JP4783607B2 - Particle capture method - Google Patents

Particle capture method Download PDF

Info

Publication number
JP4783607B2
JP4783607B2 JP2005258146A JP2005258146A JP4783607B2 JP 4783607 B2 JP4783607 B2 JP 4783607B2 JP 2005258146 A JP2005258146 A JP 2005258146A JP 2005258146 A JP2005258146 A JP 2005258146A JP 4783607 B2 JP4783607 B2 JP 4783607B2
Authority
JP
Japan
Prior art keywords
filter
measurement
particles
atmosphere
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005258146A
Other languages
Japanese (ja)
Other versions
JP2007071653A (en
Inventor
央之 加藤
浩史 鳴滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005258146A priority Critical patent/JP4783607B2/en
Publication of JP2007071653A publication Critical patent/JP2007071653A/en
Application granted granted Critical
Publication of JP4783607B2 publication Critical patent/JP4783607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粒子捕捉方法に関する。さらに詳述すると、本発明は、大気中に飛散する測定粒子を大気ごと吸引してフィルタによって捕捉する粒子捕捉方法に関するものである。 The present invention relates to a particle capture how. In more detail, the present invention relates to measuring particles scattered in the air for particulate capture how to capture the filter by suction by the air.

大気中に飛散している海塩を正確に計測する装置として、例えば気中塩分計がある。気中塩分計は、粒子を含む空気を高速のジェットでフィルムなどの壁面に衝突させた場合、ジェットが一定速度を超えると、一定粒径以上の粒子が高い効率で壁面に捕捉されるという原理を利用したものである。具体的には、ジェットの径が1mm、ジェットの速度が40m/sを超えると、ジェット中に含まれる直径1ミクロン以上の粒子は衝突した壁面に100%捕捉されるというものである(非特許文献1)。   As an apparatus for accurately measuring sea salt scattered in the atmosphere, for example, there is an air salinity meter. In the air salinity meter, when air containing particles collides with a wall such as a film with a high-speed jet, if the jet exceeds a certain speed, particles larger than a certain particle size will be trapped on the wall with high efficiency. Is used. Specifically, when the diameter of the jet is 1 mm and the speed of the jet exceeds 40 m / s, particles having a diameter of 1 micron or more contained in the jet are 100% trapped on the collided wall surface (non-patent document). Reference 1).

この原理を利用した海塩粒子測定器(非特許文献2)を図6に示す。ケーシング101内の空気をシリンジ104で吸引してケーシング101内を負圧にすることで、ケーシング101の先端に設けられたノズル102から大気を吸引する。ノズル102の先端は直径1mmの流路に絞られており、吸引した大気を高速ジェットにしてフィルム103に衝突させている。この衝突によって大気中に含まれる海塩粒子がフィルム103に捕捉される。そして、フィルム103に衝突した大気はフィルム103の表面に沿って流れた後、フィルム103の脇を通り抜けてシリンジ104内に吸引される。   A sea salt particle measuring instrument (Non-Patent Document 2) using this principle is shown in FIG. The air in the casing 101 is sucked by the syringe 104 to make the inside of the casing 101 have a negative pressure, whereby the atmosphere is sucked from the nozzle 102 provided at the tip of the casing 101. The tip of the nozzle 102 is restricted to a flow path having a diameter of 1 mm, and the sucked atmosphere is made to collide with the film 103 by using a high-speed jet. Sea salt particles contained in the atmosphere are captured by the film 103 by this collision. The air that has collided with the film 103 flows along the surface of the film 103, passes through the side of the film 103, and is sucked into the syringe 104.

フィルム103は、回転可能に支持されたフィルムステージ105に保持されている。ハンドル106を操作することでフィルムステージ105を回転させることができ、ノズル102から噴射させた高速ジェットが当たる場所を変えることができる。フィルム103には硝酸銀の溶液が塗布されており、捕捉した海塩粒子との接触部分は反応して変色する。この反応の痕跡を手掛かりにして大気中の海塩粒子の粒径分布を測定することができる。   The film 103 is held by a film stage 105 that is rotatably supported. By operating the handle 106, the film stage 105 can be rotated, and the place where the high-speed jet sprayed from the nozzle 102 hits can be changed. The film 103 is coated with a silver nitrate solution, and the contact portion with the captured sea salt particles reacts and changes color. Using the trace of this reaction as a clue, the particle size distribution of sea salt particles in the atmosphere can be measured.

「計測技術」日本工業出版株式会社 2002.3. p16〜19"Measurement Technology" Nippon Kogyo Publishing Co., Ltd. 2002.3. P16-19 Yoshiaki TOBA and Masaaki TANAKA "Simple technique for the measurement of giant sea-salt particles by use of a hand-operated impactor and a chloride reagent film" Special Contributions, Geophysical Institute, Kyoto University,No.7, 1967, 111-118Yoshiaki TOBA and Masaaki TANAKA "Simple technique for the measurement of giant sea-salt particles by use of a hand-operated impactor and a chloride reagent film" Special Contributions, Geophysical Institute, Kyoto University, No. 7, 1967, 111-118

しかしながら、上述の気中塩分計は、原理的には高速ジェット中に含まれる全ての海塩粒子をフィルム103によって捕捉可能であるが、実際には、特に大気の湿度が低い場合等には全ての海塩粒子を捕捉できるとは限らなかった。このため、測定の信頼性に劣っていた。   However, the above-mentioned air salinity meter can in principle capture all the sea salt particles contained in the high-speed jet by the film 103, but in practice, all in particular when the atmospheric humidity is low. Of sea salt particles could not be captured. For this reason, it was inferior to the reliability of measurement.

本発明は、たとえ大気の湿度が低い場合であっても大気中の粒子を確実に捕捉することができる粒子捕捉方法を提供することを目的とする。 The present invention aims at providing a particle capture how that can be likened capture reliably particles in the atmosphere even when atmospheric humidity is low.

かかる目的を達成するために請求項1記載の発明は、測定粒子よりも目が細かく且つ測定粒子と反応する薬が含浸又は塗布されているフィルタを通して大気を吸引し、大気中に飛散している測定粒子をフィルタで捕捉する粒子捕捉方法において、フィルタに捕捉された測定粒子が大気中の水分によって薬と反応できる程度にまで湿るのに必要な時間を考慮して吸引継続時間を予め決定しておき、大気の吸引を吸引継続時間続けてフィルタに捕捉された測定粒子を大気中の水分で湿らせて薬と反応させて固定するものである。 In order to achieve such an object, the invention described in claim 1 sucks the atmosphere through a filter that is finer than the measurement particles and impregnated or coated with a drug that reacts with the measurement particles, and is scattered in the atmosphere. In the particle capture method for capturing measurement particles with a filter, the suction duration is determined in advance in consideration of the time required for the measurement particles captured by the filter to get wet enough to react with the drug by moisture in the atmosphere. The measurement particles trapped in the filter are continuously sucked in the atmosphere for a period of time to be moistened with moisture in the atmosphere, reacted with the drug, and fixed.

フィルタを通して大気を吸引すると、大気中に飛散している測定粒子、即ち測定対象の粒子がフィルタによって捕捉される。測定粒子はフィルタの目によって捕捉され、また捕捉後も大気の吸引が続けられているので、測定粒子はフィルタにしっかりと付着する。そして、測定粒子が湿っている場合には、フィルタに含浸又は塗布されている薬とただちに反応して固定される。また、たとえ観測する大気の湿度が低く捕捉した測定粒子が乾燥している場合であっても、大気の吸引を続けることで大気中の水分によって捕捉した測定粒子を徐々に湿らすことができ、大気中の水分を吸ってミスト状になった部分がただちにフィルタに含まれている薬と反応して固定される。このため、測定粒子はさらにしっかりとフィルタに付着する。   When the atmosphere is sucked through the filter, the measurement particles scattered in the atmosphere, that is, the particles to be measured are captured by the filter. Since the measurement particles are captured by the filter eyes and the air is continuously sucked after the capture, the measurement particles adhere firmly to the filter. When the measurement particles are wet, they immediately react with and fix the drug impregnated or applied to the filter. In addition, even if the measurement particles captured at low atmospheric humidity are dry, the measurement particles captured by moisture in the atmosphere can be gradually moistened by continuing to suck the atmosphere. The mist-like portion that absorbs moisture in the atmosphere immediately reacts with the drug contained in the filter and is fixed. For this reason, the measurement particles adhere to the filter more firmly.

また、請求項2記載の粒子捕捉方法は、測定粒子は海塩粒子であり、フィルタに含浸又は塗布されている薬は硝酸銀である。したがって、大気中に飛散している海塩粒子をフィルタで捕捉して硝酸銀と反応させて固定することができる。フィルタ上の反応部分は変色して反応の痕跡を生じさせる。   In the particle capturing method according to claim 2, the measurement particles are sea salt particles, and the drug impregnated or applied to the filter is silver nitrate. Therefore, sea salt particles scattered in the atmosphere can be captured by a filter and reacted with silver nitrate to be fixed. The reaction area on the filter changes color and produces a trace of reaction.

請求項1記載の粒子捕捉方法では、フィルタに捕捉された測定粒子が大気中の水分によって薬と反応できる程度にまで湿るのに必要な時間を考慮して吸引継続時間を予め決定しておき、大気の吸引を吸引継続時間続けてフィルタに捕捉された測定粒子を大気中の水分で湿らせて薬と反応させて固定するようにしているので、たとえ大気の湿度が低く測定粒子が乾燥している場合であっても測定粒子を湿らせて薬と反応させて固定することができ、フィルタにしっかりと付着させることができる。このため、より確実に測定粒子を捕捉することができ、捕捉の信頼性を向上させることができる。 In the particle trapping method according to claim 1, the suction duration time is determined in advance in consideration of the time required for the measurement particles trapped in the filter to get wet to the extent that they can react with the drug by moisture in the atmosphere. Since the measurement particles trapped in the filter continue to be sucked in the atmosphere for a period of time and are moistened with moisture in the atmosphere to react with the drug and fixed, the measurement particles are dried even if the humidity in the atmosphere is low. Even if it is, the measurement particles can be moistened and reacted with the drug to be fixed, and can be firmly attached to the filter. For this reason, the measurement particles can be captured more reliably, and the capture reliability can be improved.

また、請求項2記載の粒子捕捉方法では、測定粒子は海塩粒子であり、フィルタに含浸又は塗布されている薬は硝酸銀であるので、大気中に飛散している海塩粒子をフィルタで捕捉して硝酸銀と反応させて固定することができる。また、フィルタ上の反応部分が変色して反応の痕跡となるので、この反応の痕跡に基づいて海塩粒子の粒径やその分布を求めることが可能になる。   Further, in the particle capturing method according to claim 2, since the measurement particles are sea salt particles, and the drug impregnated or applied to the filter is silver nitrate, the sea salt particles scattered in the atmosphere are captured by the filter. Then, it can be fixed by reacting with silver nitrate. Moreover, since the reaction part on a filter discolors and becomes a trace of reaction, based on this trace of reaction, it becomes possible to obtain | require the particle size and distribution of sea salt particle | grains.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に本発明の粒子捕捉方法の実施形態の一例を、図2及び図3に本発明の粒子捕捉装置の実施形態の一例をそれぞれ示す。粒子捕捉装置は、測定粒子11よりも目が細かく且つ測定粒子11と反応する薬が含浸又は塗布されているフィルタ12と、フィルタ12を通して大気を吸引する吸引装置13とを備え、吸引装置13はフィルタ12が測定粒子11を捕捉した後も大気の吸引を続け、フィルタ12に捕捉された測定粒子11を大気中の水分で湿らせて前記薬と反応させて固定するものである。   FIG. 1 shows an example of an embodiment of the particle capturing method of the present invention, and FIGS. 2 and 3 show an example of an embodiment of the particle capturing apparatus of the present invention. The particle trapping device includes a filter 12 that is finer than the measurement particle 11 and impregnated or coated with a drug that reacts with the measurement particle 11, and a suction device 13 that sucks air through the filter 12. Even after the filter 12 captures the measurement particles 11, the suction of the atmosphere is continued, and the measurement particles 11 captured by the filter 12 are moistened with moisture in the atmosphere, reacted with the drug, and fixed.

フィルタ12は例えばセルロースフィルタであり、ホルダ14内に設置されている。フィルタ12は測定粒子11よりも細かい目を有している。例えば、測定粒子11が粒径:数μm〜数十μmの海塩である場合には、例えば口径:0.45μmの目を有するセルロースフィルタを使用する。フィルタ12には測定粒子11に反応する薬が含浸されている。例えば、測定粒子11が海塩である場合には、硝酸銀が含浸されている。   The filter 12 is a cellulose filter, for example, and is installed in the holder 14. The filter 12 has finer eyes than the measurement particle 11. For example, when the measurement particle 11 is a sea salt having a particle size of several μm to several tens of μm, for example, a cellulose filter having an eye with an aperture of 0.45 μm is used. The filter 12 is impregnated with a medicine that reacts with the measurement particles 11. For example, when the measurement particle 11 is sea salt, it is impregnated with silver nitrate.

ホルダ14の断面を図3に示す。ホルダ14は、例えば先端14aが開口し、後端14bが閉塞している円筒体であり、例えば脚15によって地面から所定の高さの位置に支持されている。ホルダ14内にはメッシュ状のフィルタ支持体16が設けられており、フィルタ支持体16の前面にフィルタ12を設置する。   A cross section of the holder 14 is shown in FIG. The holder 14 is a cylindrical body whose front end 14a is open and whose rear end 14b is closed, for example, and is supported by the leg 15 at a predetermined height from the ground. A mesh-like filter support 16 is provided in the holder 14, and the filter 12 is installed on the front surface of the filter support 16.

吸引装置13は、例えば単位時間当たりの吸引流量が調節可能な排気ポンプであり、チューブ18によってホルダ14の後端14bに接続されている。吸引装置13はバッテリ17から電力の供給を受けて作動する。吸引装置13には、例えば瞬間的な流量と積算流量とを計測できる流量計量機としての気体用マスフローメータが設けられている。   The suction device 13 is an exhaust pump capable of adjusting a suction flow rate per unit time, for example, and is connected to the rear end 14 b of the holder 14 by a tube 18. The suction device 13 operates by receiving power from the battery 17. The suction device 13 is provided with a gas mass flow meter as a flow meter capable of measuring an instantaneous flow rate and an integrated flow rate, for example.

次に、粒子捕捉方法について説明する。粒子捕捉方法は、例えば上述の粒子捕捉装置によって実施されるものである。粒子捕捉方法は、測定粒子11よりも目が細かく且つ測定粒子と反応する薬が含浸又は塗布されているフィルタ12を通して大気を吸引し、大気中に飛散している測定粒子11をフィルタ12で捕捉するものであり、フィルタ12に捕捉された測定粒子11が大気中の水分によって薬と反応できる程度にまで湿るのに必要な時間を考慮して吸引継続時間を予め決定しておき、大気の吸引を吸引継続時間続けてフィルタ12に捕捉された測定粒子11を大気中の水分で湿らせて薬と反応させて固定するものである。 Next, a particle capturing method will be described. The particle trapping method is performed, for example, by the above-described particle trapping apparatus. In the particle trapping method, the atmosphere is sucked through a filter 12 that is finer than the measurement particle 11 and impregnated or coated with a drug that reacts with the measurement particle, and the measurement particle 11 scattered in the atmosphere is captured by the filter 12. In consideration of the time required for the measurement particles 11 captured by the filter 12 to get wet to the extent that they can react with the drug by moisture in the atmosphere, the suction duration time is determined in advance , The suction is continued for the duration of the suction, and the measurement particles 11 captured by the filter 12 are moistened with moisture in the atmosphere, reacted with the drug, and fixed.

吸引装置13が吸引を開始するとホルダ14の先端の開口から大気が吸い込まれる(ステップS1)。ホルダ14内に吸い込まれた大気はフィルタ12を通過し、チューブ18を通って吸引装置13に吸い込まれ、そして外に排出される。大気がフィルタ12を通過する際、大気中の測定粒子11がフィルタ12によって捕捉される(ステップS2)。   When the suction device 13 starts suction, the atmosphere is sucked from the opening at the tip of the holder 14 (step S1). The atmosphere sucked into the holder 14 passes through the filter 12, is sucked into the suction device 13 through the tube 18, and is discharged outside. When the atmosphere passes through the filter 12, the measurement particles 11 in the atmosphere are captured by the filter 12 (step S2).

フィルタ12には測定粒子11と反応する薬が含浸又は塗布されているので、フィルタ12の測定粒子11との接触部分が変色し反応の痕跡が生じる(ステップS3)。図4に反応の痕跡が生じたフィルタ12の顕微鏡写真を示す。図4中、黒丸部分が反応の痕跡である。測定粒子11はフィルタ12の目によって捕捉され、また捕捉後も吸引装置13は大気の吸引を続けているので、測定粒子11はフィルタ12にしっかりと付着する。そして、測定粒子11が十分湿っている場合には、測定粒子11は薬とただちに反応してしっかりと固定される。また、たとえ大気の湿度が低く捕捉した測定粒子11が乾燥している場合であっても、吸引装置13が大気の吸引を続けることで大気中の水分によって測定粒子11及びフィルタ12を徐々に湿らせることができる。このため、たとえ大気の湿度が低く捕捉した測定粒子11が乾燥している場合であっても、測定粒子11を湿らせてミスト状になった部分をただちに薬と反応さこせてフィルタ12に固定することができる。   Since the filter 12 is impregnated or coated with a drug that reacts with the measurement particles 11, the contact portion of the filter 12 with the measurement particles 11 is discolored and a trace of reaction is generated (step S3). FIG. 4 shows a photomicrograph of the filter 12 in which a trace of reaction has occurred. In FIG. 4, black circles are traces of the reaction. The measurement particles 11 are captured by the eyes of the filter 12, and the suction device 13 continues to suck air after the capture, so that the measurement particles 11 adhere firmly to the filter 12. When the measurement particle 11 is sufficiently wet, the measurement particle 11 reacts immediately with the drug and is firmly fixed. Further, even when the measurement particles 11 captured at a low atmospheric humidity are dry, the suction device 13 gradually sucks the measurement particles 11 and the filter 12 by moisture in the atmosphere by continuing the suction of the atmosphere. Can be made. For this reason, even if the trapped measurement particle 11 is low in the atmospheric humidity, the measurement particle 11 is moistened to immediately react with the drug and fixed to the filter 12. can do.

吸引装置13は予め決められた時間が経過するまで大気を吸引し続ける(ステップS4→ステップS1)。例えば0.5〜1時間大気の吸引が継続される。吸引を継続する時間は、例えば大気の湿度、測定粒子の大気中濃度等を考慮して決定される。つまり、フィルタ12に捕捉された測定粒子11がフィルタ12の薬と反応できる程度にまで湿るのに必要な時間(大気の湿度を考慮した時間)や、フィルタ12上に生じた反応の痕跡が隣同士で著しく重ならない程度の時間(測定粒子11の大気中濃度を考慮した時間)等を考慮して、吸引を継続する時間を決定する。ただし、通常は後者の時間の方が前者の時間よりも長く、後者の時間条件を満たせば前者の時間条件も満たすことになるので、後者の時間を主に考慮して吸引継続時間を決定する。   The suction device 13 continues to suck air until a predetermined time elapses (step S4 → step S1). For example, atmospheric suction is continued for 0.5 to 1 hour. The time for continuing the suction is determined in consideration of, for example, the atmospheric humidity, the concentration of the measurement particles in the atmosphere, and the like. That is, there is a time required for the measurement particles 11 captured by the filter 12 to be wet enough to react with the medicine of the filter 12 (a time considering the humidity of the atmosphere) and a trace of the reaction that has occurred on the filter 12. The time for which the suction is continued is determined in consideration of a time that does not significantly overlap adjacent neighbors (a time that considers the concentration of the measurement particles 11 in the air). However, the latter time is usually longer than the former time, and if the latter time condition is satisfied, the former time condition is also satisfied. Therefore, the suction duration time is determined mainly considering the latter time. .

所定時間の経過後、吸引装置13を停止させてホルダ14からフィルタ12を取り出す(ステップS5)。また、必要に応じて、取り出したフィルタ12に大気の積算流量値を記入する。これにより、測定粒子11の捕捉の作業が終了する。   After elapse of a predetermined time, the suction device 13 is stopped and the filter 12 is taken out from the holder 14 (step S5). Further, if necessary, the atmospheric integrated flow rate value is entered in the extracted filter 12. Thereby, the operation of capturing the measurement particles 11 is completed.

なお、ホルダ14から取り出したフィルタ12は湿っていることから、捕捉した測定粒子11はフィルタ12上で液状になって薬と反応すると考えられる。   In addition, since the filter 12 taken out from the holder 14 is wet, it is considered that the captured measurement particles 11 become liquid on the filter 12 and react with the medicine.

このように、本発明では、たとえ大気の湿度が低く測定粒子11が乾燥している場合であっても測定粒子11を湿らせてフィルタ12にしっかりと付着させることができる。このため、より確実に測定粒子11を捕捉することができ、捕捉の信頼性を向上させることができる。図6の気中塩分計では、大気の湿度が例えば60%よりも低くなるとフィルム103によって捕捉されない海塩が発生し始めるが、本発明では、大気の湿度が例えば60%よりも低くなった場合にも、海塩をフィルタ12によって良好に捕捉することができる。   Thus, in the present invention, the measurement particles 11 can be moistened and firmly attached to the filter 12 even when the measurement particles 11 are dry even when the humidity in the atmosphere is low. For this reason, the measurement particles 11 can be captured more reliably, and the capture reliability can be improved. In the air salinity meter of FIG. 6, when the atmospheric humidity becomes lower than 60%, for example, sea salt that is not captured by the film 103 starts to be generated. However, in the present invention, when the atmospheric humidity becomes lower than 60%, for example. In addition, sea salt can be well captured by the filter 12.

なお、本発明によって大気中の測定粒子11を捕捉したフィルタ12を使用して、例えば大気中に飛散している測定粒子11の粒径分布を正確に測定することができる。即ち、フィルタ12の測定粒子11が接触している部分は薬との反応によって変色しており、反応の痕跡が生じているので、この痕跡の直径を測定し、その測定結果に基づいて測定粒子11の実際の粒径を求めることができる。大気中には多数の測定粒子11が飛散しており、フィルタ12には多数の反応の痕跡が生じているが、各反応の痕跡を測定することで、大気中に飛散している測定粒子11の粒径分布を求めることができる。   Note that the filter 12 that captures the measurement particles 11 in the atmosphere according to the present invention can be used to accurately measure the particle size distribution of the measurement particles 11 scattered in the atmosphere, for example. That is, the portion of the filter 12 that is in contact with the measurement particle 11 is discolored due to the reaction with the drug, and a trace of the reaction is generated. Therefore, the diameter of this trace is measured, and the measurement particle is measured based on the measurement result. 11 actual particle sizes can be determined. A large number of measurement particles 11 are scattered in the atmosphere, and a large number of reaction traces are generated in the filter 12. However, measurement particles 11 scattered in the atmosphere are measured by measuring the traces of each reaction. The particle size distribution can be obtained.

フィルタ12上の痕跡に基づいて測定粒子11の実際の粒径を求める手段は、公知の手段によるのでここでは詳しい説明は省略するが、フィルタ12上の痕跡の直径を測定する公知手段としては、例えばコンピュータを使用した画像測定技術を利用することができる。画像計測を行うソフトウェアとしては、例えばシオンイメージ(Scion Corporation社製)の使用が可能である。ホルダ14から取り出したフィルタ12に紫外線を当てて反応の痕跡を固定した後、画像計測を行う。測定粒子11が海塩であり、フィルタ12に塗布されている薬が硝酸銀の場合には、反応によって塩化銀が生じるので、これを紫外線によって感光させた後、画像計測を行う。画像計測では、例えば図4に示すフィルタ12の顕微鏡写真を画像解析して図5に示すように各反応の痕跡の位置や直径を特定する。また、画像計測による測定データに基づいて測定粒子11の実際の粒径を求める公知手段としては、例えばフィルタ12上の痕跡径と実際の粒径との関係を示す検定曲線を利用して算出する手段がある。検定曲線は、例えば予備実験を行って求めることができる。即ち、実際の観測を模擬して噴霧を行い、フィルタ12上に生じた反応痕跡の直径の分布と噴霧粒子の直径の分布とを対比して検定曲線を求めることができる。   The means for obtaining the actual particle size of the measurement particle 11 based on the trace on the filter 12 is a known means, and therefore detailed explanation is omitted here. However, as a known means for measuring the diameter of the trace on the filter 12, For example, an image measurement technique using a computer can be used. As software for performing image measurement, for example, Sion Image (manufactured by Scion Corporation) can be used. After the reaction trace is fixed by applying ultraviolet rays to the filter 12 taken out from the holder 14, image measurement is performed. When the measurement particle 11 is sea salt and the medicine applied to the filter 12 is silver nitrate, silver chloride is generated by the reaction, and after this is exposed to ultraviolet light, image measurement is performed. In the image measurement, for example, a micrograph of the filter 12 shown in FIG. 4 is image-analyzed, and the position and diameter of each reaction trace are specified as shown in FIG. Further, as a known means for obtaining the actual particle diameter of the measurement particle 11 based on the measurement data obtained by image measurement, for example, calculation is performed using a calibration curve indicating the relationship between the trace diameter on the filter 12 and the actual particle diameter. There is a means. The test curve can be obtained by conducting a preliminary experiment, for example. That is, spraying is performed by simulating actual observation, and the calibration curve can be obtained by comparing the distribution of the diameter of the reaction trace generated on the filter 12 with the distribution of the diameter of the spray particles.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の説明ではフィルタ12に薬を含浸させていたが、薬を塗布しても良い。   For example, in the above description, the filter 12 is impregnated with a medicine, but a medicine may be applied.

また、海塩を測定粒子11としていたが、海塩以外の粒子を測定粒子11としても良い。即ち、海塩以外の粒子を測定の対象にしても良い。例えば、大気中に飛散しているクロム、鉄等の粒子を測定の対象にしても良い。なお、クロムの粒子を測定の対象にする場合には、フィルタ12に含浸又は塗布させておく薬として、例えばジフェニルカルバジドを使用することができる。また、鉄の粒子を測定の対象にする場合には、フィルタ12に含浸又は塗布させておく薬として、例えばN,N-ジエチルジチオカルバミド酸ナトリウムを使用することができる。   In addition, although sea salt is used as the measurement particle 11, particles other than sea salt may be used as the measurement particle 11. That is, particles other than sea salt may be measured. For example, particles such as chromium and iron scattered in the atmosphere may be measured. When chromium particles are to be measured, for example, diphenylcarbazide can be used as a drug to be impregnated or applied to the filter 12. When iron particles are to be measured, for example, sodium N, N-diethyldithiocarbamate can be used as a drug to be impregnated or applied to the filter 12.

大気中に飛散している海塩を測定の対象にする場合のフィルタ12を、例えば以下のようにして作成した。   For example, the filter 12 in the case where sea salt scattered in the atmosphere is the object of measurement was prepared as follows.

フィルタ12のベースフィルムとして、例えば口径:0.45μm、フィルター直径:47mmのセルロースフィルタを使用した。このベースフィルムを、蒸留水ベース硝酸銀15%溶液に染料(例えば青)を混ぜたものに約15分間浸した後、溶液が均一に染み込んでいることを確認して乾燥させた。染料によってベースフィルムが均一に着色されていれば、溶液が均一に染み込んでいると判断した。溶液の染み込みが不均一の場合には、さらに数分間溶液に浸して上述の操作を行うようにした。   As the base film of the filter 12, for example, a cellulose filter having a caliber of 0.45 μm and a filter diameter of 47 mm was used. The base film was dipped in a 15% solution of distilled water base silver nitrate mixed with a dye (for example, blue) for about 15 minutes, and then dried after confirming that the solution was uniformly infiltrated. If the base film was uniformly colored with the dye, it was judged that the solution was soaked uniformly. If the solution soak was not uniform, it was immersed in the solution for several more minutes to perform the above operation.

本発明の粒子捕捉方法の実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the particle | grain capture method of this invention. 本発明の粒子捕捉装置の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the particle | grain trapping apparatus of this invention. ホルダを示す断面図である。It is sectional drawing which shows a holder. 反応の痕跡が生じているフィルタの顕微鏡写真である。It is a microscope picture of the filter in which the trace of reaction has arisen. 図4の顕微鏡写真の画像解析後の様子を示す図である。It is a figure which shows the mode after image analysis of the micrograph of FIG. 従来の海塩粒子測定器を示す概略構成図である。It is a schematic block diagram which shows the conventional sea salt particle measuring device.

符号の説明Explanation of symbols

11 測定粒子
12 フィルタ
13 吸引装置
11 Measuring Particle 12 Filter 13 Suction Device

Claims (2)

測定粒子よりも目が細かく且つ前記測定粒子と反応する薬が含浸又は塗布されているフィルタを通して大気を吸引し、前記大気中に飛散している前記測定粒子を前記フィルタで捕捉する粒子捕捉方法において、前記フィルタに捕捉された前記測定粒子が前記大気中の水分によって前記薬と反応できる程度にまで湿るのに必要な時間を考慮して吸引継続時間を予め決定しておき、前記大気の吸引を前記吸引継続時間続けて前記フィルタに捕捉された前記測定粒子を前記大気中の水分で湿らせて前記薬と反応させて固定することを特徴とする粒子捕捉方法。 In a particle trapping method in which the atmosphere is sucked through a filter that is finer than the measurement particles and impregnated or applied with a drug that reacts with the measurement particles, and the measurement particles scattered in the atmosphere are captured by the filter The suction duration time is determined in advance in consideration of the time required for the measurement particles trapped in the filter to get wet enough to react with the drug by the moisture in the atmosphere. The particle capturing method , wherein the measurement particles captured by the filter for the duration of the suction are moistened with moisture in the air, reacted with the drug, and fixed. 前記測定粒子は海塩粒子であり、前記薬は硝酸銀であることを特徴とする請求項1記載の粒子捕捉方法。   The particle capturing method according to claim 1, wherein the measurement particles are sea salt particles and the drug is silver nitrate.
JP2005258146A 2005-09-06 2005-09-06 Particle capture method Expired - Fee Related JP4783607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258146A JP4783607B2 (en) 2005-09-06 2005-09-06 Particle capture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258146A JP4783607B2 (en) 2005-09-06 2005-09-06 Particle capture method

Publications (2)

Publication Number Publication Date
JP2007071653A JP2007071653A (en) 2007-03-22
JP4783607B2 true JP4783607B2 (en) 2011-09-28

Family

ID=37933219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258146A Expired - Fee Related JP4783607B2 (en) 2005-09-06 2005-09-06 Particle capture method

Country Status (1)

Country Link
JP (1) JP4783607B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907388A (en) * 2017-12-12 2018-04-13 华南理工大学 The device of micro dust and the method for detection grain diameter and content in a kind of collection gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886456A (en) * 1981-11-19 1983-05-24 Matsushita Electric Ind Co Ltd Carrier for measuring sea salt particle
JPH068812B2 (en) * 1987-07-31 1994-02-02 テルモ株式会社 Test pieces and test tools for chloride determination
JP3945770B2 (en) * 2003-03-31 2007-07-18 財団法人北九州産業学術推進機構 Suspended particulate analysis method and suspended particulate collection device used therefor

Also Published As

Publication number Publication date
JP2007071653A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US9304117B2 (en) Aerosol exposure monitoring
CN111065440B (en) Sensor and sensing system for respirator fit testing method
US11029239B2 (en) Test apparatus and method for testing dust suppression systems
JP2019511692A5 (en)
CN111050858B (en) Fit testing method for respirators having a sensing system
JP4783607B2 (en) Particle capture method
WO2014168043A1 (en) Measuring device and measuring method
JP2018512586A (en) Device for measuring exposure to microparticles, especially nanotubes
CN111051869A (en) Sensing element for a respirator
JP2015206671A (en) Collector, detector, cleaner, collecting method, detection method and cleaning method
TWI638683B (en) Inertial impactor with a wetted impaction plate to prevent particle loading effect
WO2022079195A1 (en) A collecting device for collection of particles, a sample collector, and an analysis instrument
CN106769750A (en) It is a kind of to test and calculate the method that cambridge filter retains efficiency to the quantity of electronics smoke sol
JP2007205829A (en) Particle measuring instrument
JP2004360977A (en) Salt damage testing method for ventilating air filter unit and its device
JP4175935B2 (en) Exhaust gas sampling device for measuring mercury concentration
JP6651753B2 (en) Particle composition analyzer
CN212134470U (en) Flue gas mercury direct-reading analyzer
JP6935241B2 (en) Removal member, calibration device, and gas analyzer
JP2003050195A (en) Method and apparatus for measuring particle concentration
JP3377716B2 (en) Nitrogen oxide sampler
JP2009503554A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees