JP4784687B2 - Flat battery and battery pack using the same - Google Patents

Flat battery and battery pack using the same Download PDF

Info

Publication number
JP4784687B2
JP4784687B2 JP2009234993A JP2009234993A JP4784687B2 JP 4784687 B2 JP4784687 B2 JP 4784687B2 JP 2009234993 A JP2009234993 A JP 2009234993A JP 2009234993 A JP2009234993 A JP 2009234993A JP 4784687 B2 JP4784687 B2 JP 4784687B2
Authority
JP
Japan
Prior art keywords
electrode terminal
width
active material
positive
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009234993A
Other languages
Japanese (ja)
Other versions
JP2010010145A (en
Inventor
洋 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009234993A priority Critical patent/JP4784687B2/en
Publication of JP2010010145A publication Critical patent/JP2010010145A/en
Application granted granted Critical
Publication of JP4784687B2 publication Critical patent/JP4784687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、扁平型電池およびそれを用いた組電池に関する。   The present invention relates to a flat battery and an assembled battery using the same.

従来、電池の外装体には金属製の電池缶が採用され、円筒型、角形、コイン型等用途に応じてその大きさが調整され使用されてきた。近年、特に携帯機器等の分野においては、その軽量化、薄型化に伴って、電源としての電池に対しても軽量化、薄型化が強く要請されている。   Conventionally, metal battery cans have been used for battery outer bodies, and their sizes have been adjusted and used according to applications such as cylindrical, rectangular, and coin types. In recent years, particularly in the field of portable devices and the like, with the reduction in weight and thickness, there has been a strong demand for reduction in weight and thickness of batteries as power sources.

金属製の電池缶を用いた電池は、軽量化、薄型化に限界があるため、近年では樹脂フィルムと金属フィルムを積層して一体化したラミネートフィルムを熱封止することにより構成される外装体を用いた電池の研究開発が活発に行われ、大幅な軽量化、薄型化を達成したフィルム外装電池が実用化されている。   Since batteries using metal battery cans are limited in terms of weight reduction and thickness reduction, in recent years, an exterior body constituted by heat sealing a laminated film in which a resin film and a metal film are laminated and integrated Research and development of a battery using a battery has been actively carried out, and a film-covered battery that has achieved a significant reduction in weight and thickness has been put into practical use.

しかしながら、電池の充放電時には電極端子の抵抗および電池の内部抵抗の存在により電極端子および電池要素が発熱し、この熱により外装体の封止部が開口するおそれがあった。この封止部の開口は外装体内部への水分浸入を引き起こし、電池性能の著しい劣化の原因となり、信頼性の低下に繋がっていた。   However, at the time of charging / discharging of the battery, the electrode terminal and the battery element generate heat due to the presence of the resistance of the electrode terminal and the internal resistance of the battery, and this heat may open the sealing portion of the outer package. The opening of the sealing portion causes moisture intrusion into the exterior body, causing significant deterioration in battery performance, leading to a decrease in reliability.

複数のフィルム外装電池から構成される組電池についての公知技術は種々存在する。例えば特開2001−216950号公報、特開平9−259859号公報に開示される組電池は、主として携帯型電子機器等の用途であり、大電流下での使用を予定していない。したがって、大電流下での使用にそのまま転用することは困難である。   There are various known techniques for assembled batteries composed of a plurality of film-clad batteries. For example, the assembled batteries disclosed in Japanese Patent Application Laid-Open Nos. 2001-216950 and 9-259859 are mainly used for portable electronic devices and the like and are not scheduled to be used under a large current. Therefore, it is difficult to divert as it is for use under a large current.

一方で、近年では、より大きな電流の供給を必要とする電気自動車や船舶の動力用途等にもフィルム外装電池が使用されるようになってきている。上記用途においては、単電池を多数接続して組電池として使用することにより、高電圧、高容量化を図っているため、単電池として使用する場合と比較すると発熱が著しく大きい。そのため上記悪影響に加えて、組電池全体の温度上昇が顕著となっていた。この温度上昇が大きくなりすぎると、電池の寿命が短くなったり、電池が破損するおそれが生じる。特にリチウムイオン電池の場合には、電解質に有機溶媒を用いると共に、負極活物質にも炭素等を用いるので、電池が異常な高温になって破損すると、発火等、周囲に危険を及ぼす可能性があった。   On the other hand, in recent years, film-clad batteries have come to be used in power applications for electric vehicles and ships that require a larger current supply. In the above application, since a high voltage and a high capacity are achieved by connecting a large number of single cells and using them as an assembled battery, heat generation is remarkably greater than when using them as single cells. Therefore, in addition to the above-described adverse effects, the temperature rise of the entire assembled battery has become remarkable. If this temperature rise becomes too large, the battery life may be shortened or the battery may be damaged. In particular, in the case of a lithium ion battery, an organic solvent is used for the electrolyte and carbon or the like is used for the negative electrode active material. If the battery is damaged due to abnormally high temperature, there is a possibility of causing danger to the surroundings such as ignition. there were.

特開2001−216950号公報JP 2001-216950 A 特開平9−259859号公報Japanese Patent Laid-Open No. 9-259859

上記の事情に鑑み、本発明は、電池要素および電極端子からの発熱が低減された、信頼性の高いフィルム外装電池を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a highly reliable film-clad battery in which heat generation from battery elements and electrode terminals is reduced.

上記課題を解決する本発明によれば、正極端子および負極端子を互いに離隔して外周端縁部に導出させて成る扁平型電池であって、前記正極端子および負極端子が各々、B/A≧0.57(ただし、Aは活物質領域の幅を表し、Bは電極端子幅を表す。)を満たすことを特徴とする扁平型電池が提供される。   According to the present invention for solving the above-mentioned problems, a flat battery comprising a positive electrode terminal and a negative electrode terminal that are separated from each other and led to an outer peripheral edge, wherein the positive electrode terminal and the negative electrode terminal are each B / A ≧ A flat battery characterized by satisfying 0.57 (where A represents the width of the active material region and B represents the electrode terminal width) is provided.

本発明における活物質領域の幅とは、正極体または負極体における活物質が存在する領域の幅であって、電極端子が延出する方向に対して垂直な方向の幅のうち最も狭いものをいう。また、活物質領域が矩形である場合には、活物質領域の幅と電極端子の取り出し辺長、すなわち、電極端子の延出する箇所の辺の長さとは一致する。   In the present invention, the width of the active material region is the width of the active material region in the positive electrode body or the negative electrode body, and is the narrowest width in the direction perpendicular to the direction in which the electrode terminals extend. Say. When the active material region is rectangular, the width of the active material region is equal to the length of the electrode terminal extraction side, that is, the length of the side where the electrode terminal extends.

従来の電池であって、一辺に複数の端子が存するものにおいては、B/Aは0.5未満であった。また、特開平9−259859号公報には、電極端子が電池の外周端凹部内に導出する構成を採る電池が開示されている。これは、電池要素部の平面的な領域を確保し、高電圧、高容量化を図る一方、電極端子の外周端縁凹部内への導出によって外形のコンパクト化を図ることを目的とするものである。上記目的に鑑みれば、積極的に電極端子を広くする理由は存しないばかりか、むしろ電極を広くすると電圧、容量の観点から不利となる。一方、本発明においては、B/A≧0.57とすることにより、電流通過距離が短縮され、内部抵抗が低減される。その結果、電池要素からの発熱が抑制される。また、電極端子の幅が広く設定されることにより、電極端子の抵抗が低減されるため、電極端子からの発熱も抑制される。さらに、接続が容易となり、電極端子の機械的な強度が大きくなる。   In a conventional battery having a plurality of terminals on one side, B / A was less than 0.5. Japanese Patent Application Laid-Open No. 9-259859 discloses a battery that employs a configuration in which electrode terminals are led out into the outer peripheral end recesses of the battery. The purpose of this is to secure a planar area of the battery element part and increase the voltage and capacity, while at the same time reducing the outer shape of the electrode terminal by leading it into the outer peripheral edge recess. is there. In view of the above object, there is no reason to positively widen the electrode terminal, but rather widening the electrode is disadvantageous from the viewpoint of voltage and capacity. On the other hand, in the present invention, by setting B / A ≧ 0.57, the current passing distance is shortened and the internal resistance is reduced. As a result, heat generation from the battery element is suppressed. Moreover, since the resistance of an electrode terminal is reduced by setting the width | variety of an electrode terminal wide, the heat_generation | fever from an electrode terminal is also suppressed. Further, the connection is facilitated and the mechanical strength of the electrode terminal is increased.

また本発明によれば、上記扁平型電池において、前記正極端子および負極端子を互いに対向して導出させたことを特徴とする扁平型電池が提供される。   According to the present invention, there is also provided a flat battery characterized in that in the flat battery, the positive electrode terminal and the negative electrode terminal are led out to face each other.

正極および負極端子を互いに対向して導出させることにより、電池を積層して組電池とする際に接続が容易に出来るとともに、個々の電池の向きを変化させることにより、直列、並列、直並列型組電池等、種々の接続の組電池を得ることができる。   By connecting the positive and negative terminals opposite to each other, it is easy to connect when stacking batteries to make an assembled battery, and by changing the orientation of each battery, series, parallel, and series-parallel type Various connected assembled batteries such as assembled batteries can be obtained.

また本発明によれば、上記扁平型電池において、金属薄膜から成る外装体を備えたことを特徴とする扁平型電池が提供される。   In addition, according to the present invention, there is provided a flat battery characterized in that the flat battery includes an exterior body made of a metal thin film.

これにより、外装体を軽量化することができ、また、外装体内部への水分浸入を防止することが可能となる。   As a result, the exterior body can be reduced in weight, and moisture intrusion into the exterior body can be prevented.

また本発明によれば、上記扁平型電池において、金属薄膜および熱融着性樹脂膜を含むラミネートフィルムから成る外装体を有することを特徴とする扁平型電池が提供される。   According to the present invention, there is provided a flat battery characterized in that the flat battery has an exterior body made of a laminate film including a metal thin film and a heat-fusible resin film.

これにより、外装フィルムの接合を容易かつ確実に行うことが可能となる。   Thereby, joining of an exterior film can be performed easily and reliably.

また本発明によれば、上記扁平型電池において、前記金属薄膜がアルミニウムであることを特徴とする扁平型電池が提供される。   According to the present invention, there is also provided a flat battery characterized in that in the flat battery, the metal thin film is aluminum.

これにより、外装体を軽量化することが可能となる。   Thereby, it becomes possible to reduce the weight of the exterior body.

また本発明によれば、上記扁平型電池が、前記正極端子または負極端子を介して複数個組み合わせて成る組電池が提供される。   According to the present invention, there is also provided an assembled battery in which a plurality of the flat batteries are combined through the positive terminal or the negative terminal.

また本発明によれば、上記組電池において、前記複数個の扁平型電池がそれぞれ直列に接続されたことを特徴とする組電池が提供される。   According to the present invention, there is provided the assembled battery, wherein the plurality of flat batteries are connected in series.

また本発明によれば、上記組電池において、前記扁平型電池が複数個積み重ねられたことを特徴とする組電池が提供される。   In addition, according to the present invention, there is provided an assembled battery in which a plurality of the flat batteries are stacked.

また本発明によれば、上記組電池において、積み重ねられた前記複数個の扁平型電池がそれぞれ並列に接続されたことを特徴とする組電池が提供される。   In addition, according to the present invention, there is provided an assembled battery in which the plurality of stacked flat batteries are connected in parallel with each other in the assembled battery.

また本発明によれば、上記の組電池が複数個、互いに直列に接続されてなる組電池が提供される。   Moreover, according to this invention, the assembled battery formed by mutually connecting a plurality of said assembled batteries in series is provided.

上記扁平型電池を複数接続することにより、所望の電圧、容量を有する組電池が得られる。上記組電池においては、個々の扁平型電池の内部抵抗および電極端子の抵抗が低減されているため、大電流による充放電時の発熱を効果的に抑えることができ、組電池全体の温度上昇を緩和することが可能となる。加えて、電極端子に施す放熱対策工事が不要となるため、軽量かつ安価で信頼性の高い組電池を構成することが可能となる。また、複数の上記電池を平面方向に並べて接続したり、垂直方向に積み上げて接続したり、あるいはこれらを併用して接続することにより、自由なレイアウトでかつ空間を有効利用した、直列、並列、直並列型組電池を得ることができる。   An assembled battery having a desired voltage and capacity can be obtained by connecting a plurality of the flat batteries. In the above assembled battery, since the internal resistance of each flat battery and the resistance of the electrode terminal are reduced, heat generation during charging / discharging due to a large current can be effectively suppressed, and the temperature rise of the entire assembled battery can be suppressed. It can be mitigated. In addition, since the heat radiation countermeasure work applied to the electrode terminals is not required, it is possible to configure a lightweight, inexpensive and highly reliable assembled battery. In addition, by connecting a plurality of the above-mentioned batteries side by side in the planar direction, stacking and connecting in the vertical direction, or connecting them together, it is possible to freely use the space in series, in parallel, A series-parallel battery pack can be obtained.

以上説明したように、本発明では、活物質領域の幅Aと、電極端子幅Bとが、B/A≧0.57を満たすように電池を構成することにより、電池要素および電極端子からの発熱が低減された、信頼性の高い扁平型電池の提供が可能となる。   As described above, in the present invention, by configuring the battery so that the width A of the active material region and the electrode terminal width B satisfy B / A ≧ 0.57, A highly reliable flat battery with reduced heat generation can be provided.

また、本発明の扁平型電池は、電極の発熱も少ないことから電極端子の発熱対策も必要無くなるため、複数個の上記扁平型電池を組み合わせることにより、軽量、安価でスペース効率の高い組電池を構成することが可能となる。   In addition, since the flat battery of the present invention does not generate heat from the electrodes, it is not necessary to take measures against heat generation at the electrode terminals. Therefore, a combination of a plurality of the above flat batteries can provide a lightweight, inexpensive, and space-efficient battery pack. It can be configured.

本発明のフィルム外装電池の斜視図である。It is a perspective view of the film-clad battery of this invention. 本発明のフィルム外装電池の電池要素の分解斜視図である。It is a disassembled perspective view of the battery element of the film-clad battery of this invention. 本発明のフィルム外装電池の電池要素の断面図である。It is sectional drawing of the battery element of the film-clad battery of this invention. 本発明の電池の正極体または負極体と電極端子との寸法比を説明するための模式図である。It is a schematic diagram for demonstrating the dimensional ratio of the positive electrode body or negative electrode body of a battery of this invention, and an electrode terminal. 電極取り出し幅に対する端子幅の比率と電流通過距離との関係を示したグラフである。It is the graph which showed the relationship between the ratio of the terminal width with respect to the electrode extraction width | variety, and electric current passage distance. 端子幅と内部抵抗の関係を示したグラフである。It is the graph which showed the relationship between terminal width and internal resistance. 端子幅とセル内部抵抗比率との関係を示したグラフである。It is the graph which showed the relationship between terminal width and a cell internal resistance ratio. 本発明の組電池の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the assembled battery of this invention. 組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of an assembled battery. 組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of an assembled battery. 組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of an assembled battery. 4直列の片側集電端子取り出しタイプの組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the assembled battery of 4 series one side current collection terminal taking-out type. 8直列の片側集電端子取り出しタイプの組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the assembled battery of 8 series one side current collection terminal taking-out type. 3直列の両側集電端子取り出しタイプの組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the assembled battery of 3 series both-sides current collection terminal taking-out type. 6直列の両側集電端子取り出しタイプの組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the assembled battery of 6 series both-side current collection terminal taking-out type. 9直列の両側集電端子取り出しタイプの組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the assembled battery of 9 series both sides current collection terminal taking-out type. 両側集電端子取り出しタイプの並列組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the parallel assembled battery of a both-sides current collection terminal taking-out type. 2直4並型の片側集電端子取り出しタイプの直並列組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a 2 series 4 parallel type one side current collection terminal taking-out type series parallel assembled battery. 4直3並型の片側集電端子取り出しタイプの直並列組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a 4 series 3 parallel type one side current collection terminal taking-out type series parallel assembled battery. 8直2並型の片側集電端子取り出しタイプの直並列組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a series-parallel assembled battery of the 8 series 2 parallel type one side current collection terminal taking-out type. 3直6並型の両側集電端子取り出しタイプの直並列組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the 3 series 6 parallel type | mold both-side current collection terminal taking-out type series parallel assembled battery. 6直3並型の両側集電端子取り出しタイプの直並列組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the 6 series 3 parallel type | mold both-sides current collection terminal taking-out type series parallel assembled battery. 9直2並型の両側集電端子取り出しタイプの直並列組電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the 9 series 2 parallel type | mold both-side current collection terminal taking-out type series parallel assembled battery. 活物質領域の幅を説明するための模式図である。It is a schematic diagram for demonstrating the width | variety of an active material area | region. 活物質領域の幅を説明するための模式図である。It is a schematic diagram for demonstrating the width | variety of an active material area | region.

次に、本発明の実施の形態の一例について図面を参照して説明する。   Next, an example of an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明に係るフィルム外装電池の斜視図であり、図2は図1の電池の電池要素の分解斜視図であり、図3は当該電池要素の断面図である。図3に示すように、積層型セパレータ3で区切られた空間に負極体1と正極体2を交互に配置され、それぞれの負極体1の末端から延出された負極集電部7を介して負極端子4が設けられる。また、正極についても同様に、それぞれの正極体2の末端から延出された正極集電部8を介して正極端子5が設けられている。また、図3のように負極集電部7と正極集電部8、負極端子4と正極端子5は互いに反対方向に延出させる。   1 is a perspective view of a film-clad battery according to the present invention, FIG. 2 is an exploded perspective view of the battery element of the battery of FIG. 1, and FIG. 3 is a cross-sectional view of the battery element. As shown in FIG. 3, the negative electrode bodies 1 and the positive electrode bodies 2 are alternately arranged in the space partitioned by the laminated separator 3, and the negative electrode current collectors 7 extending from the ends of the respective negative electrode bodies 1 are interposed. A negative electrode terminal 4 is provided. Similarly, the positive electrode is provided with a positive electrode terminal 5 via a positive electrode current collector 8 extending from the end of each positive electrode body 2. Further, as shown in FIG. 3, the negative electrode current collector 7 and the positive electrode current collector 8, and the negative electrode terminal 4 and the positive electrode terminal 5 are extended in opposite directions.

図4は本発明に係る扁平型電池の正極体または負極体と電極端子との寸法比を説明するための模式図である。活物質領域13は集電体上の活物質が塗布された領域であり、電極端子取付部15は活物質が塗布されていない領域である。また、電極端子14は電極端子取付部15上に取り付けられている。図中のAは、活物質領域の幅を表し、Bは電極端子幅を表し、Cは活物質領域の長さを表す。   FIG. 4 is a schematic diagram for explaining a dimensional ratio between a positive electrode body or a negative electrode body and an electrode terminal of the flat battery according to the present invention. The active material region 13 is a region where the active material on the current collector is applied, and the electrode terminal attachment portion 15 is a region where the active material is not applied. The electrode terminal 14 is mounted on the electrode terminal mounting portion 15. In the figure, A represents the width of the active material region, B represents the electrode terminal width, and C represents the length of the active material region.

図4に示される活物質領域13は長方形であるので、活物質領域13の幅は一定である。しかし、図24あるいは図25のような形状の活物質領域13を有する正極体または負極体の場合は、活物質領域13の幅は場所によって異なる。このような場合における活物質領域の幅とは、活物質領域13の幅であって、電極端子14が延出する方向に対して垂直な方向の幅のうち最も狭いもののことを指す。すなわち図24あるいは図25においては、AではなくA'が活物質領域の幅である。これは、後述する電流通過距離が活物質領域13の幅のうち最も狭い幅に依存して定まることによる。   Since the active material region 13 shown in FIG. 4 is rectangular, the width of the active material region 13 is constant. However, in the case of the positive electrode body or the negative electrode body having the active material region 13 having the shape as shown in FIG. 24 or FIG. 25, the width of the active material region 13 varies depending on the location. The width of the active material region in such a case refers to the width of the active material region 13 and the narrowest width in the direction perpendicular to the direction in which the electrode terminal 14 extends. That is, in FIG. 24 or FIG. 25, A ′, not A, is the width of the active material region. This is because a later-described current passing distance is determined depending on the narrowest width among the widths of the active material region 13.

本発明に係る扁平型電池では、B/Aの値が57%以上になるように負極体1、正極体2、負極端子4および正極端子5の寸法を決定する。上記の構成を採ることにより電池要素からの発熱を抑制することができる。その理由は後述する。   In the flat battery according to the present invention, the dimensions of the negative electrode body 1, the positive electrode body 2, the negative electrode terminal 4, and the positive electrode terminal 5 are determined so that the B / A value is 57% or more. By adopting the above configuration, heat generation from the battery element can be suppressed. The reason will be described later.

図3に示される電池要素はフィルム外装体6に収納され、電解質を外装体内部へ注入後、フィルムを封止して図1に示すフィルム外装電池が得られる。フィルム外装体6には金属薄膜および熱融着性樹脂フィルムの少なくとも二層からなるラミネートフィルムを用いることができる。   The battery element shown in FIG. 3 is housed in the film outer package 6, and after the electrolyte is injected into the outer package, the film is sealed to obtain the film outer battery shown in FIG. For the film outer package 6, a laminate film composed of at least two layers of a metal thin film and a heat-fusible resin film can be used.

ここで、B/Aの値が57%以上になるような構成を採った場合に電池からの発熱を抑制できる理由を説明する。   Here, the reason why the heat generation from the battery can be suppressed when the configuration in which the value of B / A is 57% or more will be described.

第一に、電極端子の幅Bを広げることにより、電極端子自体の抵抗が下がるため、電極端子からの発熱が抑制されるからである。従来の電池においては、B/A値は概ね10〜30%のものが殆どであり、また正負両極の電極端子を電池の同一の辺より延出させている場合が多く、両極の電極端子の接触を回避するために、幅広のものでも50%未満にせざるを得なかった。本発明においてはB/A値を57%以上としているため、上記効果が得られる。   First, because the resistance of the electrode terminal itself is lowered by increasing the width B of the electrode terminal, heat generation from the electrode terminal is suppressed. In conventional batteries, the B / A value is almost 10 to 30% in most cases, and positive and negative electrode terminals are often extended from the same side of the battery. In order to avoid contact, even a wide one has to be less than 50%. In the present invention, since the B / A value is 57% or more, the above effect can be obtained.

第二に、B/A値を57%以上とすることにより、電流通過経路を短縮することが可能となるため、電池要素からの発熱が抑制されるからである。本実施形態における電流通過距離とは、理論上とりうるすべての電流経路の距離の平均値をいう。図5は、図4のモデルにおいてシミュレーションにより電流通過距離を求め、B/Aとの関係をグラフにしたものである。図中、電流通過距離は、端子幅が1mmであるときの電流通過距離を100%としたときの比率で表示されている。電流通過距離と発熱量は比例関係にあるため、電流通過距離が短縮されるほど、発熱量が抑制されることとなる。ここで図5を参照すれば、CとAの比率に関わらずB/A値が57%以上の場合に電流通過距離の値が小さくなっていることが分かる。したがって、B/A値が57%以上の場合に発熱量が効果的に抑制されるのである。さらに、上記電流通過距離の短縮は、電池の内部抵抗を低下させる効果を併有するため、この点においても電池要素からの発熱抑制に寄与する。   Secondly, by setting the B / A value to 57% or more, the current passage path can be shortened, and thus heat generation from the battery element is suppressed. The current passing distance in this embodiment refers to an average value of distances of all current paths that can be theoretically taken. FIG. 5 is a graph showing the relationship between B / A and the current passing distance obtained by simulation in the model of FIG. In the figure, the current passing distance is displayed as a ratio when the current passing distance when the terminal width is 1 mm is 100%. Since the current passing distance and the heat generation amount are in a proportional relationship, the heat generation amount is suppressed as the current passing distance is shortened. Referring to FIG. 5, it can be seen that the value of the current passing distance is small when the B / A value is 57% or more regardless of the ratio of C and A. Therefore, when the B / A value is 57% or more, the calorific value is effectively suppressed. Furthermore, since the reduction of the current passing distance has the effect of reducing the internal resistance of the battery, this also contributes to the suppression of heat generation from the battery element.

また、上記電池を単電池として、複数の単電池を接続して所望の電圧、容量の組電池を構成することができる。例えば、正、負極を揃えて積層し接続することによって並列接続による組電池が得られる。また、積層する際に正、負極を交互に接続すれば直列接続による組電池が得られる。さらに、並列接続と直列接続を併用して組電池を構成することも可能であり、自由なレイアウトでかつ空間を有効利用した、直列、並列、直並列型組電池を得ることができる。   Moreover, the said battery can be made into a single battery, and a some battery can be connected and the assembled battery of desired voltage and capacity | capacitance can be comprised. For example, an assembled battery by parallel connection can be obtained by stacking and connecting positive and negative electrodes together. In addition, when the positive and negative electrodes are alternately connected when stacking, an assembled battery by series connection is obtained. Furthermore, the assembled battery can be configured by using both parallel connection and series connection, and a series, parallel, and series-parallel assembled battery having a free layout and effectively using space can be obtained.

また、上記組電池においては、個々の電池の内部抵抗および電極端子の抵抗が低減されているため、大電流による充放電時の発熱を効果的に抑えることができ、組電池全体の温度上昇を緩和することが可能となる。加えて、電極端子に施す放熱対策工事が不要となるため、軽量かつ安価で信頼性の高い組電池を構成することが可能となる。   Further, in the above assembled battery, since the internal resistance of each battery and the resistance of the electrode terminal are reduced, heat generation during charging / discharging due to a large current can be effectively suppressed, and the temperature rise of the entire assembled battery can be suppressed. It can be mitigated. In addition, since the heat radiation countermeasure work applied to the electrode terminals is not required, it is possible to configure a lightweight, inexpensive and highly reliable assembled battery.

なお、本実施形態においては、正負両極の電極端子を互いに反対方向に延出させた場合について説明したが、例えば、正負両極の電極端子を隣り合う二辺に配置しても良いし、二対の正負両極の電極端子を四辺に配置させても良い。このような構成にすることにより、平面方向にレイアウトする際の自由度が大きくなるという利点がある。
(実施例1)
In this embodiment, the case where the positive and negative electrode terminals are extended in opposite directions has been described. However, for example, the positive and negative electrode terminals may be arranged on two adjacent sides, or two pairs The positive and negative electrode terminals may be arranged on four sides. With such a configuration, there is an advantage that the degree of freedom when laying out in the plane direction is increased.
(Example 1)

次に、実施例に基づいて本発明を詳細に説明する。   Next, based on an Example, this invention is demonstrated in detail.

図2および図3に示されるように、15μm厚の銅箔シート上にハードカーボンを50μm程度両面塗布した負極体1と、20μm厚のアルミ箔シート上にリチウムマンガン複合酸化物を70μm程度両面塗布した正極体2と、25μm厚の多孔性絶縁樹脂薄膜シートであり、ポリエチレンフィルムとポリプロピレンフィルムを積層して構成された積層型セパレータ3とを交互に積層した。図3に示されるように、負極集電部7及び正極集電部8を、積層された発電要素体に重ならないよう引きだし、負極集電部7及び正極集電部8にそれぞれ100μm厚ニッケル製の負極端子4及び100μm厚アルミニウム製の正極端子5を超音波溶接及び抵抗溶接を用いて溶接した。その後、図1に示すように約100μmのアルミニウム箔のラミネートフィルムで包み、内部にプロピレンカーボネートとメチルエチルカーボネートの非水系溶媒に六フッ化リン酸リチウムを濃度が1mol/Lになるように溶解させた電解液を注入し、減圧封止を行って二次電池を作製した。ここで、電池の外形寸法(電極端子突出部は除外)は95mm×160mm、使用した負極体1の寸法は70mm×125mm、正極体2の寸法は65mm×120mm、積層型セパレータ3の寸法は75mm×130mmとし、負極端子4及び正極端子5の寸法はともに長さ40mm、幅40mmとした。したがって、負極および正極のB/A値はそれぞれ0.57および0.62であった。
(実施例2)
As shown in FIGS. 2 and 3, the negative electrode body 1 in which hard carbon is coated on both sides by about 50 μm on a 15 μm thick copper foil sheet, and the lithium manganese composite oxide is coated on both sides by about 70 μm on a 20 μm thick aluminum foil sheet. The positive electrode body 2 and a porous insulating resin thin film sheet having a thickness of 25 μm, and laminated separators 3 formed by laminating a polyethylene film and a polypropylene film were alternately laminated. As shown in FIG. 3, the negative electrode current collector 7 and the positive electrode current collector 8 are drawn out so as not to overlap the stacked power generation element bodies, and are respectively made of 100 μm thick nickel on the negative electrode current collector 7 and the positive electrode current collector 8. The negative electrode terminal 4 and the positive electrode terminal 5 made of 100 μm thick aluminum were welded using ultrasonic welding and resistance welding. Thereafter, as shown in FIG. 1, it is wrapped with a laminate film of about 100 μm aluminum foil, and lithium hexafluorophosphate is dissolved in a non-aqueous solvent of propylene carbonate and methyl ethyl carbonate so that the concentration becomes 1 mol / L. A secondary battery was produced by injecting the electrolyte solution and sealing under reduced pressure. Here, the external dimensions of the battery (excluding electrode terminal protrusions) are 95 mm × 160 mm, the negative electrode body 1 used is 70 mm × 125 mm, the positive electrode body 2 is 65 mm × 120 mm, and the laminated separator 3 is 75 mm. The dimensions of the negative electrode terminal 4 and the positive electrode terminal 5 were both 40 mm in length and 40 mm in width. Therefore, the B / A values of the negative electrode and the positive electrode were 0.57 and 0.62, respectively.
(Example 2)

実施例1と同様の構成としたが、負極端子4及び正極端子5の幅については50mmとした。したがって、負極および正極のB/A値はそれぞれ0.71および0.77であった。
(比較例1)
Although it was set as the structure similar to Example 1, about the width | variety of the negative electrode terminal 4 and the positive electrode terminal 5, it was 50 mm. Therefore, the B / A values of the negative electrode and the positive electrode were 0.71 and 0.77, respectively.
(Comparative Example 1)

実施例1と同様の構成としたが、負極端子4及び正極端子5の幅については10mmとした。したがって、負極および正極のB/A値はそれぞれ0.14および0.15であった。
(比較例2)
Although it was set as the structure similar to Example 1, about the width | variety of the negative electrode terminal 4 and the positive electrode terminal 5, it was 10 mm. Therefore, the B / A values of the negative electrode and the positive electrode were 0.14 and 0.15, respectively.
(Comparative Example 2)

実施例1と同様の構成としたが、負極端子4及び正極端子5の幅については20mmとした。したがって、負極および正極のB/A値はそれぞれ0.29および0.31であった。
(比較例3)
Although it was set as the structure similar to Example 1, about the width | variety of the negative electrode terminal 4 and the positive electrode terminal 5, it was 20 mm. Therefore, the B / A values of the negative electrode and the positive electrode were 0.29 and 0.31, respectively.
(Comparative Example 3)

実施例1と同様の構成としたが、負極端子4及び正極端子5の幅については30mmとした。したがって、負極および正極のB/A値はそれぞれ0.43および0.46であった。   Although it was set as the structure similar to Example 1, about the width | variety of the negative electrode terminal 4 and the positive electrode terminal 5, it was 30 mm. Therefore, the B / A values of the negative electrode and the positive electrode were 0.43 and 0.46, respectively.

したがって、実施例1および2についてはB/A値が57%以上となり、比較例1〜3ではB/A値が57%に満たないことになる。   Therefore, in Examples 1 and 2, the B / A value is 57% or more, and in Comparative Examples 1 to 3, the B / A value is less than 57%.

図6は実施例1、2、比較例1〜3の電池の電極端子幅とセル直流抵抗実効値との関係を示した図である。セル直流抵抗実効値とは、端子抵抗と発電要素の抵抗(セル内部抵抗)の和である。電極端子幅を広げることにより端子抵抗が小さくなっており、実施例1および2においては、比較例1の抵抗値の約25%に低減されていることがわかる。   FIG. 6 is a graph showing the relationship between the electrode terminal width and the cell DC resistance effective value of the batteries of Examples 1 and 2 and Comparative Examples 1 to 3. The cell DC resistance effective value is the sum of the terminal resistance and the resistance of the power generation element (cell internal resistance). It can be seen that the terminal resistance is reduced by widening the electrode terminal width, and in Examples 1 and 2, the resistance value is reduced to about 25% of the resistance value of Comparative Example 1.

また、図7を参照して、端子幅10mmのセル内部抵抗を100%としたときのセル内部抵抗の比を検討すると、電極端子幅が実施例1及び2においては、セル内部抵抗もまた減少していることがわかる。この作用は、上記電流通過距離の短縮によりもたらされるものと考えられ、電池要素からの発熱の抑制に寄与する。   In addition, referring to FIG. 7, when the ratio of the cell internal resistance when the cell internal resistance with a terminal width of 10 mm is taken as 100%, the cell internal resistance is also reduced in the first and second embodiments. You can see that This effect is considered to be brought about by shortening the current passing distance, and contributes to suppression of heat generation from the battery element.

次に、実施例1または2の電池を単電池として、これを複数用いて構成した組電池の実施例を参照して詳細に説明する。
(実施例3)
Next, the battery of Example 1 or 2 will be described in detail with reference to an example of an assembled battery configured by using a plurality of single batteries.
(Example 3)

図8(a)は、2個の単電池を並列に接続したものを3個作製した後、これらを直列に接続して構成した組電池を示したものである。これを3直2並型と呼ぶこととし、以降、X個の単電池を並列に接続したものをY個直列に接続した場合をY直X並型と称することにする。   FIG. 8A shows an assembled battery in which two cells are connected in parallel and then three are connected in series. This will be referred to as a 3 series 2 parallel type, and hereinafter, a case where X pieces of cells connected in parallel are connected in series to Y pieces will be referred to as a Y series X parallel type.

まず、単電池を2個重ねた2並列ユニットを3個作製し、次いで当該並列ユニットの負極集電部7と正極集電部8とを超音波溶接、またはスポット溶接、カシメ等により交互に接続した。便宜上図8(a)には集電部接続部9を設けているが、この部分が溶接またはカシメにより接続した部分である。最終的には並列ユニットを図8(a)のように3段に重ね、両側集電端子取り出しタイプの3直2並型の組電池を得た。
(実施例4)
First, three 2-parallel units with two cells stacked are manufactured, and then the negative electrode current collector 7 and the positive electrode current collector 8 of the parallel unit are alternately connected by ultrasonic welding, spot welding, caulking, or the like. did. For convenience, the current collector connecting portion 9 is provided in FIG. 8A, which is a portion connected by welding or caulking. Finally, the parallel units were stacked in three stages as shown in FIG. 8 (a) to obtain a three-series and two-parallel battery pack with two current collecting terminals taken out.
Example 4

本実施例は、2直3並型の組電池に関するものである。   The present embodiment relates to a two-by-three battery pack.

図8(b)は2直3並型の組電池の構成を示した図である。まず、単電池を3個重ねた3並列ユニットを2個作製し、一方の並列ユニットの正極集電部8と他方の並列ユニットの負極集電部7とを超音波溶接、またはスポット溶接、カシメ等により交互に接続した。便宜上図8(b)にも集電部接続部9を設けているがこの部分が溶接またはカシメにより接続する部分である。最終的には上記2個の並列ユニットを図8(b)のように2段に重ね、片側集電端子取り出しタイプの2直3並型の組電池を得た。   FIG. 8B is a diagram showing the configuration of a two-by-three battery pack. First, two three parallel units each having three unit cells are produced, and the positive electrode current collector 8 of one parallel unit and the negative electrode current collector 7 of the other parallel unit are ultrasonically welded, spot welded, or caulked. Etc. were connected alternately. For convenience, the current collector connecting portion 9 is also provided in FIG. 8B, but this portion is a portion connected by welding or caulking. Finally, the two parallel units were stacked in two stages as shown in FIG. 8B to obtain a two-line / three-parallel type assembled battery of one-side current collecting terminal extraction type.

実施例3および4に示されるように、電極端子同士の接続方法を変化させることによって、組電池の片側からでも両側からでも自由に集電端子を引き出すことが可能となる。   As shown in Examples 3 and 4, by changing the connection method between the electrode terminals, it is possible to draw out the current collecting terminal freely from one side or both sides of the assembled battery.

さらに組電池のバリエーションを示すために実施例を提示するが、これらの説明の際に使用する図中の記号の説明を、図9を用いて行う。図9は2直1並型の組電池を示す図である。図中、黒丸は負極端子4を、白丸は正極端子5を、網掛け長方形は単電池を、黒丸と白丸を結ぶ線は集電部接続部9をそれぞれ表す。集電部接続部9は実施例3および4に記した方法と同様にして接続される。また、負極端子4または負極集電部7より引き出された線は負極集電端子10を表し、正極端子5または正極集電部8より引き出された線は正極集電端子11を表す。また、直並列組電池の場合は、例えば図20に示されるように並列部分を並列組電池と考え、並列ユニット12とする。
(実施例5)
Furthermore, although an Example is shown in order to show the variation of an assembled battery, the description of the symbol in the figure used in the case of these description is given using FIG. FIG. 9 is a diagram showing a two-by-one assembled battery. In the figure, the black circle represents the negative electrode terminal 4, the white circle represents the positive electrode terminal 5, the shaded rectangle represents the unit cell, and the line connecting the black circle and the white circle represents the current collector connection portion 9. The current collector connecting portion 9 is connected in the same manner as described in the third and fourth embodiments. A line drawn from the negative electrode terminal 4 or the negative electrode current collector 7 represents the negative electrode current collector terminal 10, and a line drawn from the positive electrode terminal 5 or the positive electrode current collector 8 represents the positive electrode current collector terminal 11. In the case of a series-parallel battery pack, for example, as shown in FIG.
(Example 5)

本実施例は、6直1並型の組電池に関するものである。   The present embodiment relates to a 6-by-1 parallel battery.

図10に、6個の単電池を全て直列に接続した6直1並型の組電池の構成を示す。6直1並型の場合、図10(a)に示されるように6個の単電池を1箇所に積層することも可能であるし、図10(b)のように積層せずに全ての単電池を平面上に展開することもできる。さらに、図10(c)、図10(d)のように2または3箇所にわけて積層することも可能であり、自由にレイアウトすることが可能となっている。
(実施例6)
FIG. 10 shows a configuration of a 6-series-parallel battery pack in which all 6 unit cells are connected in series. In the case of the 6-line 1-line type, it is possible to stack 6 unit cells in one place as shown in FIG. 10 (a), or to stack all the cells without stacking as shown in FIG. 10 (b). A cell can also be developed on a plane. Further, as shown in FIGS. 10 (c) and 10 (d), it is possible to stack two or three places, and it is possible to lay out freely.
(Example 6)

本実施例は、6並1直型の組電池に関するものである。   The present embodiment relates to a 6-by-1 direct battery assembly.

図11は、6個の単電池を、正、負極を揃えて積層し接続することによって構成された6並1直型の組電池を示したものである。6並1直型の場合はこの構成のみが採りうる。   FIG. 11 shows a 6-by-1 direct battery assembly constructed by stacking and connecting six unit cells with the positive and negative electrodes aligned. In the case of 6 parallel 1 straight type, only this configuration can be adopted.

以上、実施例3〜6において本発明に係る組電池の実施例を示したが、上記組電池においては、個々の電池の内部抵抗および電極端子の抵抗が低減されているため、大電流による充放電時の発熱を効果的に抑えることができ、組電池全体の温度上昇を緩和することが可能となる。加えて、電極端子に施す放熱対策工事が不要となるため、軽量かつ安価で信頼性の高い組電池を構成することが可能となる。   As mentioned above, although the Example of the assembled battery which concerns on this invention was shown in Examples 3-6, since the internal resistance of each battery and the resistance of an electrode terminal are reduced in the said assembled battery, charging by large current is carried out. Heat generation during discharging can be effectively suppressed, and the temperature rise of the entire assembled battery can be mitigated. In addition, since the heat radiation countermeasure work applied to the electrode terminals is not required, it is possible to configure a lightweight, inexpensive and highly reliable assembled battery.

また、上記実施例に示した如く、複数の上記電池を平面方向に並べて接続したり、垂直方向に積み上げて接続したり、あるいはこれらを併用して接続することにより、自由なレイアウトでかつ空間を有効利用した、直列、並列、直並列型組電池を得ることができる。   In addition, as shown in the above embodiment, a plurality of the batteries are connected in a plane direction, stacked in the vertical direction and connected together, or a combination of these is used to provide a free layout and space. It is possible to obtain a series, parallel, and series-parallel assembled battery that is effectively utilized.

なお、上記実施例では6個の単電池を用いた場合の組電池の例を示したが、用いる単電池の個数および単電池を積層する箇所の数を変化させることにより様々な組電池の構成が可能である。以下に例示する。
(実施例7)
In addition, although the example of the assembled battery at the time of using six unit cells was shown in the said Example, the structure of various assembled batteries is changed by changing the number of the unit cells to be used, and the number of the places which laminate | stack a unit cell. Is possible. Examples are given below.
(Example 7)

本実施例は、片側集電端子取り出しタイプの直列組電池に関するものである。   The present embodiment relates to a series assembled battery of a single side collecting terminal take-out type.

図12および図13に片側集電端子取り出しタイプの直列組電池の構成例を示す。図12に4直列の場合の組電池構成を、図13に8直列の場合の組電池構成を示す。図12(a)は単電池4個の正負極を交互に接続したものを4段に重ねた構成になっている。図12(b)は単電池4個の正負極を交互に接続したものを2段に重ねた構成になっている。また、図13(a)は単電池8個の正負極を交互に接続したものを8段に重ねた構成になっている。図13(b)は単電池8個の正負極を交互に接続したものを4段に重ねた構成になっている。図13(c)は単電池8個の正負極を交互に接続したものを2段に重ねた構成になっている。図12および図13に示すように直列組電池で集電端子を片側から引き出す場合は偶数個の二次電池を用いて、偶数段になるよう重ねることによって実現できる。重ねる偶数段数は、構成する二次電池数と構成する二次電池数を越えない偶数との公約数であり、この公約数の数だけ組み合わせが存在する。
(実施例8)
FIG. 12 and FIG. 13 show a configuration example of a series assembled battery of a single side collecting terminal take-out type. FIG. 12 shows an assembled battery configuration in the case of 4 series, and FIG. 13 shows an assembled battery configuration in the case of 8 series. FIG. 12A shows a configuration in which four positive and negative cells of four cells are alternately connected and stacked in four stages. FIG. 12B shows a configuration in which the positive and negative electrodes of four unit cells are alternately connected in two stages. Moreover, Fig.13 (a) has the structure which piled up what connected the positive / negative electrode of eight unit cells alternately in 8 steps | paragraphs. FIG. 13B shows a configuration in which the positive and negative electrodes of eight single cells are alternately connected and stacked in four stages. FIG. 13C shows a configuration in which the positive and negative electrodes of eight single cells are alternately connected and stacked in two stages. As shown in FIG. 12 and FIG. 13, when the current collecting terminal is drawn out from one side with a series assembled battery, it can be realized by using an even number of secondary batteries and stacking them in an even number of stages. The number of even stages to be overlapped is a common divisor of the number of secondary batteries to be configured and an even number not exceeding the number of secondary batteries to be configured, and there are combinations corresponding to the number of the common divisors.
(Example 8)

本実施例は、両側集電端子取り出しタイプの直列組電池に関するものである。   The present embodiment relates to a series assembled battery of both-side current collecting terminal extraction type.

両側集電端子取り出しタイプの直列組電池の構成例を図14から図16に示す。図14に3直列の場合の組電池構成を、図15に6直列の場合の組電池構成を、図16に9直列の場合の組電池構成を示す。図14(a)は単電池3個の正負極を交互に接続したものを3段に重ねた構成になっている。図14(b)は単電池3個の正負極を交互に接続したものを重ねずに1段にした構成となっている。図15(a)は単電池6個の正負極を交互に接続したものを3段に重ねた構成になっている。図15(b)は単電池6個の正負極を交互に接続したものを重ねずに1段にした構成となっている。また、図16(a)は単電池9個の正負極を交互に接続したものを9段に重ねた構成になっている。図16(b)は単電池9個の正負極を交互に接続したものを3段に重ねた構成になっている。図16(c)は単電池9個の正負極を交互に接続したものを重ねずに1段にした構成となっている。図14から図16に示すように、直列組電池で集電端子を両側から引き出す場合は、構成する二次電池数に関わらず奇数段になるよう重ねることによって実現できる。重ねる奇数段数は構成する二次電池数と構成する二次電池数を越えない奇数との公約数であり、この公約数の数だけ組み合わせが存在する。
(実施例9)
A configuration example of a series assembled battery of the both-side current collecting terminal extraction type is shown in FIGS. FIG. 14 shows an assembled battery configuration in the case of 3 series, FIG. 15 shows an assembled battery configuration in the case of 6 series, and FIG. 16 shows an assembled battery configuration in the case of 9 series. FIG. 14A shows a configuration in which three positive and negative cells of three cells are alternately connected and stacked in three stages. FIG. 14B shows a configuration in which the positive and negative electrodes of three single cells are alternately connected to each other without overlapping. FIG. 15A shows a configuration in which the positive and negative electrodes of six single cells are alternately connected and stacked in three stages. FIG. 15 (b) shows a configuration in which the positive and negative electrodes of six single cells are alternately connected in a single stage without overlapping. FIG. 16A shows a configuration in which nine positive and negative cells of nine cells are alternately connected and stacked in nine stages. FIG. 16B shows a configuration in which nine cells are alternately connected in positive and negative directions in three stages. FIG. 16 (c) shows a configuration in which nine positive and negative cells of nine cells are alternately connected and not stacked. As shown in FIGS. 14 to 16, when the current collecting terminal is drawn out from both sides in a series assembled battery, it can be realized by stacking in an odd number regardless of the number of secondary batteries to be configured. The number of stacked odd stages is a common divisor of the number of secondary batteries to be configured and an odd number not exceeding the number of secondary batteries to be configured, and there are combinations corresponding to the number of the common divisors.
Example 9

本実施例は、両側集電端子取り出しタイプの並列組電池に関するものである。   The present embodiment relates to a parallel assembled battery in which both-side current collecting terminals are taken out.

図17に両側集電端子取り出しタイプの並列組電池の構成図を示す。図17から分かるように並列接続の場合は両側集電端子取り出しタイプのみ構成可能で、単純に並列数分を重ねる構造になっている。
(実施例10)
FIG. 17 shows a configuration diagram of a parallel assembled battery of the both-side current collecting terminal extraction type. As can be seen from FIG. 17, in the case of the parallel connection, only the both-side current collecting terminal extraction type can be configured, and the number of parallel connections is simply overlapped.
(Example 10)

本実施例は、片側集電端子取り出しタイプの直並列組電池に関するものである。   The present embodiment relates to a series-parallel assembled battery of a single side collecting terminal take-out type.

図18から図20に片側集電端子取り出しタイプの直並列組電池の構成例を示す。図18に2直4並型の組電池構成を、図19に4直3並型の組電池構成を、図20に8直2並型の組電池構成を示す。図18は単電池8個から並列数分重ねた並列ユニット12を2個作製し、並列ユニット12の正負極同士を交互に接続したものを2段に重ねた構成になっている。また、図19(a)は単電池12個から並列数分重ねた並列ユニット12を4個作製し、並列ユニット12の正負極同士を交互に接続したものを4段に重ねた構成になっている。図19(b)は単電池12個から並列数分重ねた並列ユニット12を4個作製し、並列ユニット12の正負極同士を交互に接続したものを2段に重ねた構成になっている。また、図20(a)は単電池16個から並列数分重ねた並列ユニット12を8個作製し、並列ユニット12の正負極同士を交互に接続したものを8段に折り重ねた構成になっている。図20(b)は単電池16個から並列数分重ねた並列ユニット12を8個作製し、並列ユニット12の正負極同士を交互に接続したものを4段に重ねた構成になっている。図20(c)は単電池16個から並列数分重ねた並列ユニット12を8個作製し、並列ユニット12の正負極同士を交互に接続したものを2段に重ねた構成になっている。   FIG. 18 to FIG. 20 show a configuration example of a series-parallel assembled battery of one-side current collecting terminal extraction type. FIG. 18 shows a 2-serial 4-parallel assembled battery configuration, FIG. 19 shows a 4-serial 3-parallel assembled battery configuration, and FIG. 20 shows an 8-serial 2-parallel assembled battery configuration. FIG. 18 shows a configuration in which two parallel units 12 are produced by stacking the number of parallel cells from eight single cells, and the positive and negative electrodes of the parallel units 12 are alternately connected in two stages. In addition, FIG. 19A shows a configuration in which four parallel units 12 that are stacked in parallel from the number of unit cells 12 are manufactured, and the positive and negative electrodes of the parallel units 12 that are alternately connected are stacked in four stages. Yes. FIG. 19B shows a configuration in which four parallel units 12 that are stacked in parallel from the number of unit cells 12 are prepared, and the positive and negative electrodes of the parallel units 12 that are alternately connected are stacked in two stages. FIG. 20A shows a configuration in which eight parallel units 12 that are stacked in parallel from 16 single cells are produced, and the positive and negative electrodes of the parallel units 12 are alternately connected and folded in eight stages. ing. FIG. 20B shows a configuration in which eight parallel units 12 that are stacked in parallel from the 16 cells are produced, and the positive and negative electrodes of the parallel units 12 are alternately connected in four stages. FIG. 20C shows a configuration in which eight parallel units 12 that are stacked in parallel from the 16 cells are produced and two positive and negative electrodes of the parallel units 12 are alternately connected in two stages.

図18から図20に示すように、2直2並型以上の組電池で集電端子を片側から引き出す場合は、4個以上の単電池を用いた偶数直列で、かつ、重ねる並列ユニット段数が偶数であれば実現できる。重ねる並列ユニットの段数は構成する偶数直列数と偶数との公約数であり、この公約数の数だけ組み合わせが存在する。
(実施例11)
As shown in FIG. 18 to FIG. 20, in the case where the current collecting terminal is pulled out from one side with an assembled battery of 2 series 2 parallel type or more, the number of parallel unit stages to be stacked in an even series using 4 or more unit cells If it is an even number, it can be realized. The number of stages of the parallel units to be stacked is a common divisor of the even-numbered series number and the even number, and there are combinations corresponding to the common divisor number.
(Example 11)

本実施例は、両側集電端子取り出しタイプの直並列組電池に関するものである。   The present embodiment relates to a series-parallel assembled battery of both-side current collecting terminal extraction type.

両側集電端子取り出しタイプの直並列組電池の構成例を図21から図23に示す。図21に3直6並型の組電池構成を、図22に6直3並型の組電池構成を、図23に9直2並型の組電池構成を示す。図21(a)は単電池18個から並列数分重ねた並列ユニット12を3個作製し、並列ユニット12の正負極同士を交互に接続したものを3段に重ねた構成になっている。図21(b)は単電池18個から並列数分重ねた並列ユニット12を3個作製し、並列ユニット12の正負極同士を交互に接続したものを重ねずに1段とした構成になっている。また、図22(a)は単電池18個から並列数分重ねた並列ユニット12を6個作製し、並列ユニット12の正負極同士を交互に接続したものを3段に重ねた構成になっている。図22(b)は単電池18個から並列数分重ねた並列ユニット12を6個作製し、並列ユニット12の正負極同士を交互に接続したものを重ねずに1段とした構成になっている。図23(a)は単電池18個から並列数分重ねた並列ユニット12を9個作製し、並列ユニット12の正負極同士を交互に接続したものを9段に重ねた構成になっている。図23(b)は単電池18個から並列数分重ねた並列ユニット12を9個作製し、並列ユニット12の正負極同士を交互に接続したものを3段に重ねた構成になっている。図23(c)は単電池18個から並列数分重ねた並列ユニット12を9個作製し、並列ユニット12の正負極同士を交互に接続したものを1段にした構成になっている。   An example of the configuration of a series-parallel assembled battery of the both-side current collecting terminal extraction type is shown in FIGS. FIG. 21 shows a 3 series 6 parallel type assembled battery configuration, FIG. 22 shows a 6 series 3 parallel type assembled battery configuration, and FIG. 23 shows a 9 series 2 parallel type assembled battery configuration. FIG. 21A shows a configuration in which three parallel units 12 that are stacked in parallel from the number of 18 cells are produced, and the positive and negative electrodes of the parallel units 12 are alternately connected in three stages. FIG. 21 (b) shows a configuration in which three parallel units 12 are stacked in parallel from the number of 18 cells, and the positive and negative electrodes of the parallel units 12 are alternately connected to each other without overlapping. Yes. In addition, FIG. 22A is a configuration in which six parallel units 12 are stacked in parallel from the number of 18 cells, and the positive and negative electrodes of the parallel units 12 are alternately connected in three stages. Yes. FIG. 22B shows a configuration in which six parallel units 12 are stacked in parallel from the number of 18 cells, and the positive and negative electrodes of the parallel units 12 are alternately connected to each other without overlapping. Yes. FIG. 23A shows a configuration in which nine parallel units 12 that are stacked in parallel from 18 single cells are produced, and the positive and negative electrodes of the parallel units 12 are alternately connected in nine stages. FIG. 23B shows a configuration in which nine parallel units 12 that are stacked in parallel from 18 single cells are produced, and the positive and negative electrodes of the parallel units 12 are alternately connected in three stages. FIG. 23 (c) shows a configuration in which nine parallel units 12 that are stacked in parallel from 18 single cells are manufactured, and the positive and negative electrodes of the parallel units 12 are alternately connected in one stage.

図21から図23に示すように、2直2並型以上の組電池で集電端子を両側から引き出す場合は、4個以上の単電池を用いて自由な直列数で、かつ、重ねる並列ユニット段数が奇数であれば実現できる。重ねる並列ユニットの段数は構成する直列数と奇数との公約数であり、この公約数の数だけ組み合わせが存在する。   As shown in FIG. 21 to FIG. 23, in the case where the current collector terminal is drawn out from both sides with an assembled battery of two series and two parallel type or more, a parallel unit that is stacked in a free series number using four or more unit cells This can be realized if the number of stages is an odd number. The number of stages of the parallel units to be stacked is a common divisor of the serial number and the odd number, and there are combinations of the common divisors.

以上、上記実施例に示したように、複数の上記電池を平面方向に並べて接続したり、垂直方向に積み上げて接続したり、あるいはこれらを併用して接続することにより、自由なレイアウトでかつ空間を有効利用した、直列、並列、直並列型組電池を得ることができる。また、個々の電池の内部抵抗および電極端子の抵抗が低減されているため、組電池として使用する際においても、大電流による充放電時の発熱を効果的に抑えることができ、組電池全体の温度上昇を緩和することが可能となる。加えて、電極端子に施す放熱対策工事が不要となるため、軽量かつ安価で信頼性の高い組電池を提供することが可能となる。   As described above, as shown in the above embodiments, a plurality of the batteries are connected in a plane direction, connected in a stacked manner in the vertical direction, or connected in combination, thereby providing a free layout and space. Series, parallel, and series-parallel assembled batteries can be obtained that effectively utilize. In addition, since the internal resistance of each battery and the resistance of the electrode terminal are reduced, even when used as an assembled battery, heat generation during charging / discharging due to a large current can be effectively suppressed, and the entire assembled battery It becomes possible to mitigate the temperature rise. In addition, since the heat radiation countermeasure work applied to the electrode terminals is not required, it is possible to provide a battery pack that is lightweight, inexpensive, and highly reliable.

1 負極体
2 正極体
3 積層型セパレータ
4 負極端子
5 正極端子
6 フィルム外装体
7 負極集電部
8 正極集電部
9 集電部接続部
10 負極集電端子
11 正極集電端子
12 並列ユニット
13 活物質領域
14 電極端子
15 電極端子取付部
DESCRIPTION OF SYMBOLS 1 Negative electrode body 2 Positive electrode body 3 Laminated separator 4 Negative electrode terminal 5 Positive electrode terminal 6 Film exterior body 7 Negative electrode current collection part 8 Positive electrode current collection part 9 Current collection part connection part 10 Negative electrode current collection terminal 11 Positive electrode current collection terminal 12 Parallel unit 13 Active material region 14 Electrode terminal 15 Electrode terminal mounting portion

Claims (14)

集電体に活物質を塗布した正極体と集電体に活物質を塗布した負極体とをそれぞれ複数有し、前記集電体は、活物質を塗布した活物質領域と、活物質が塗布されていない電極端子取付部よりなり、前記正極体と前記負極体とセパレータとが交互に積層され、複数の前記正極体の前記電極端子取付部は、平面視で互いに重なるとともに前記負極体及び前記セパレータと重ならない領域を有し、かつ、複数の前記負極体の前記電極端子取付部は、平面視で互いに重なるとともに前記正極体及び前記セパレータと重ならない領域を有する発電体を有し、金属薄膜および熱融着性樹脂膜を含むラミネートフィルムから成る外装体を有する扁平型電池であって、複数の前記正極体の集電体の前記電極端子取付部が重ねられ、その最外側には一の正極端子が取り付けられるとともに、複数の前記負極体の集電体の前記電極端子取付部が重ねられ、その最外側には一の負極端子が前記正極端子と離隔して取り付けられており、前記正極端子および負極端子が互いに対向して前記外装体の外周端縁部から導出されてなり、前記正極端子および負極端子が各々、
B/A≧0.57
(ただし、Aは活物質領域の幅を表し、Bは電極端子幅を表す。なお、活性物質領域の幅とは前記活性物質領域の幅であって、電極端子が延出する方向に対して垂直な方向の幅のうち最も狭いものである。電極端子幅とは、前記電極端子取付部における、前記電極端子が延出する方向に対する幅である。)を満たすことを特徴とする扁平型電池。
The current collector has a plurality of positive electrode bodies coated with an active material and a negative electrode body coated with an active material on a current collector, and the current collector is coated with an active material region coated with an active material and an active material coated The positive electrode body, the negative electrode body, and the separator are alternately stacked, and the electrode terminal mounting portions of the plurality of positive electrode bodies overlap with each other in a plan view and the negative electrode body and the separator A metal thin film having a region that does not overlap with the separator, and wherein the electrode terminal mounting portions of the plurality of negative electrode bodies overlap each other in plan view and have a region that does not overlap the positive electrode body and the separator And a flat battery having an outer package made of a laminate film including a heat-fusible resin film, wherein the electrode terminal mounting portions of a plurality of the positive electrode current collectors are stacked, Positive terminal With mounted, a plurality of said electrode terminal mounting portion of the negative electrode body of the current collector is superimposed, the and the negative terminal one on the outermost outside mounted spaced apart from the positive terminal, the positive terminal and the negative electrode Terminals are opposed to each other and are led out from the outer peripheral edge of the exterior body, each of the positive terminal and the negative terminal,
B / A ≧ 0.57
(However, A represents the width of the active material region, and B represents the electrode terminal width. Note that the width of the active material region is the width of the active material region, and the direction in which the electrode terminal extends) A flat battery characterized in that the width of the electrode terminal is the width of the electrode terminal mounting portion with respect to the direction in which the electrode terminal extends. .
請求項1に記載の扁平型電池において、前記電極端子取付部における、前記電極端子の延出する方向の前記電極端子の幅は一定であることを特徴とする扁平型電池。2. The flat battery according to claim 1, wherein a width of the electrode terminal in a direction in which the electrode terminal extends in the electrode terminal mounting portion is constant. 請求項1に記載の扁平型電池において、前記電極端子幅とは、前記電極端子取付部における、前記電極端子が延出する方向に対する幅のうち最も狭いものであることを特徴とする扁平型電池。2. The flat battery according to claim 1, wherein the electrode terminal width is the narrowest width of the electrode terminal mounting portion with respect to the direction in which the electrode terminal extends. . 集電体に活物質を塗布した正極体と集電体に活物質を塗布した負極体とをそれぞれ複数有し、前記集電体は、活物質を塗布した活物質領域と、活物質が塗布されていない電極端子取付部よりなり、前記正極体と前記負極体とセパレータとが交互に積層され、複数の前記正極体の前記電極端子取付部は、平面視で互いに重なるとともに前記負極体及び前記セパレータと重ならない領域を有し、かつ、複数の前記負極体の前記電極端子取付部は、平面視で互いに重なるとともに前記正極体及び前記セパレータと重ならない領域を有する発電体を有し、金属薄膜および熱融着性樹脂膜を含むラミネートフィルムから成る外装体を有する扁平型電池であって、複数の前記正極体の集電体の前記電極端子取付部が重ねられ、その最外側には一の正極端子が取り付けられるとともに、複数の前記負極体の集電体の前記電極端子取付部が重ねられ、その最外側には一の負極端子が前記正極端子と離隔して取り付けられており、前記正極端子および負極端子が互いに対向して前記外装体の外周端縁部から導出されてなり、前記正極端子および負極端子が各々、
B/A≧0.57
(ただし、Aは活物質領域の幅を表し、Bは電極端子幅を表す。なお、活性物質領域の幅とは前記活物質領域の幅であって、電極端子が延出する方向に対して垂直な方向の幅のうち最も狭いものである。電極端子幅とは、前記電極端子取付部と接する部分における、前記電極端子が延出する方向に対する幅である。)を満たすことを特徴とする扁平型電池。
The current collector has a plurality of positive electrode bodies coated with an active material and a negative electrode body coated with an active material on a current collector, and the current collector is coated with an active material region coated with an active material and an active material coated The positive electrode body, the negative electrode body, and the separator are alternately stacked, and the electrode terminal mounting portions of the plurality of positive electrode bodies overlap with each other in a plan view and the negative electrode body and the separator A metal thin film having a region that does not overlap with the separator, and wherein the electrode terminal mounting portions of the plurality of negative electrode bodies overlap each other in plan view and have a region that does not overlap the positive electrode body and the separator And a flat battery having an outer package made of a laminate film including a heat-fusible resin film, wherein the electrode terminal mounting portions of a plurality of the positive electrode current collectors are stacked, Positive terminal With mounted, a plurality of said electrode terminal mounting portion of the negative electrode body of the current collector is superimposed, the and the negative terminal one on the outermost outside mounted spaced apart from the positive terminal, the positive terminal and the negative electrode Terminals are opposed to each other and are led out from the outer peripheral edge of the exterior body, each of the positive terminal and the negative terminal,
B / A ≧ 0.57
(However, A represents the width of the active material region, and B represents the electrode terminal width. The width of the active material region is the width of the active material region, and the direction in which the electrode terminal extends) The width in the vertical direction is the narrowest, and the electrode terminal width is a width in a direction in which the electrode terminal extends in a portion in contact with the electrode terminal mounting portion. Flat battery.
請求項4に記載の扁平型電池において、前記電極端子取付部と接する部分における、前記電極端子の延出する方向の前記電極端子の幅は一定であることを特徴とする扁平型電池。5. The flat battery according to claim 4, wherein a width of the electrode terminal in a direction in which the electrode terminal extends in a portion in contact with the electrode terminal mounting portion is constant. 請求項4に記載の扁平型電池において、前記電極端子幅とは、前記電極端子取付部と接する部分における、前記電極端子が延出する方向に対する幅のうち最も狭いものであることを特徴とする扁平型電池。5. The flat battery according to claim 4, wherein the electrode terminal width is the narrowest width in a direction in which the electrode terminal extends in a portion in contact with the electrode terminal mounting portion. Flat battery. 集電体に活物質を塗布した正極体と集電体に活物質を塗布した負極体とをそれぞれ複数有し、前記集電体は、活物質を塗布した活物質領域と、活物質が塗布されていない電極端子取付部よりなり、前記正極体と前記負極体とセパレータとが交互に積層され、複数の前記正極体の前記電極端子取付部は、平面視で互いに重なるとともに前記負極体及び前記セパレータと重ならない領域を有し、かつ、複数の前記負極体の前記電極端子取付部は、平面視で互いに重なるとともに前記正極体及び前記セパレータと重ならない領域を有する発電体を有し、金属薄膜および熱融着性樹脂膜を含むラミネートフィルムから成る外装体を有する扁平型電池であって、複数の前記正極体の集電体の前記電極端子取付部が重ねられ、その最外側には一定の幅で延出する一の正極端子が取り付けられるとともに、複数の前記負極体の集電体の前記電極端子取付部が重ねられ、その最外側には一定の幅で延出する一の負極端子が前記正極端子と離隔して取り付けられており、前記正極端子および負極端子が互いに対向して前記外装体の外周端縁部から導出されてなり、前記正極端子および負極端子が各々、
B/A≧0.57
(ただし、Aは活物質領域の幅を表し、Bは電極端子幅を表す。なお、活性物質領域の幅とは前記活物質領域の幅であって、電極端子が延出する方向に対して垂直な方向の幅のうち最も狭いものである。電極端子幅とは、前記電極端子が延出する方向に対する幅である。)を満たすことを特徴とする扁平型電池。
The current collector has a plurality of positive electrode bodies coated with an active material and a negative electrode body coated with an active material on a current collector, and the current collector is coated with an active material region coated with an active material and an active material coated The positive electrode body, the negative electrode body, and the separator are alternately stacked, and the electrode terminal mounting portions of the plurality of positive electrode bodies overlap with each other in a plan view and the negative electrode body and the separator A metal thin film having a region that does not overlap with the separator, and wherein the electrode terminal mounting portions of the plurality of negative electrode bodies overlap each other in plan view and have a region that does not overlap the positive electrode body and the separator And a flat battery having an outer package made of a laminate film including a heat-fusible resin film, wherein the electrode terminal mounting portions of the current collectors of the plurality of positive electrode bodies are stacked, and the outermost electrode has a fixed portion. Extended in width One with a positive terminal is attached to a plurality of said electrode terminal mounting portion of the negative electrode body of the current collector is superimposed, and its negative terminal one extending at a constant width in the outermost said positive terminal The positive electrode terminal and the negative electrode terminal are led out from the outer peripheral edge of the exterior body so as to face each other, and the positive electrode terminal and the negative electrode terminal,
B / A ≧ 0.57
(However, A represents the width of the active material region, and B represents the electrode terminal width. The width of the active material region is the width of the active material region, and the direction in which the electrode terminal extends) A flat battery characterized in that the width of the electrode terminal is the narrowest of the widths in the vertical direction, which is the width in the direction in which the electrode terminals extend .
請求項1乃至7のいずれか1項に記載の扁平型電池において、前記正極体の集電体の前記電極端子取付部が面状に重ねられてなることを特徴とする扁平型電池。 The flat battery according to any one of claims 1 to 7, wherein the electrode terminal mounting portion of the current collector of the positive electrode body is overlapped in a planar shape. 請求項1乃至8のいずれか1項に記載の扁平型電池において、前記負極体の集電体の前記電極端子取付部が面状に重ねられてなることを特徴とする扁平型電池。 The flat battery according to any one of claims 1 to 8, wherein the electrode terminal mounting portion of the current collector of the negative electrode body is overlapped in a planar shape. 請求項1乃至9のいずれか1項に記載の扁平型電池が、前記正極端子または負極端子を介して複数個組み合わせて成る組電池。 The assembled battery which the flat type battery of any one of Claims 1 thru | or 9 combines in multiple numbers via the said positive electrode terminal or a negative electrode terminal. 請求項10に記載の組電池において、前記複数個の扁平型電池がそれぞれ直列に接続されたことを特徴とする組電池。 The assembled battery according to claim 10 , wherein the plurality of flat batteries are connected in series. 請求項11に記載の組電池において、前記扁平型電池が複数個積み重ねられたことを特徴とする組電池。 The assembled battery according to claim 11 , wherein a plurality of the flat batteries are stacked. 請求項10に記載の組電池において、積み重ねられた前記複数個の扁平型電池がそれぞれ並列に接続されたことを特徴とする組電池。 The assembled battery according to claim 10, wherein the plurality of stacked flat batteries are connected in parallel. 請求項13に記載の組電池が複数個、互いに直列に接続されてなる組電池。 An assembled battery comprising a plurality of assembled batteries according to claim 13 connected in series.
JP2009234993A 2009-10-09 2009-10-09 Flat battery and battery pack using the same Expired - Lifetime JP4784687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234993A JP4784687B2 (en) 2009-10-09 2009-10-09 Flat battery and battery pack using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234993A JP4784687B2 (en) 2009-10-09 2009-10-09 Flat battery and battery pack using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002026147A Division JP4428905B2 (en) 2002-02-01 2002-02-01 Flat battery and battery pack using the same

Publications (2)

Publication Number Publication Date
JP2010010145A JP2010010145A (en) 2010-01-14
JP4784687B2 true JP4784687B2 (en) 2011-10-05

Family

ID=41590335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234993A Expired - Lifetime JP4784687B2 (en) 2009-10-09 2009-10-09 Flat battery and battery pack using the same

Country Status (1)

Country Link
JP (1) JP4784687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847774B2 (en) 2016-09-21 2020-11-24 Kabushiki Kaisha Toshiba Assembled battery, battery pack and vehicle
EP4095997A1 (en) * 2021-05-27 2022-11-30 Bell Helicopter Textron Inc. Thermally efficient pouch cell architecture

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154873A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp Solid battery module and method of manufacturing the same
KR101192138B1 (en) 2010-07-01 2012-10-16 삼성에스디아이 주식회사 Electrode assembly, method for fabricating the electrode assembly and secondary battery including the electrode assembly
JP6007907B2 (en) * 2011-07-04 2016-10-19 日本電気株式会社 Secondary battery
CN103843174B (en) * 2011-10-06 2016-04-20 丰田自动车株式会社 The manufacture method of battery pack and battery pack
JP5957651B2 (en) * 2013-06-07 2016-07-27 パナソニックIpマネジメント株式会社 Assembled battery
WO2018131377A1 (en) 2017-01-13 2018-07-19 株式会社村田製作所 Secondary cell
JP7225193B2 (en) * 2020-12-25 2023-02-20 プライムプラネットエナジー&ソリューションズ株式会社 Battery module and manufacturing method thereof
JP7368400B2 (en) * 2021-01-15 2023-10-24 本田技研工業株式会社 Current collector structure and secondary battery using it

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896838A (en) * 1994-09-21 1996-04-12 Mitsubishi Chem Corp Lithium ion secondary battery
JPH09259859A (en) * 1996-03-21 1997-10-03 Toshiba Battery Co Ltd Thin type battery
JP3114719B2 (en) * 1999-02-02 2000-12-04 日本電気株式会社 Stacked battery
JP2001216950A (en) * 2000-02-02 2001-08-10 Sony Corp Chip type battery and battery pack device
JP3680744B2 (en) * 2001-02-23 2005-08-10 三菱マテリアル株式会社 Lithium ion polymer secondary battery
JP2002251989A (en) * 2001-02-23 2002-09-06 Mitsubishi Materials Corp Lithium ion polymer secondary battery
JP2002305029A (en) * 2001-04-06 2002-10-18 Mitsubishi Materials Corp Lithium ion polymer secondary battery
JP3755591B2 (en) * 2001-12-13 2006-03-15 日産自動車株式会社 Battery and assembled battery using the same
JP2003187781A (en) * 2001-12-21 2003-07-04 Sony Corp Battery and its manufacturing method, and battery module and its manufacturing method
JP4428905B2 (en) * 2002-02-01 2010-03-10 日本電気株式会社 Flat battery and battery pack using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847774B2 (en) 2016-09-21 2020-11-24 Kabushiki Kaisha Toshiba Assembled battery, battery pack and vehicle
EP4095997A1 (en) * 2021-05-27 2022-11-30 Bell Helicopter Textron Inc. Thermally efficient pouch cell architecture

Also Published As

Publication number Publication date
JP2010010145A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4428905B2 (en) Flat battery and battery pack using the same
JP4784687B2 (en) Flat battery and battery pack using the same
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5618010B2 (en) Lithium secondary battery having multidirectional lead-tab structure
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5058646B2 (en) High capacity battery cell with two or more unit cells
KR101395016B1 (en) A Stepwise Electrode Assembly, and Battery Cell, Battery Pack and Device Comprising the Same
JP6053227B2 (en) Battery assembly having a single electrode terminal coupling part
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP5377411B2 (en) Secondary battery
JP5392368B2 (en) Power storage device
JP5699909B2 (en) Secondary battery electrode body, secondary battery and vehicle
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
US8372536B2 (en) Battery module
JP2003234094A (en) Nonaqueous electrolyte battery
JP2018125142A (en) Power storge module
JP2013187046A (en) Battery pack
EP3007248A1 (en) Battery module
EP2874204B1 (en) Battery assembly
JPWO2009031442A1 (en) Stacked battery
JP2018088333A (en) Laminate type battery for series connection, and battery pack
KR101387137B1 (en) Electrode assembly and rechargeable battery with the same
WO2015002094A1 (en) Cell
JP5207283B2 (en) Battery pack and battery pack
JP2019145262A (en) Secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4784687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

EXPY Cancellation because of completion of term