のわずかの変更と研磨仕上げの加工条件のわずかの変更で対処できるので、生産性はもとより製造コストが犠牲になることもなく、総じて本発明の利用価値は大なるものがある。   As described above, according to the chrome-plated component according to the present invention, it is possible to stably obtain a chrome-plated component that exhibits excellent corrosion resistance not only in the vicinity of normal temperature but also when undergoing a wide thermal history. Further, since it is possible to cope with a slight change in the plating conditions and a slight change in the processing conditions of the polishing finish, the utility value of the present invention is large as a whole without sacrificing the production cost as well as the productivity.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本実施の形態においては、先ず、パルスめっき処理を行ってワーク表面にクラックのないクロム層を形成し、その後、ワーク表面をバフ研磨で仕上加工する。しかして、前記パルスめっき処理および研磨仕上加工に際しては、クロム層に生じる電着応力値Aと、前記研磨仕上加工によりクロム層に付与される加工応力値Bと、後に詳述するクロム層の微視的歪と相関する、温度上昇および時間経過により生じるクロム層の応力変化量Cとが、式(1)[A+B+C≦80MPa]を満足するように、換言すれば、ワークを製品化した使用状態において応力値が80MPa以下となるように前記パルスめっき処理並びに研磨仕上加工の条件を調整する。なお、仕上加工としては、前記研磨仕上加工に限らず、例えばワーク表面を砥石で研削する研削仕上加工としてもよい。   In the present embodiment, first, pulse plating is performed to form a chromium layer without cracks on the workpiece surface, and then the workpiece surface is finished by buffing. Thus, in the pulse plating process and the polishing finish processing, the electrodeposition stress value A generated in the chromium layer, the processing stress value B applied to the chromium layer by the polishing finish processing, and the fineness of the chromium layer described in detail later. The state of use in which the workpiece has been commercialized, in other words, so that the stress change amount C of the chromium layer caused by the temperature rise and the passage of time, which correlates with the visual strain, satisfies the formula (1) [A + B + C ≦ 80 MPa]. The conditions of the pulse plating process and the polishing finishing process are adjusted so that the stress value becomes 80 MPa or less. The finishing process is not limited to the polishing finishing process, and may be a grinding finishing process in which the work surface is ground with a grindstone, for example.

上記パルスめっき処理に際しては、めっき浴として、表1に示すような有機スルフォン酸を含むものを用いる。このめっき浴は、特公昭63−32874号公報に記載されたものと同じ成分組成を有しており、クロム酸と硫酸根とをベースとして有機スルフォン酸を1〜18g/L 好適には1.5〜12g/L含んでいる。
なお、有機スルフォン酸を含まない、クロム酸−硫酸浴(サージェント浴)や珪弗化物(SiF)を含む混合触媒浴を用いてもよい。
In the pulse plating treatment, a plating bath containing an organic sulfonic acid as shown in Table 1 is used. This plating bath has the same component composition as that described in Japanese Patent Publication No. 63-32874, and based on chromic acid and sulfate radicals, 1-18 g / L of organic sulfonic acid is preferably 1. Contains 5-12 g / L.
Incidentally, no organic sulfonic acid, chromic acid - may be used mixed catalyst bath containing sulfuric acid bath (Sargent bath) and silicofluoric product (SiF 6).

Figure 0004784779
Figure 0004784779

また、パルスめっき処理に際して印加するパルス電流の波形としては、図1に示すように最大電流密度IUと最小電流密度ILとの間を交番し、かつ最大電流密度IUと最小電流密度ILとに所定時間T1、T2保持する形態となっている。最小電流密度ILは、ここではゼロ(オフ)に設定しているが、最大電流密度IUとゼロとの間の任意の値に設定してもよいことはもちろんである。また、保持時間T1およびT2については、同一の値に設定しても異なる値に設定してもよい。   In addition, as shown in FIG. 1, the waveform of the pulse current applied in the pulse plating process alternates between the maximum current density IU and the minimum current density IL, and is predetermined to the maximum current density IU and the minimum current density IL. The time T1 and T2 are held. Although the minimum current density IL is set to zero (off) here, it is needless to say that the minimum current density IL may be set to any value between the maximum current density IU and zero. Also, the holding times T1 and T2 may be set to the same value or different values.

本実施の形態においては、上記最大電流密度IU並びに最小電流密度ILおよび上記保持時間T1、T2を適当な値に設定し、さらに浴温度を50〜80℃として上記めっき浴中でパルスめっき処理を行って、上記したクロム層に生じる電着応力値Aおよび雰囲気の温度上昇により生じるクロム層の応力変化量Cを制御する。
一方、研磨仕上加工に際しては、不織布を基材とするセンタレスバフ(クレノートン社製ベアテックスGD)を用い、負荷電流を調整して上記した研磨仕上加工によりクロム層に付与される加工応力値Bを制御する。
In the present embodiment, the maximum current density IU, the minimum current density IL, and the holding time T1, T2 are set to appropriate values, and the bath temperature is set to 50 to 80 ° C. and pulse plating treatment is performed in the plating bath. The electrodeposition stress value A generated in the chromium layer and the stress change amount C of the chromium layer caused by the temperature rise in the atmosphere are controlled.
On the other hand, at the time of polishing finishing, a centerless buff (Baretex GD manufactured by Klenonton Co., Ltd.) using a non-woven fabric as a base material is used to adjust the load current and the processing stress value B applied to the chromium layer by the polishing finishing described above To control.

ここで、温度上昇によるクロム層の応力変化はクロム層の熱収縮に起因する現象であり、その応力変化量Cは、図2に示すようにクロム層の微視的歪εおよび雰囲気温度と相関する。前記微視的歪εは、X線回折法による回折X線のプロファイルの広がりを半価幅として測定することで、下記のHallの式(2)から求めることができる。
β・cosθ/λ=1/D+ε・sinθ/λ …(2)
この式において、βは半価幅、εは微視的歪、Dは結晶子の大きさ、λはX線の波長であり、半価幅βの測定は、同一方向の格子面である{110}と{220}で行う。
図2は、後述の実施例データに基いて求めたもので、微視的歪εが小さいほど加熱によるクロム層の応力変化量Cは小さく、熱的に安定する。
また、応力変化量Cは、時間と共に変化するが、時間の経過により安定し、変化が小さくなる。常温では、1ケ月程度で安定し、150℃では1日程度で安定する。
Here, the stress change of the chromium layer due to the temperature rise is a phenomenon caused by thermal contraction of the chromium layer, and the stress change amount C correlates with the microscopic strain ε of the chromium layer and the ambient temperature as shown in FIG. To do. The microscopic strain ε can be obtained from the following Hall equation (2) by measuring the spread of the profile of the diffracted X-ray by the X-ray diffraction method as a half-value width.
β · cos θ / λ = 1 / D + ε · sin θ / λ (2)
In this equation, β is the half width, ε is the microscopic strain, D is the crystallite size, λ is the X-ray wavelength, and the measurement of the half width β is the lattice plane in the same direction { 110} and {220}.
FIG. 2 is obtained based on example data described later. The smaller the microscopic strain ε, the smaller the amount of stress change C in the chromium layer due to heating, which is thermally stable.
Moreover, although the stress change amount C changes with time, it is stabilized with the passage of time, and the change becomes small. At room temperature, it stabilizes in about one month, and at 150 ° C., it stabilizes in about one day.

このようにして製造されたクロムめっき部品は、めっき処理によりクロム層に生じる電着応力値Aと、前記研磨仕上げによりクロム層に付与される加工応力値Bと、温度上昇および時間の経過により生じるクロム層の応力変化量Cとが、上記(1)式を満足するように制御されているので、広範な熱履歴を経てもクロム層にマクロクラックが発生せず、優れた耐食性を維持するものとなる。   The chrome-plated parts manufactured in this way are generated by the electrodeposition stress value A generated in the chromium layer by the plating treatment, the processing stress value B applied to the chromium layer by the polishing finish, the temperature rise, and the passage of time. Since the stress change amount C of the chrome layer is controlled so as to satisfy the above formula (1), macro cracks do not occur in the chrome layer even after a wide thermal history, and excellent corrosion resistance is maintained. It becomes.

JIS S45Cからなる鋼棒(直径20mm)を供試材とし、めっき浴としてクロム酸250 g/L 、硫酸根3.5 g/L 、有機スルフォン酸4g/L の成分組成のものを用い、浴温59℃、最大電流密度IU =200 A/dm2、最小電流密度IL =0 A/dm2(図1のパターン)、最大電流密度IU における保持時間(オンタイム)T1=0.6 、0.4、0.2ms、最小電流密度IL における保持時間(オフタイム)T2 =0.2 msの条件でパルスめっき処理を行い、ワーク表面に厚さ約20μmのクロム層を有しかつ初期電着応力(残留応力)Aが3水準に異なる3種類の試料1,2,3を得た。
なお、初期電着応力の測定は、日本非破壊検査協会編「非破壊検査」第37巻第8号636〜642頁に記載される「X線応力測定法」を用いて行った。以下、クロム層の残留応力の測定には本法を用いた。
A steel rod (diameter 20 mm) made of JIS S45C was used as a test material, and a plating bath having a component composition of chromic acid 250 g / L, sulfate radical 3.5 g / L, organic sulfonic acid 4 g / L, and bath temperature 59 ° C, maximum current density I U = 200 A / dm 2 , minimum current density I L = 0 A / dm 2 (pattern in FIG. 1), holding time (on time) at maximum current density I U T 1 = 0.6, 0.4 , 0.2 ms, holding time (off time) at a minimum current density I L , pulse plating is performed under the condition of T 2 = 0.2 ms, the work surface has a chromium layer of about 20 μm thickness, and the initial electrodeposition stress (residual Stress) Three types of samples 1, 2, and 3 having different A in three levels were obtained.
The initial electrodeposition stress was measured using the “X-ray stress measurement method” described in “Non-destructive Inspection” Vol. 37, No. 8, pp. 636-642 edited by Japan Nondestructive Inspection Association. Hereinafter, this method was used to measure the residual stress of the chromium layer.

次に、上記試料1〜3をバフ研磨に供し、その表面を仕上加工した。バフ研磨は、前記不織布を基材とするセンタレスバフを用い、加工速度を1400mm/minに固定して、負荷電流を変えて表面クロム層に付与する加工応力を調整した。バフ研磨条件(負荷電流、加工速度)の指標としては、試料の仕上加工に要した単位表面積あたりの消費エネルギー(仕事量)Wを以下の式(3)から導いた。
W=E・I・n/v・π・d(単位は、V・A・min/mm2) …(3)
ここで、E:モータの負荷電圧
I:モータの負荷電流(仕上加工時のモータ電流−無負荷電流)
n:加工回数
v:加工速度(試料送り速度)
π:円周率
d:試料外径
上記(3)式より、消費エネルギー(仕事量)Wは、モータ負荷電流が+1Aの場合、試料の外径を20mm、モータ負荷電圧を200V、加工速度を1400mm/min、加工回数を1とすると、0.00227(V・A・min/mm2)となる。同様に、モータ負荷電流が+2A、+3Aの場合は、それぞれW=0.00455(V・A・min/mm2)、W=0.00682(V・A・min/mm2)となる。
Next, the samples 1 to 3 were subjected to buffing, and the surface was finished. For buffing, a centerless buff using the nonwoven fabric as a base material was used, the processing speed was fixed at 1400 mm / min, and the processing stress applied to the surface chromium layer was adjusted by changing the load current. As an index of buffing conditions (load current, processing speed), energy consumption (work amount) W per unit surface area required for finishing the sample was derived from the following formula (3).
W = E · I · n / v · π · d (Unit: V · A · min / mm 2 ) (3)
Where E: Motor load voltage
I: Load current of motor (motor current during finish machining-no-load current)
n: Number of machining
v: Processing speed (sample feed speed)
π: Pi ratio
d: Sample outer diameter From the above formula (3), the energy consumption (work load) W is 20mm for the sample outer diameter, 200V for the motor load voltage, 1400mm / min for the machining speed when the motor load current is + 1A. When the number of times is 1, 0.00227 (V · A · min / mm 2 ) is obtained. Similarly, when the motor load current is +2 A and +3 A, W = 0.00455 (V · A · min / mm 2 ) and W = 0.00682 (V · A · min / mm 2 ), respectively.

上記の要領でバフ研磨(仕上加工)を行って、各試料1〜3について残留応力値が3水準に異なる3種類の試料1A,1B,1C、2A,2B,2C、3A,3B,3Cを得た。この場合、各試料のバフ研磨後の残留応力値から上記初期電着応力値Aを減算した値が、バフ研磨によりクロム層に付与された加工応力Bとなる。
次に、上記試料1A〜C、2A〜C、3A〜Cを熱処理に供し、20℃(常温)に23064時間、150℃に2時間、200℃に2時間保持する熱履歴をそれぞれ与えて、それぞれ9種類の試料を得た。この9種類の試料については、以下、前記試料1A〜C、2A〜C、3A〜Cに前記温度を付して、試料1A20,1A150,1A200… …3C20,3C150,3C200のように表記することとする。そして、このようにして得た試料について残留応力を測定すると共に、クロム層内におけるクラック(マクロクラック)の有無を観察した。この場合、加熱後残留応力値から上記バフ研磨後残留応力値を減算した値が、温度上昇により生じるクロム層の応力変化量Cとなる。
Buffing (finishing) is performed as described above, and three types of samples 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, and 3C having different residual stress values for each sample 1 to 3 are obtained. Obtained. In this case, the value obtained by subtracting the initial electrodeposition stress value A from the residual stress value after buffing of each sample is the processing stress B applied to the chromium layer by buffing.
Next, the samples 1A to C, 2A to C, and 3A to C were subjected to heat treatment, and heat history was maintained at 20 ° C (room temperature) for 23064 hours, 150 ° C for 2 hours, and 200 ° C for 2 hours, Nine types of samples were obtained. For these nine types of samples, the samples 1A to C, 2A to C, and 3A to C are given the temperature, and expressed as samples 1A20, 1A150, 1A200, ... 3C20, 3C150, 3C200. And And while measuring the residual stress about the sample obtained in this way, the presence or absence of the crack (macro crack) in a chromium layer was observed. In this case, the value obtained by subtracting the post-buffing residual stress value from the post-heating residual stress value becomes the stress change amount C of the chromium layer caused by the temperature rise.

表2は、上記した各試料についてのパルスめっき条件、熱履歴条件、残留応力の測定結果、残留応力の測定結果から求めた加工応力値Bおよび応力変化量C、クラックの観察結果等を一括して示したものである。また、図3〜5は、パルスめっき処理後、仕上加工後、熱処理後における残留応力変化並びにクラック発生状況を各試料1,2,3ごとに整理して示したものである。   Table 2 summarizes the pulse plating conditions, thermal history conditions, residual stress measurement results, processing stress values B and stress changes C obtained from the residual stress measurement results, crack observation results, etc. for each of the above samples. It is shown. 3 to 5 show the residual stress change and the crack generation state after the pulse plating process, after finishing, and after heat treatment for each of the samples 1, 2, and 3.

Figure 0004784779
Figure 0004784779

表2および図1〜3に示す結果より、クラックのないクロム層の残留応力は、初期電着応力(残留応力)が引張残留応力であるか圧縮残留応力であるかにかかわらず、バフ研磨(仕上加工)により一旦圧縮側へ変化した後、加熱処理により引張側へ変化している。また、クラック発生の有無との関係でみれば、全体としては、初期電着応力値が小さくかつバフ研磨後の圧縮残留応力値が大きいほどクラックが発生し難くなっている。しかし、初期電着応力値が同じでかつバフ研磨後の残留応力値が同じであっても、クラックを発生しないものと発生するものとがあり(1C150と1C200、2B150と2B200、2C150と2C200、3A150と3A200)、クラック発生に対して加熱による応力変化量も大きく影響していることが明らかである。さらに、初期電着応力値Aと、加工応力値Bと加熱による応力変化量Cとの合計量(A+B+C)とクラック発生の有無との間には密接な相関が認められ、この合計量が83MPa(1B20)以上ではクラックが発生しているのに対し、この合計量が64MPa(1C150)以下ではクラック発生が皆無となっている。   From the results shown in Table 2 and FIGS. 1 to 3, the residual stress of the chromium layer without cracks is determined by buffing regardless of whether the initial electrodeposition stress (residual stress) is a tensile residual stress or a compressive residual stress. After changing to the compression side once by finishing), it changes to the tension side by heat treatment. Further, as a whole, the cracks are less likely to occur as the initial electrodeposition stress value is smaller and the compressive residual stress value after buffing is larger as a whole in relation to the presence or absence of cracks. However, even if the initial electrodeposition stress value is the same and the residual stress value after buffing is the same, there are cases where cracks do not occur and those that occur (1C150 and 1C200, 2B150 and 2B200, 2C150 and 2C200, 3A150 and 3A200), it is clear that the amount of stress change due to heating greatly affects the generation of cracks. Further, a close correlation is observed between the total amount (A + B + C) of the initial electrodeposition stress value A, the processing stress value B, and the stress change amount C due to heating, and the presence or absence of cracks, and this total amount is 83 MPa. Cracks are generated at (1B20) or higher, whereas no cracks are generated when the total amount is 64 MPa (1C150) or lower.

JIS S45Cからなる鋼棒(直径20mm)を供試材とし、めっき浴としてクロム酸250 g/L 、硫酸根3.5 g/L 、有機スルフォン酸4g/L の成分組成のものを用い、浴温59℃、最大電流密度IU =120 A/dm2、最小電流密度IL =0 A/dm2(図1のパターン)、オンタイムT1 =0.6、0.4、0.2 ms、オフタイムT2 =0.2 msの条件でパルスめっき処理を行い、表面に厚さ約20μmのクロム層を有しかつ初期電着応力(残留応力)Aが3水準に異なる3種類の試料4,5,6を得た。 A steel rod (diameter 20 mm) made of JIS S45C was used as a test material, and a plating bath having a component composition of chromic acid 250 g / L, sulfate radical 3.5 g / L, organic sulfonic acid 4 g / L, and bath temperature 59 ° C, maximum current density I U = 120 A / dm 2 , minimum current density I L = 0 A / dm 2 (pattern in FIG. 1), on-time T 1 = 0.6, 0.4, 0.2 ms, off-time T 2 = 0.2 Pulse plating was performed under ms conditions, and three types of samples 4, 5, and 6 having a chromium layer with a thickness of about 20 μm on the surface and different initial electrodeposition stress (residual stress) A in three levels were obtained.

次に、上記試料4〜6をバフ研磨に供し、実施例1と同様に、不織布を基材とするセンタレスバフを用いて、加工速度固定(1400mm/min)のもと、負荷電流を変えて表面クロム層に付与する加工応力を調整し、各試料4〜6について残留応力値が3水準に異なる3種類の試料4A,4B,4C、5A,5B,5C、6A,6B,6Cを得た。この場合、各試料のバフ研磨後の残留応力値から上記初期電着応力値Aを減算した値が、バフ研磨によりクロム層に付与された加工応力Bとなることは、実施例1の場合と同様である。
次に、上記試料4A〜C、5A〜C、6A〜Cを熱処理に供し、20℃(常温)に23064時間、150℃に2時間、200℃に2時間保持する熱履歴をそれぞれ与えて、それぞれ9種類の試料を得た。この9種類の試料については、以下、前記試料4A〜C、5A〜C、6A〜Cに前記温度を付して、試料4A20,4A150,4A200… …6C20,6C150,6C200のように表記することとする。そして、このようにして得た試料について残留応力を測定すると共に、クロム層内におけるクラック(マクロクラック)の有無を観察した。この場合、加熱後残留応力値から上記バフ研磨後残留応力値を減算した値が、温度上昇により生じるクロム層の応力変化量Cとなることは、実施例1の場合と同様である。
表3は、上記した各試料についてのパルスめっき条件、熱履歴条件、残留応力の測定結果、残留応力の測定結果から求めた加工応力値Bおよび応力変化量C、クラックの観察結果等を一括して示したものである。また、図6〜8は、パルスめっき処理後、仕上加工後、熱処理後における残留応力変化並びにクラック発生状況を各試料4,5,6ごとに整理して示したものである。
Next, the above samples 4 to 6 were subjected to buffing, and in the same manner as in Example 1, using a centerless buff made of a nonwoven fabric as a base material, the load current was changed under a fixed processing speed (1400 mm / min). The processing stress applied to the surface chrome layer was adjusted, and three types of samples 4A, 4B, 4C, 5A, 5B, 5C, 6A, 6B, and 6C having different residual stress values of 3 levels were obtained for each sample 4-6. . In this case, the value obtained by subtracting the initial electrodeposition stress value A from the residual stress value after buffing of each sample becomes the processing stress B applied to the chromium layer by buffing, as in Example 1. It is the same.
Next, the samples 4A to C, 5A to C, and 6A to C were subjected to heat treatment, and heat history was maintained at 20 ° C (room temperature) for 23064 hours, 150 ° C for 2 hours, and 200 ° C for 2 hours, Nine types of samples were obtained. For these nine types of samples, the samples 4A to C, 5A to C, and 6A to C are given the temperature, and expressed as samples 4A20, 4A150, 4A200, ... 6C20, 6C150, 6C200. And And while measuring the residual stress about the sample obtained in this way, the presence or absence of the crack (macro crack) in a chromium layer was observed. In this case, the value obtained by subtracting the post-buffing residual stress value from the post-heating residual stress value becomes the stress change amount C of the chromium layer caused by the temperature rise, as in the case of Example 1.
Table 3 summarizes the pulse plating conditions, thermal history conditions, residual stress measurement results, processing stress values B and stress changes C obtained from the residual stress measurement results, crack observation results, etc. for each of the above samples. It is shown. 6 to 8 show changes in residual stress and occurrence of cracks after pulse plating, finishing, and heat treatment for each sample 4, 5, and 6.

Figure 0004784779
Figure 0004784779

表3および図6〜8に示す結果より、クラックのないクロム層の残留応力は、実施例1と同様にバフ研磨(仕上加工)により一旦圧縮側へ変化した後、加熱処理により引張側へ変化している。また、クラック発生との相関でみれば、全体としては、初期電着応力値が小さくかつバフ研磨後の圧縮残留応力値が大きいほどクラックが発生し難くなっている。しかし、初期電着応力値が同じでかつバフ研磨後の残留応力値が同じであっても、クラックを発生しないものと発生するものとがあり(4B20と4B150、4C150と4C200、5A20と5A150、5B150と5B200、6A150と6A200)、実施例1と同様にクラック発生に対して加熱による応力変化量も大きく影響していることが明らかである。さらに、初期電着応力値Aと、加工応力値Bと加熱による応力変化量Cとの合計量(A+B+C)とクラック発生の有無との間には密接な相関が認められ、この合計量が83MPa(6A200)以上ではクラックが発生しているのに対し、この合計量が74MPa(4B20)以下ではクラック発生が皆無となっている。すなわち、初期電着応力値Aと、加工応力値Bと加熱による応力変化量Cとの合計量(A+B+C)の80MPa付近に、クラック発生の有無の分岐点が存在することは明らかで、したがって、広範な熱履歴を経る場合にも優れた耐食性を発揮するクロムめっき部品を得るには、前記合計量(A+B+C)を80MPa未満に抑える必要がある。なお、応力値は80MPa以下(負の値を含む)であればよく、その下限はないが、実験上では−500MPa以下のものは製造不能である。   From the results shown in Table 3 and FIGS. 6 to 8, the residual stress of the chrome layer without cracks was once changed to the compression side by buffing (finishing) as in Example 1, and then changed to the tension side by heat treatment. is doing. Further, in terms of the correlation with the occurrence of cracks, as a whole, cracks are less likely to occur as the initial electrodeposition stress value is smaller and the compressive residual stress value after buffing is larger. However, even if the initial electrodeposition stress value is the same and the residual stress value after buffing is the same, there are cases where cracks do not occur and those that occur (4B20 and 4B150, 4C150 and 4C200, 5A20 and 5A150, 5B150 and 5B200, 6A150 and 6A200), as in Example 1, it is clear that the amount of stress change due to heating greatly affects the generation of cracks. Further, a close correlation is observed between the total amount (A + B + C) of the initial electrodeposition stress value A, the processing stress value B, and the stress change amount C due to heating, and the presence or absence of cracks, and this total amount is 83 MPa. Cracks are generated at (6A200) or more, whereas no cracks are generated when the total amount is 74 MPa (4B20) or less. That is, it is clear that there is a branch point for occurrence of cracks in the vicinity of 80 MPa of the total amount (A + B + C) of the initial electrodeposition stress value A, the processing stress value B, and the stress change amount C due to heating. In order to obtain a chromium-plated part that exhibits excellent corrosion resistance even when undergoing a wide thermal history, the total amount (A + B + C) needs to be suppressed to less than 80 MPa. The stress value only needs to be 80 MPa or less (including a negative value), and there is no lower limit, but experimentally, a stress of −500 MPa or less cannot be manufactured.

また、実施例1との相違は、パルスめっき処理時における最大電流密度IU として、実施例1(200 A/dm2)より小さい120 A/dm2を選択した点にある。そして、このめっき条件の変更により、めっき層に生じる初期電着応力値Aは、実施例1よりも平均的に30MPaほど引張側へ増大しているが、これと相対に、加熱による応力変化量Cは、実施例1よりも40〜75MPaほど小さくなっている。すなわち、本実施例2によれば、初期電着応力値Aの増大分を相殺する量よりも大きな、加熱による応力変化量Cの低減を得ており、この結果、全体としてクラックを発生する試料の数が少なくなっている。 Further, the difference from Example 1 is that 120 A / dm 2 smaller than Example 1 (200 A / dm 2 ) was selected as the maximum current density I U during the pulse plating process. As a result of this change in plating conditions, the initial electrodeposition stress value A generated in the plating layer increases on the tensile side by about 30 MPa on average from Example 1, but in contrast to this, the amount of stress change due to heating is increased. C is 40 to 75 MPa smaller than Example 1. That is, according to the second embodiment, a reduction in the amount of change in stress C due to heating, which is larger than the amount that offsets the increase in the initial electrodeposition stress value A, is obtained. The number of is decreasing.

JIS S45Cからなる鋼棒(直径20mm)を供試材とし、めっき浴としてクロム酸250 g/L 、硫酸根3.5 g/L 、有機スルフォン酸4g/L の成分組成のものを用い、浴温65℃、最大電流密度IU =120 A/dm2、最小電流密度IL =0 A/dm2(図1のパターン)、オンタイムT1 =0.8、0.6、0.4、0.2 ms、オフタイムT2 =0.2 msの条件でパルスめっき処理を行い、表面に厚さ約20μmのクロム層を有しかつ初期電着応力(残留応力)Aが4水準に異なる4種類の試料7,8,9,10を得た。 A steel rod (diameter 20 mm) made of JIS S45C is used as a test material, and a plating bath having a component composition of chromic acid 250 g / L, sulfate radical 3.5 g / L, organic sulfonic acid 4 g / L, and bath temperature 65 ° C, maximum current density I U = 120 A / dm 2 , minimum current density I L = 0 A / dm 2 (pattern in FIG. 1), on-time T 1 = 0.8, 0.6, 0.4, 0.2 ms, off-time T 2 = Pattern plating under the condition of 0.2 ms, 4 types of samples 7, 8, 9, 10 having a chromium layer with a thickness of about 20 μm on the surface and different initial electrodeposition stress (residual stress) A in 4 levels Got.

次に、上記試料7〜10をバフ研磨に供し、その表面を、前記不織布を基材とするセンタレスバフを用いて、加工速度固定(1400mm/min)のもと、負荷電流を変えて表面クロム層に付与する加工応力を調整し、各試料7〜10について残留応力値が3水準に異なる3種類の試料7A,7B,7C、8A,8B,8C、9A,9B,9C、10A,10B,10Cを得た。この場合、各試料のバフ研磨後の残留応力値から上記初期電着応力値Aを減算した値が、バフ研磨によりクロム層に付与された加工応力Bとなることは、実施例1、2の場合と同様である。
次に、上記試料7A〜C、8A〜C、9A〜C、10A〜10Cを熱処理に供し、20℃(常温)に23064時間、150℃に2時間、200℃に2時間保持する熱履歴をそれぞれ与えて、それぞれ12種類の試料を得た。この12種類の試料については、以下、前記試料7A〜C、8A〜C、9A〜C、10A〜10Cに前記温度を付して、試料7A20,7A150,7A200… …10C20,10C150,10C200のように表記することとする。そして、このようにして得た試料について残留応力を測定すると共に、クロム層内におけるクラック(マクロクラック)の有無を観察した。この場合、加熱後残留応力値から上記バフ研磨後残留応力値を減算した値が、温度上昇により生じるクロム層の応力変化量Cとなることは実施例1、2の場合と同様である。
表4および表5は、上記した各試料についてのパルスめっき条件、熱履歴条件、残留応力の測定結果、残留応力の測定結果から求めた加工応力値Bおよび応力変化量C、クラックの観察結果等を一括して示したものである。また、図9〜12は、パルスめっき処理後、仕上加工後、熱処理後における残留応力変化並びにクラック発生状況を各試料7,8,9,10ごとに整理して示したものである。
Next, the above samples 7 to 10 were subjected to buffing, and the surface was subjected to surface chromium using a centerless buff made of the nonwoven fabric as a base and changing the load current under a fixed processing speed (1400 mm / min). Three kinds of samples 7A, 7B, 7C, 8A, 8B, 8C, 9A, 9B, 9C, 10A, 10B, which have different residual stress values in three levels for each sample 7 to 10 are adjusted by adjusting the processing stress applied to the layer. 10C was obtained. In this case, the value obtained by subtracting the initial electrodeposition stress value A from the residual stress value after buffing of each sample becomes the processing stress B applied to the chromium layer by buffing. Same as the case.
Next, the samples 7A to C, 8A to C, 9A to C, 10A to 10C are subjected to heat treatment, and heat history is maintained at 20 ° C (room temperature) for 23064 hours, 150 ° C for 2 hours, and 200 ° C for 2 hours. Each was given to obtain 12 samples. For these 12 types of samples, the samples 7A to C, 8A to C, 9A to C, 10A to 10C are given the temperature, and samples 7A20, 7A150, 7A200, ... 10C20, 10C150, 10C200 are used. It shall be described in And while measuring the residual stress about the sample obtained in this way, the presence or absence of the crack (macro crack) in a chromium layer was observed. In this case, the value obtained by subtracting the post-buffing residual stress value from the post-heating residual stress value becomes the stress change amount C of the chromium layer caused by the temperature rise, as in the first and second embodiments.
Tables 4 and 5 show the pulse plating conditions, thermal history conditions, measurement results of residual stress, processing stress value B and stress change C obtained from the measurement results of residual stress, observation results of cracks, etc. Are collectively shown. 9 to 12 show changes in residual stress and occurrence of cracks after pulse plating, finishing, and heat treatment for each sample 7, 8, 9, and 10.

Figure 0004784779
Figure 0004784779

Figure 0004784779
Figure 0004784779

表4、表5および図9〜12に示す結果より、クラックのないクロム層の残留応力は、実施例1、2と同様にバフ研磨(仕上加工)により一旦圧縮側へ変化した後、加熱処理により引張側へ変化している。また、クラック発生との相関でみれば、全体としては、初期電着応力値が小さくかつバフ研磨後の圧縮残留応力値が大きいほどクラックが発生し難くなっている。しかし、初期電着応力値が同じでかつバフ研磨後の残留応力値が同じであっても、クラックを発生しないものと発生するものとがあり(8A20と8A150、8B150と8B200、9A150と9A200)、実施例1、2と同様にクラック発生に対して加熱による応力変化量も大きく影響していることが明らかである。さらに、初期電着応力値Aと、加工応力値Bと加熱による応力変化量Cとの合計量(A+B+C)とクラック発生の有無との間には密接な相関が認められ、この合計量が119MPa(8B200)以上ではクラックが発生しているのに対し、この合計量が75MPa(8A20)以下ではクラック発生が皆無となっている。さらに、試料7においては初期電着応力が123MPaと大きいにもかかわらず、研磨後に50MPa以下として、使用時に合計量が67MPa以下であればクラックは発生していない。   From the results shown in Tables 4 and 5 and FIGS. 9 to 12, the residual stress of the chromium layer without cracks was once changed to the compression side by buffing (finishing) in the same manner as in Examples 1 and 2, followed by heat treatment. It changes to the tension side. Further, in terms of the correlation with the occurrence of cracks, as a whole, cracks are less likely to occur as the initial electrodeposition stress value is smaller and the compressive residual stress value after buffing is larger. However, even if the initial electrodeposition stress value is the same and the residual stress value after buffing is the same, there are cases where cracks do not occur and those that occur (8A20 and 8A150, 8B150 and 8B200, 9A150 and 9A200). As in Examples 1 and 2, it is clear that the amount of stress change due to heating greatly affects the generation of cracks. Further, a close correlation is observed between the total amount (A + B + C) of the initial electrodeposition stress value A, the processing stress value B, and the stress change amount C due to heating, and the presence or absence of cracks, and this total amount is 119 MPa. Cracks are generated at (8B200) or more, whereas no cracks are generated when the total amount is 75 MPa (8A20) or less. Furthermore, in Sample 7, although the initial electrodeposition stress is as large as 123 MPa, cracks are not generated if the total amount is 67 MPa or less at the time of use with 50 MPa or less after polishing.

また、実施例2との相違は、パルスめっき処理時における浴温度として、実施例2(59℃)より6℃ほど高い65℃に設定した点にある。そして、このめっき条件の変更により、めっき層に生じる初期電着応力値Aは、実施例2とほとんど差がないものの、加熱による応力変化量Cは、実施例2よりも40〜100MPaほど小さくなっている。すなわち、本実施例3によれば、実施例2よりもさらに、加熱による応力変化量Cの大きな低減を得ており、この結果、全体としてクラックを発生する試料の数は著しく少なくなっている。   Moreover, the difference from Example 2 is that the bath temperature at the time of pulse plating is set to 65 ° C., which is 6 ° C. higher than Example 2 (59 ° C.). And by this change of plating conditions, the initial electrodeposition stress value A generated in the plating layer is almost the same as that of Example 2, but the stress change amount C due to heating is about 40 to 100 MPa smaller than that of Example 2. ing. That is, according to the third embodiment, the stress change amount C due to heating is further reduced more than in the second embodiment, and as a result, the number of samples that generate cracks as a whole is significantly reduced.

上記した実施例1乃至3より以下のような条件により初期の圧縮残留応力が100MPaより小(−100MPa)であっても、クラックの発生しないクロムめっき部品を得ることができることが分った。
1)表面仕上を行った後の応力値が、−100MPa以下であれば、使用雰囲気温度が150℃程度まではクラックが発生しない。
2)クロムめっきを施したクラックのない部品が、使用状態において応力値が80MPa以下を保つことができればクラックは発生しない。この応力値の増加を防ぐことは、表面処理完了時の微視的歪を小さくすることにより達成できる。
3)初期電着応力値が80MPa以上であっても、表面の仕上加工により80MPa以下とし、使用状態においても応力値が80MPa以下に保つことができれば、クラックは発生しない(試料7参照)。
The above-mentioned Examples 1 to the initial compressive residual stress under the conditions described below than 3 even less than 100 MPa (-100 MPa greater), it was found that it is possible to obtain a chrome-plated part which does not generate cracks.
1) If the stress value after finishing the surface is −100 MPa or less, cracks do not occur until the operating atmosphere temperature is about 150 ° C.
2) If a crack-free part plated with chromium can maintain a stress value of 80 MPa or less in the state of use, cracks will not occur. Prevention of this increase in stress value can be achieved by reducing the microscopic strain at the completion of the surface treatment.
3) Even if the initial electrodeposition stress value is 80 MPa or more, cracks do not occur if the surface finish is set to 80 MPa or less and the stress value can be kept to 80 MPa or less even in use (see Sample 7).

本発明で実施するクロムめっき処理におけるパルス波形の一例を示すグラフである。It is a graph which shows an example of the pulse waveform in the chromium plating process implemented by this invention. 加熱による応力変化量に及ぼすクロム層の微視的歪および加熱温度の影響を示すグラフである。It is a graph which shows the influence of the micro distortion of a chromium layer and the heating temperature which acts on the stress change amount by heating. 実施例1の1つのグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in one group of Example 1, and the crack generation condition. 実施例1の他のグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in another group of Example 1, and the crack generation condition. 実施例1のさらに他のグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in another group of Example 1, and the crack generation condition. 実施例2の1つのグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in one group of Example 2, and the crack generation condition. 実施例2の他のグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in the other group of Example 2, and the crack generation condition. 実施例2のさらに他のグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in another group of Example 2, and the crack generation condition. 実施例3の1つのグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in one group of Example 3, and the crack generation condition. 実施例3の他のグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in another group of Example 3, and the crack generation condition. 実施例3のさらに他のグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in another group of Example 3, and the crack generation condition. 実施例3のさらに他のグループにおける残留応力の各処理による変化とクラック発生状況とを示すグラフである。It is a graph which shows the change by each process of the residual stress in another group of Example 3, and the crack generation condition.

Claims (1)

パルス電流によるクロムめっき処理によりクラックのないクロム層をワーク表面に形成したクロムめっき部品であって、使用状態において表面の残留応力値が、−100MPaより大きく80MPa以下となるように前記パルス電流によるクロムめっきの際の最大電流密度及び浴温度を調整したことを特徴とするクロムめっき部品。   A chromium-plated part in which a chromium layer having no cracks is formed on a workpiece surface by a chromium plating process using a pulse current, and the residual stress value of the surface is greater than −100 MPa and less than or equal to 80 MPa in a use state. Chromium plated parts characterized by adjusting the maximum current density and bath temperature during plating.
JP2008104870A 2008-04-14 2008-04-14 Chrome plated parts Expired - Fee Related JP4784779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104870A JP4784779B2 (en) 2008-04-14 2008-04-14 Chrome plated parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104870A JP4784779B2 (en) 2008-04-14 2008-04-14 Chrome plated parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001343005A Division JP4217945B2 (en) 2001-11-08 2001-11-08 Chrome plated parts

Publications (3)

Publication Number Publication Date
JP2008174843A JP2008174843A (en) 2008-07-31
JP2008174843A5 JP2008174843A5 (en) 2009-07-30
JP4784779B2 true JP4784779B2 (en) 2011-10-05

Family

ID=39702057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104870A Expired - Fee Related JP4784779B2 (en) 2008-04-14 2008-04-14 Chrome plated parts

Country Status (1)

Country Link
JP (1) JP4784779B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042209B (en) * 2019-05-10 2020-06-19 武汉理工大学 Method for regulating and controlling dimensional stability of bearing assembly
JP2023144898A (en) * 2022-03-28 2023-10-11 Kyb株式会社 Manufacturing method of trivalent chromium plating component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170095A (en) * 1995-12-19 1997-06-30 Mitsubishi Heavy Ind Ltd Chromium plating method
JP3709038B2 (en) * 1996-03-21 2005-10-19 株式会社神戸製鋼所 Mold for casting of metal containing Zn
JP4620191B2 (en) * 1998-01-20 2011-01-26 株式会社神戸製鋼所 Al alloy pulley with excellent fatigue life and wear resistance, and method for plating an aluminum alloy pulley
JP3918142B2 (en) * 1998-11-06 2007-05-23 株式会社日立製作所 Chrome-plated parts, chromium-plating method, and method of manufacturing chromium-plated parts

Also Published As

Publication number Publication date
JP2008174843A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP3918142B2 (en) Chrome-plated parts, chromium-plating method, and method of manufacturing chromium-plated parts
CN101855388B (en) Chrome-plated part and manufacturing method of the same
Wang et al. A novel electrodeposited Ni–P gradient deposit for replacement of conventional hard chromium
US10836138B2 (en) Laminated body having corrosion-resistant coating, and method for manufacturing same
JP4217986B2 (en) Method for manufacturing chrome-plated parts
JP4784779B2 (en) Chrome plated parts
Doolabi et al. Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum
JP4217945B2 (en) Chrome plated parts
TW201402876A (en) Black passivation treatment method of steel surface
JP4206798B2 (en) Chrome-plated parts and method for manufacturing the same
Panja et al. Tribological behavior of electroless Ni-P coatings in alkaline environment and optimization of coating parameters using Taguchi based grey relational analysis
JP3752675B2 (en) Batch type chrome plating method and apparatus
US11279112B2 (en) Coating laminated body and method for producing the same
JP3918156B2 (en) Chromium-plated component manufacturing method and chrome-plated component
Kumar et al. Experimental Study of Micro Structural and Anti-Corrosion Behaviorof Ni & Ni-Cr Coating on Mild Steel
JP2006257534A (en) Super core loss grain-oriented magnetic steel sheet having excellent magnetic characteristic
US20230138199A1 (en) Rods and pipes including surface coatings
Jovanovic et al. SCRATCH TEST OF CHROMIUM COATINGS.
Marimuthu et al. Study of Corrosion Behavior of Hard Anodized Magnesium Alloy by Dow-17 Process
Demir et al. Effect of saccharin addition on formation, wear and corrosion resistance of electrodeposited Ni-Cr coatings
Mahmood et al. Physical Properties of Electroless Nickel-Tungsten Coating On Mild Steels Obtained from Acetic Bath
KR20200076468A (en) Electroplated steel sheet having excellent surface appearance and method of manufacturing the same
JP2019035106A (en) Stainless steel sheet for color development, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090828

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4784779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees