JP4782443B2 - Process for producing active water having active oxygen scavenging ability - Google Patents

Process for producing active water having active oxygen scavenging ability Download PDF

Info

Publication number
JP4782443B2
JP4782443B2 JP2005054828A JP2005054828A JP4782443B2 JP 4782443 B2 JP4782443 B2 JP 4782443B2 JP 2005054828 A JP2005054828 A JP 2005054828A JP 2005054828 A JP2005054828 A JP 2005054828A JP 4782443 B2 JP4782443 B2 JP 4782443B2
Authority
JP
Japan
Prior art keywords
water
activated carbon
active
oxygen scavenging
scavenging ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005054828A
Other languages
Japanese (ja)
Other versions
JP2006239480A (en
Inventor
啓 薄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIFEED ENGINEERING CO., LTD.
Original Assignee
UNIFEED ENGINEERING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIFEED ENGINEERING CO., LTD. filed Critical UNIFEED ENGINEERING CO., LTD.
Priority to JP2005054828A priority Critical patent/JP4782443B2/en
Publication of JP2006239480A publication Critical patent/JP2006239480A/en
Application granted granted Critical
Publication of JP4782443B2 publication Critical patent/JP4782443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

本発明は、動物、植物の生理現象に重大な影響を与えることが知られている活性酸素を消去する能力をもつ新規な活性水素含有水及びその製造方法に関するものである。   The present invention relates to a novel active hydrogen-containing water having an ability to eliminate active oxygen, which is known to have a significant influence on physiological phenomena of animals and plants, and a method for producing the same.

活性水素を含む水、すなわち活性水素含有水は、活性酸素を消去する能力を有し、活性酸素による動物や植物への生理的悪影響を抑制することが知られているため、これまでに活性水素含有水を製造する多数の方法、例えばなんら加工されていない普通水に電解処理、超音波処理などの電気的又は物理的処理を施す方法、酸化剤や還元剤による化学的処理を施す方法が提案されているが、その多くは食品衛生法で認められていないのが実情である。   Since active hydrogen-containing water, that is, active hydrogen-containing water has the ability to scavenge active oxygen and is known to suppress the physiological adverse effects of active oxygen on animals and plants, Proposed a number of methods for producing water, for example, a method of subjecting ordinary unprocessed water to electrical or physical treatment such as electrolytic treatment and ultrasonic treatment, and chemical treatment with oxidizing agents and reducing agents. However, many of them are not recognized by the Food Sanitation Law.

例えば、いわゆる電解水(水に食塩などを加えて電気分解したもの)のうち、隔膜方式による電気分解によって得られる陰極側の水(アルカリ水でかつ一説には活性水素を含むといわれる)の使用は食品衛生法上認められていないため、正式には食品に直接使用できないことになっている。   For example, among so-called electrolyzed water (electrolyzed with salt added to water), use of cathode-side water (alkaline water and, in one sense, containing active hydrogen) obtained by electrolysis using a diaphragm system Is not allowed under the Food Sanitation Law, so it cannot be officially used directly on food.

すなわち、活性水素含有水を製造し、それを食品に法的に問題なく使用するためには、天然添加物に指定されている水素を物理的な方法で活性水素として水に含有させるか、あるいは食品衛生法で認められている原材料を加工助剤的に使用する外はない。   That is, in order to produce active hydrogen-containing water and use it in foods without any legal problems, hydrogen designated as a natural additive is contained in water as active hydrogen by a physical method, or There is no other way than using raw materials approved by the Food Sanitation Law as processing aids.

本発明者は、先に水素を吸蔵させたパラジウム系合金に天然水を接触させて活性水素含有水を生成させ、これを動植物の育成に用いる方法(特許文献1参照)や、食料品の品質向上に用いる方法(特許文献2参照)を提案した。
しかしながら、これらの方法は、特殊な装置を必要としたり、あるいは高価な処理剤を用いなければならないため、操作に手間がかかったり、コスト高になるのを免れない。
The inventor of the present invention uses a palladium-based alloy that has previously occluded hydrogen to contact natural water to produce water containing active hydrogen, which is used for growing animals and plants (see Patent Document 1), and the quality of foodstuffs. A method used for improvement (see Patent Document 2) was proposed.
However, these methods require a special apparatus or use an expensive processing agent, so that it is inevitable that the operation is troublesome and the cost is high.

そこで、本発明者は、これらの欠点を克服するためにさらに研究を重ね、磁化処理した非水溶性第二酸化鉄水和物及び所望により貴金属触媒を担持させた活性炭に原料水を接触させて活性水素含有水を製造する方法(特許文献3参照)を提案した。   Therefore, the present inventor conducted further research to overcome these drawbacks, and contacted the raw material water with activated water loaded with magnetized water-insoluble ferric oxide hydrate and, optionally, a noble metal catalyst. A method for producing hydrogen-containing water (see Patent Document 3) was proposed.

特許第3059359号公報(特許請求の範囲その他)Japanese Patent No. 3059359 (Claims and others) 特許第3113653号公報(特許請求の範囲その他)Japanese Patent No. 3113653 (Claims and others) 特開2004−24941号公報(特許請求の範囲その他)JP 2004-24941 A (Claims and others)

本発明は、より簡単に得られる処理剤を用いて、より効率よく活性水素含有水を製造するための新規な方法を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a novel method for producing active hydrogen-containing water more efficiently by using a treatment agent obtained more easily.

本発明者は、先に開発した磁化処理した非水溶性第二酸化鉄水和物の代りに活性炭に担持させて効率よく活性水素含有水を生成し得る触媒について検討したところ、意外にも酸化マンガンがこれに匹敵する若しくはより優れた触媒作用を示すことを見出し、この知見に基づいて本発明をなすに至った。   The present inventor has unexpectedly studied a catalyst capable of efficiently generating active hydrogen-containing water by being supported on activated carbon instead of the previously developed magnetized non-aqueous ferrous dioxide hydrate. Was found to show comparable or better catalytic action, and based on this finding, the present invention was made.

すなわち、本発明は、磁化処理した酸化マンガン−活性炭複合体又はその貴金属触媒添加物に原料水を接触させることを特徴とする活性水素含有水の製造方法を提供するものである。   That is, the present invention provides a method for producing active hydrogen-containing water, characterized in that raw water is brought into contact with a magnetized manganese oxide-activated carbon composite or a noble metal catalyst additive thereof.

本発明方法において用いる磁化処理した酸化マンガン−活性炭複合体は、例えば可溶性マンガン塩溶液中に活性炭を浸漬し、磁場内において共鳴周波数のマイクロ波を照射しながら加熱することによって形成させることができる。   The magnetized manganese oxide-activated carbon composite used in the method of the present invention can be formed, for example, by immersing activated carbon in a soluble manganese salt solution and heating it while irradiating microwaves at a resonance frequency in a magnetic field.

この際用いる活性炭は、従来吸着用活性炭として慣用されているものの中で不純分の少ないものが用いられるが、特に植物系の木粉、鋸屑、ヤシ殻、パルプ粉などを原料として用いた安全性の高いもの、すなわち水道法又は食品衛生法で定められる安全性の要件を満たすものを原則としている。   The activated carbon used in this case is one that has been used as an activated carbon for adsorption in the past, and the one with less impure content is used. In particular, safety using plant-based wood flour, sawdust, coconut shell, pulp powder, etc. In principle, those that meet the safety requirements stipulated by the Water Supply Law or Food Sanitation Law.

しかしながら、所望ならば石炭、石油残渣、石油コークス、石油ピッチのような鉱物系原料や、フェノール樹脂、フラン樹脂、尿素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネートのようなプラスチック原料を用いて得られるものも用いることができる。これらの活性炭は必要に応じ塩化亜鉛、リン酸などにより賦活させて用いることもできる。   However, if desired, it can be obtained using mineral raw materials such as coal, petroleum residues, petroleum coke and petroleum pitch, and plastic raw materials such as phenolic resin, furan resin, urea resin, polyvinyl chloride, polyvinylidene chloride and polycarbonate. Can also be used. These activated carbons can be used after being activated with zinc chloride, phosphoric acid or the like, if necessary.

この活性炭としては、20〜1000Åの孔径をもち、BET法により測定した比表面積が200m2/g以上、好ましくは500〜1500m2/gのものが好ましい。この活性炭は平均粒径0.2〜1.5mmの粒状体として用いられる。 As the activated carbon has a pore size of 20~1000A, the specific surface area measured by the BET method 200 meters 2 / g or more, preferably those of 500 to 1500 2 / g. This activated carbon is used as a granular material having an average particle size of 0.2 to 1.5 mm.

次に、可溶性マンガン塩としては、水又は水混和性有機溶剤に可溶なマンガン塩であれば特に制限はないが、特に二価のマンガン塩が好ましい。このようなマンガン塩としては、例えば塩化第一マンガン、硫酸第一マンガン、硝酸第一マンガン、酢酸マンガン、ロダン酸マンガンなどがある。これらのマンガン塩は、一般に薄バラ色に着色し、その水溶液も同じ色を呈する。   Next, the soluble manganese salt is not particularly limited as long as it is soluble in water or a water-miscible organic solvent, but a divalent manganese salt is particularly preferable. Examples of such a manganese salt include manganese chloride, manganese sulfate, manganese nitrate, manganese acetate, and manganese rhodanate. These manganese salts are generally colored light rosy, and the aqueous solution also has the same color.

これらの可溶性マンガン塩は、通常0.5〜5モル濃度、好ましくは1〜3モル濃度の水溶液として用いるが、必要ならば溶媒として水と水混和性有機溶剤例えばメタノール、エタノール、アセトン、エチレングリコール、エチレングリコールモノメチルエーテルアセテートなどとの混合物を用いることもできる。   These soluble manganese salts are usually used as an aqueous solution having a concentration of 0.5 to 5 mol, preferably 1 to 3 mol. If necessary, water and a water-miscible organic solvent such as methanol, ethanol, acetone, ethylene glycol are used as a solvent. A mixture with ethylene glycol monomethyl ether acetate or the like can also be used.

この可溶性マンガン塩溶液には、所望に応じ例えば炭酸アンモニウムのような弱アルカリを加えることもできる。この可溶性マンガン塩溶液に活性炭を浸漬すると、活性炭にマンガンイオンMn2+が吸着するので、外部から磁場を印加すると、Mn2+は常磁性イオンであるため、電子スピン共鳴(ESR)を起こして、強く活性炭と結合する。 If desired, a weak alkali such as ammonium carbonate can be added to the soluble manganese salt solution. When activated carbon is immersed in this soluble manganese salt solution, manganese ions Mn 2+ are adsorbed on the activated carbon. When a magnetic field is applied from the outside, Mn 2+ is a paramagnetic ion, causing electron spin resonance (ESR). Bonds strongly with activated carbon.

次いで、共鳴周波数のマイクロ波を照射しながら加熱すると、Mn2+は電子スピン共鳴を起こした状態を維持しながら、活性炭表面に固定し、酸化されて不溶化し、酸化マンガン−活性炭複合体を形成させる。 Next, when heated while irradiating with microwaves of resonance frequency, Mn 2+ is fixed on the activated carbon surface while maintaining the state in which electron spin resonance occurs, and is oxidized and insolubilized to form a manganese oxide-activated carbon composite. Let

すなわち、ESR測定装置で用いるような、電磁石によって磁場の強さを変化する機能とマイクロ波を照射する機能の両方を有する装置によって、例えば330mT(ミリテスラ)付近の磁場を与え、最大35GHzの中で適当な共鳴周波数のマイクロ波を照射しながら、あらかじめ調製しておいたMn2+溶液と活性炭とを接触させ、活性炭表面とMnの結合及び酸化反応を進行させる。 That is, a device having both a function of changing the strength of a magnetic field by an electromagnet and a function of irradiating microwaves as used in an ESR measurement device, for example, gives a magnetic field of around 330 mT (millitesla) and within a maximum of 35 GHz. The Mn 2+ solution prepared in advance and activated carbon are brought into contact with each other while irradiating with a microwave having an appropriate resonance frequency, and the activated carbon surface and Mn are bonded and oxidized.

この場合の諸条件は、活性炭触媒としてのフリーラジカル量、すなわち反応性などの特性に応じて調整する必要があるが、活性炭表面にMn2+が結合し、アコ錯体からH+(プロトン)が解離するデプロトネーションが進行する。そして、pHが中性まで上昇した段階で外部磁場を取り除いても、その影響は持続するので、外部磁場を加えるのは初期段階だけでよい。 The conditions in this case need to be adjusted according to the characteristics such as the amount of free radicals as the activated carbon catalyst, that is, reactivity, but Mn 2+ is bonded to the activated carbon surface, and H + (proton) is converted from the acocomplex. Dissociation deprotonation proceeds. Even if the external magnetic field is removed at the stage where the pH has been increased to neutrality, the effect continues, so that the external magnetic field need only be applied at the initial stage.

したがって、pHが中性領域まで上昇したのちは、外部磁場及びマイクロ波照射を停止し、さらに24時間以上放置してエージングさせる。この際、脱水反応を促進させるため、常圧で40℃以上100℃未満に加熱し、乾燥させて、定着、処理を終了する。   Therefore, after the pH rises to the neutral range, the external magnetic field and microwave irradiation are stopped, and further left for 24 hours or longer for aging. At this time, in order to promote the dehydration reaction, the film is heated to 40 ° C. or higher and lower than 100 ° C. at normal pressure and dried to finish fixing and processing.

この乾燥及び定着処理には、温度などの諸条件により変わるが、通常24時間以上を要する。
また、乾燥終了時であっても、最初の活性炭質量に対し10%以上に相当する酸化マンガンが生成するため、質量が増加する。
さらに、簡易な方法で磁場を測定した場合でも、直流磁場において、通常の活性炭は0.01mT以下を保有するにすぎないが、酸化マンガン−活性炭複合体は、0.02〜0.05mT又はそれ以上の磁場を保有する。
これらの処理により生成する酸化マンガンは、主として一酸化マンガンであるが、条件によっては少量の三二酸化マンガン、二酸化マンガンなどが副生することもある。
This drying and fixing process varies depending on various conditions such as temperature, but usually requires 24 hours or more.
Further, even at the end of drying, manganese oxide corresponding to 10% or more of the initial activated carbon mass is generated, and thus the mass increases.
Furthermore, even when a magnetic field is measured by a simple method, a normal activated carbon has only 0.01 mT or less in a direct current magnetic field, but a manganese oxide-activated carbon composite has 0.02 to 0.05 mT or more. Have the above magnetic field.
Manganese oxide produced by these treatments is mainly manganese monoxide, but a small amount of manganese trioxide, manganese dioxide, etc. may be produced as a by-product depending on conditions.

本発明方法においては、このようにして調製された磁化処理された酸化マンガン−活性炭複合体に原料水を接触させることにより活性水素含有水を製造することができる。この際処理される原料水としては、特に制限はなく、通常の水道水、地下水、河川水などの中から任意に選んで用いることができる。   In the method of the present invention, active hydrogen-containing water can be produced by bringing raw material water into contact with the magnetized manganese oxide-activated carbon composite thus prepared. There is no restriction | limiting in particular as raw material water processed at this time, It can select arbitrarily from normal tap water, groundwater, river water, etc., and can be used.

本発明方法により得られる活性水素含有水は、従来方法より得られる活性水に比べて著しく高濃度の活性水素を含有するものであるが、このことは電子スピン共鳴スペクトル(以下ESRスペクトルと略す)を測定することにより容易に確認することができる。   The active hydrogen-containing water obtained by the method of the present invention contains a significantly higher concentration of active hydrogen than the active water obtained by the conventional method. This is an electron spin resonance spectrum (hereinafter abbreviated as ESR spectrum). It can be easily confirmed by measuring.

すなわち、原料水に対し水素ラジカルを発生する処理を施したのち、可及的速やかにトラッピング剤、例えば5,5‐ジメチル‐1‐ピロリン‐N‐オキシド(以下DMPOという)を加えて、冷媒例えば液体窒素を用いて急速に凍結し、水素ラジカルをトラップしてESRスペクトルの測定を行い、得られたスペクトルパターンにおける水素ラジカルの相対強度に基づいてその定量する。   That is, after processing the raw water to generate hydrogen radicals, a trapping agent such as 5,5-dimethyl-1-pyrroline-N-oxide (hereinafter referred to as DMPO) is added as quickly as possible, and a refrigerant such as Freezing rapidly using liquid nitrogen, trapping hydrogen radicals, measuring the ESR spectrum, and quantifying it based on the relative intensity of the hydrogen radicals in the resulting spectral pattern.

そして、本発明方法により得られる活性水素含有水は、このようにして定量した水素ラジカルが、磁場の強さ331.8mT付近及び335.5mT付近に生じる水素ラジカル由来のピークの強度が標準サンプルとして用いたマンガン由来のピークの強度の前者が0.03以上、特に0.1以上、後者が0.04以上、特に0.2以上という高濃度を有する。   The active hydrogen-containing water obtained by the method of the present invention has, as a standard sample, the hydrogen radicals quantified in this way, the intensity of the peaks derived from the hydrogen radicals generated near the magnetic field strengths of 331.8 mT and 335.5 mT. The former of the peak intensity derived from manganese used has a high concentration of 0.03 or more, particularly 0.1 or more, and the latter has a high concentration of 0.04 or more, particularly 0.2 or more.

これに対し、従来方法例えばパラジウム触媒を用いて得られる活性水の場合は、同じ方法で測定した磁場の強さ331.8mT付近及び335.5mT付近に生じる水素ラジカル由来のピークの強度は、マンガン由来のピークの強度の前者が0.023、後者が0.035であり、通常の活水器を用いて製造した活性水の場合は、水素ラジカルの吸収はほとんど認められない。   On the other hand, in the case of active water obtained using a conventional method such as a palladium catalyst, the intensity of the peak derived from hydrogen radicals generated in the vicinity of 331.8 mT and 335.5 mT of the magnetic field measured by the same method is The former peak intensity is 0.023 and the latter is 0.035. In the case of active water produced using a normal water heater, absorption of hydrogen radicals is hardly observed.

一般に水素ラジカルは、ヒドロキシラジカル等に比べ、反応性が低いので、これを完全に捕捉するには、できるだけ多量、すなわち25質量%程度までトラッピング剤、例えばDMPOを添加するのが好ましい。   In general, hydrogen radicals are less reactive than hydroxy radicals and the like. Therefore, in order to completely capture hydrogen radicals, it is preferable to add a trapping agent such as DMPO as much as possible, that is, about 25% by mass.

電子スピン共鳴スペクトルの各成分に対応する強度の絶対値は、検出装置の種類やマイクロ波出力、磁場掃引幅、掃引時間、磁場変調、磁場の強さなどの測定条件や、トラッピング剤の量などのファクターによって変化するが、331.8mT付近及び335.5mT付近という特定の磁場の強さにおける水素ラジカルに由来するピークの標準サンプルのマンガンに由来するピークに対する相対強度は、上記のファクターに左右されることはなく、常に一定の数値を示す。   The absolute value of the intensity corresponding to each component of the electron spin resonance spectrum is the measurement conditions such as the type of detection device, microwave output, magnetic field sweep width, sweep time, magnetic field modulation, magnetic field strength, and the amount of trapping agent. The relative intensity of the peak derived from the hydrogen radical at a specific magnetic field strength of around 331.8 mT and around 335.5 mT with respect to the peak derived from manganese in the standard sample depends on the above factors. It always shows a constant value.

また、本発明方法により得られる活性水素含有水は、活性酸素を消去するという効果を示す。このことは、活性酸素が還元物質と反応する際、微弱な発光現象を伴うことを利用し、その発生量を計測することによって確認することができる。そして、この方法は、例えば、2001年,ジョン・ウイリー・アンド・サンズ(John Willy & Sons)社発行,「ルミネッセンス(Luminescence)2001」,第16巻,第1〜9ページ掲載の報文,「イメージング・オブ・ハイドロパーオキシド・アンド・ハイドロジンパーオキシド−スキャベンジング・サブスサンセズ・バイ・フォトン・エミッション(Imaging of hydroperoxide and hydrogenperoxide−scavenging substances by photon emission)」中に開示されている方法に従って、XYZ系活性酸素消去発光テストし、そのY成分の発光強度を測定することによって行うことができる。なお、この方法におけるXは活性酸素、Yはスカベンジャー(ハイドロジェンドナー)、Zは触媒を意味する。   Moreover, the active hydrogen-containing water obtained by the method of the present invention exhibits the effect of eliminating active oxygen. This can be confirmed by measuring the amount of generation using the fact that the active oxygen reacts with the reducing substance and is accompanied by a weak luminescence phenomenon. For example, this method is disclosed in, for example, 2001, published by John Willy & Sons, "Lumescence 2001", Vol. 16, pages 1-9, " Imaging of hydroperoxide and hydrozin peroxide-scavenging substances by photon emission in method Z A system active oxygen elimination light emission test can be performed, and the emission intensity of the Y component can be measured. In this method, X represents active oxygen, Y represents a scavenger (hydrogen donor), and Z represents a catalyst.

このように、本発明方法においては、磁化処理が施された酸化マンガン−活性炭複合体を形成させることにより、電子供給能を向上させた結果、水の解離を促進させ、水分子の一部を構成する水素が還元され、活性水素となって水中に放出され、活性水素含有水が生成し、活性酸素が存在すると、これが活性酸素と反応し、消去するのである。   Thus, in the method of the present invention, as a result of improving the electron supply capability by forming a magnetized manganese oxide-activated carbon composite, the dissociation of water is promoted, and a part of water molecules is The constituent hydrogen is reduced, becomes active hydrogen, is released into water, and active hydrogen-containing water is produced. When active oxygen is present, it reacts with active oxygen and is erased.

一般に、活性炭は、本来炭化水素などの脱水素能をもつが、その能力は決して高いものではなく、通常は、酸素その他の水素受容体の共存下でのみ脱水素が進行する。しかしながら、種々の遷移金属を担持させると、脱水素活性が著しく向上する上、相乗効果によりその水素吸着能は吸着された金属のそれよりも数10倍ないし数100倍に増大する。そして、この吸着された水素分子は、金属表面で解離し、原子状態となり、活性炭上に保持される。そして、この活性炭上の水素は、金属を介して、例えば媒質の水中に急速に解離し、活性水素含有水を形成する。   In general, activated carbon originally has a dehydrogenating ability such as hydrocarbons, but its ability is never high, and dehydrogenation usually proceeds only in the presence of oxygen and other hydrogen acceptors. However, when various transition metals are supported, the dehydrogenation activity is remarkably improved, and the hydrogen adsorption capacity is increased several tens to several hundreds times that of the adsorbed metal due to a synergistic effect. Then, the adsorbed hydrogen molecules are dissociated on the metal surface to be in an atomic state and held on the activated carbon. Then, the hydrogen on the activated carbon rapidly dissociates through the metal into, for example, medium water to form active hydrogen-containing water.

他方、一般に活性炭上に貴金属触媒を担持させると、その触媒作用が著しく向上することが知られている。したがって、本発明の処理用活性炭にも貴金属触媒を担持させるのが好ましい。この貴金属触媒としては、例えば白金、パラジウム又は銀が用いられる。これらの貴金属触媒の担持量は、活性炭の質量に基づき0.07〜3ppm、好ましくは0.1〜1ppmの範囲で用いられる。   On the other hand, it is generally known that when a noble metal catalyst is supported on activated carbon, the catalytic action is remarkably improved. Therefore, it is preferable to carry a precious metal catalyst on the activated carbon for treatment of the present invention. As this noble metal catalyst, for example, platinum, palladium or silver is used. The amount of these noble metal catalysts supported is 0.07 to 3 ppm, preferably 0.1 to 1 ppm, based on the mass of the activated carbon.

本発明方法による活性水素含有水の製造は、磁化処理した酸化マンガン−活性炭複合体又はこれと貴金属触媒とを担持させた活性炭触媒をカラムに充填し、原料水をSV値10以上、好ましくは20〜30の速度で通すことによって行われる。この際、該活性炭触媒をカラムに直接充填する代りに、取りはずし可能にカラムに嵌装しうるカートリッジを用い、その中に活性炭触媒を充填する方式をとれば、触媒としての能力が低下したときの交換を容易に行うことができるので有利である。   In the production of the active hydrogen-containing water by the method of the present invention, a magnetized manganese oxide-activated carbon composite or an activated carbon catalyst supporting this and a noble metal catalyst is packed in a column, and the raw water is SV value of 10 or more, preferably 20 By passing at a speed of ~ 30. At this time, instead of directly packing the activated carbon catalyst into the column, using a cartridge that can be detachably fitted into the column and filling the activated carbon catalyst therein, the capacity as a catalyst is reduced. This is advantageous because it can be easily exchanged.

本発明によると、従来の磁化処理した非水溶性第二酸化鉄水和物を担持させた活性炭を用いた方法により得られる活性水素含有水に比べ、著しく高い活性酸素消去能をもつ活性水素含有水を製造することができる。   According to the present invention, the active hydrogen-containing water having a remarkably high active oxygen scavenging ability as compared with the active hydrogen-containing water obtained by the method using activated carbon carrying the conventional magnetized water-insoluble ferrous dioxide hydrate. Can be manufactured.

次に実施例により本発明を実施するための最良の形態をさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
なお、各例中の活性酸素消去能及びポリフェノール含量は以下の方法により測定した。
Next, the best mode for carrying out the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The active oxygen scavenging ability and the polyphenol content in each example were measured by the following methods.

(1)活性酸素消去能;
小試験管に、5,5‐ジメチル‐1‐ピロリン‐N‐オキシド(以下DMPOと略記する)15μlと5.5mM‐ジエチレントリアミンペンタ酢酸35μlと2mM‐ヒポキサンチン50μlを採り、混合する。
次に、これに試料溶液50μlを加え、さらにキサンチンオキシダーゼ溶液(ベーリンガー・マンハイム製、20U/ml)50μlを加え、特殊偏平セル(日本電子社製、約130μl体積)に吸い取り、ESR装置にセットし、スペクトルを読み取り、SOD標準溶液(東洋紡社製、3000U/mg)と対比させて、測定値とする。
(2)ポリフェノール含有量;
試料5mlにフォリン試薬5mlを混合し、3分後に10%炭酸ナトリウム水溶液5mlを加えて振り混ぜ、青色溶液を得る。次いで1時間室温で放置したのち、760nmの吸光度を測定し、あらかじめ用意した標準物質(没食子酸)の検量線と対比して、mM単位で求める。
(1) Active oxygen scavenging ability;
In a small test tube, 15 μl of 5,5-dimethyl-1-pyrroline-N-oxide (hereinafter abbreviated as DMPO), 35 μl of 5.5 mM diethylenetriaminepentaacetic acid and 50 μl of 2 mM hypoxanthine are mixed.
Next, add 50 μl of the sample solution to this, add 50 μl of xanthine oxidase solution (Boehringer Mannheim, 20 U / ml), and suck it into a special flat cell (manufactured by JEOL Ltd., approximately 130 μl volume) and set it in the ESR device. The spectrum is read and compared with an SOD standard solution (Toyobo Co., Ltd., 3000 U / mg) to obtain a measured value.
(2) polyphenol content;
5 ml of the Folin reagent is mixed with 5 ml of the sample, and after 3 minutes, 5 ml of 10% aqueous sodium carbonate solution is added and shaken to obtain a blue solution. Next, after standing at room temperature for 1 hour, the absorbance at 760 nm is measured, and compared with a calibration curve of a standard substance (gallic acid) prepared in advance, it is determined in units of mM.

参考例1(磁化処理した酸化マンガン−活性炭複合体の製造)
活性炭(平均粒径1.00mm、比表面積1350m2/g)100gを、1モル濃度の塩化マンガン(II)水溶液500ml中に浸せきし、これに1モル濃度の炭酸アンモニウム水溶液700mlを滴下したのち、323mTの直流磁場に置き、共鳴周波数のマイクロ波を照射しながら、60℃で30分間加熱する。次いで活性炭をろ別し、100℃において10時間加熱することにより、Mn含有量2.78mg/gの磁化処理された酸化マンガン−活性炭複合体(以下複合体触媒という)120gを得た。
Reference Example 1 (Production of magnetized manganese oxide-activated carbon composite)
After immersing 100 g of activated carbon (average particle size 1.00 mm, specific surface area 1350 m 2 / g) in 500 ml of 1 molar aqueous manganese (II) chloride solution, 700 ml of 1 molar aqueous ammonium carbonate solution was added dropwise thereto, It is placed in a 323 mT DC magnetic field and heated at 60 ° C. for 30 minutes while irradiating with microwaves of resonance frequency. Next, the activated carbon was filtered off and heated at 100 ° C. for 10 hours to obtain 120 g of a magnetized manganese oxide-activated carbon composite (hereinafter referred to as composite catalyst) having a Mn content of 2.78 mg / g.

参考例2(Fe含有活性炭の製造)
1モル濃度の塩化マンガン(II)水溶液500mlの代りに、1モル濃度の塩化第二鉄水溶液500mlを用いた以外は、全く参考例1と同様に操作して、Fe含量2.38mg/gの磁化処理された非水溶性第二酸化鉄水和物を担持した活性炭(以下磁性活性炭触媒という)121gを得た。
Reference Example 2 (Production of Fe-containing activated carbon)
The same operation as in Reference Example 1 was carried out except that 500 ml of a 1 molar ferric chloride aqueous solution was used instead of 500 ml of a 1 molar aqueous manganese (II) chloride solution, and an Fe content of 2.38 mg / g. 121 g of activated carbon (hereinafter referred to as a magnetic activated carbon catalyst) carrying magnetized water-insoluble ferric oxide hydrate was obtained.

ガラスカラム(25×500mm)に参考例1で得た複合体触媒300gを充填し、これに蒸留水600mlを通して洗浄したのち、水道水をSV値20で通水し、その1000mlを採取した。このものの活性酸素消去能を測定し、その結果を表1に示す。また、比較のために未処理の蒸留水の活性酸素消去能も併記した。   A glass column (25 × 500 mm) was filled with 300 g of the composite catalyst obtained in Reference Example 1 and washed with 600 ml of distilled water, and then tap water was passed at an SV value of 20, and 1000 ml thereof was collected. The active oxygen scavenging ability of this product was measured, and the results are shown in Table 1. For comparison, the active oxygen scavenging ability of untreated distilled water is also shown.

比較例1
複合体触媒の代りに、参考例2で得た磁性活性炭触媒を充填したカラムを用い、実施例1と同様の条件で水道水を通水し、その1000mlを採取して、その活性酸素消去能を測定し、その結果を表1に示した。
Comparative Example 1
Instead of the composite catalyst, the column filled with the magnetic activated carbon catalyst obtained in Reference Example 2 was used, and tap water was passed under the same conditions as in Example 1. The results are shown in Table 1.

Figure 0004782443
Figure 0004782443

この表から分るように、本発明方法によると、従来方法により得られる活性水素含有水よりもはるかに高い活性酸素消去能をもつ活性水素含有水が得られる。   As can be seen from this table, according to the method of the present invention, active hydrogen-containing water having a much higher active oxygen scavenging ability than that obtained by the conventional method can be obtained.

実施例1で得た活性水素含有水20mlに、市販コーヒー粉末0.5gを加え、1分間煮沸した。このようにして得たコーヒーの抽出液中のポリフェノール含有量を測定し、その結果を表2に示す。   To 20 ml of active hydrogen-containing water obtained in Example 1, 0.5 g of commercial coffee powder was added and boiled for 1 minute. The polyphenol content in the coffee extract thus obtained was measured, and the results are shown in Table 2.

比較例2
実施例1で得た活性水素含有水の代りに、同量の蒸留水を用い、実施例2と同様にして市販コーヒー粉末から抽出を行った。このようにして得たコーヒーの抽出液中のポリフェノール含有量を測定し、その結果を表2に示す。
Comparative Example 2
The same amount of distilled water was used in place of the active hydrogen-containing water obtained in Example 1, and extraction was performed from commercially available coffee powder in the same manner as in Example 2. The polyphenol content in the coffee extract thus obtained was measured, and the results are shown in Table 2.

Figure 0004782443
Figure 0004782443

この表から分るように、本発明方法により得られる活性水素含有水を用いると、コーヒーからより多くのポリフェノールの抽出を行うことができる。   As can be seen from this table, when the active hydrogen-containing water obtained by the method of the present invention is used, more polyphenols can be extracted from coffee.

本発明方法によると、生鮮食料品の保存、殺菌、飲料水、動植物の育成用として広く利用しうる高活性の活性水素含有水を製造することができる。   According to the method of the present invention, highly active active hydrogen-containing water that can be widely used for preservation of fresh food products, sterilization, drinking water, and animal and plant cultivation can be produced.

Claims (5)

磁化処理した酸化マンガン−活性炭複合体に原料水を接触させることを特徴とする活性酸素消去能を有する活性水の製造方法。 A method for producing active water having active oxygen scavenging ability, comprising bringing raw material water into contact with a magnetized manganese oxide-activated carbon composite. 磁化処理した酸化マンガン−活性炭複合体の貴金属触媒添加物に原料水を接触させることを特徴とする活性酸素消去能を有する活性水の製造方法。 A method for producing active water having active oxygen scavenging ability, comprising bringing raw water into contact with a noble metal catalyst additive of a magnetized manganese oxide-activated carbon composite. 活性炭が比表面積200m2/g以上を有する請求項1又は2記載の活性酸素消去能を有する活性水の製造方法。 The method for producing active water having active oxygen scavenging ability according to claim 1 or 2, wherein the activated carbon has a specific surface area of 200 m 2 / g or more. 貴金属触媒が、白金、パラジウム又は銀である請求項2記載の活性酸素消去能を有する活性水の製造方法。 The method for producing active water having active oxygen scavenging ability according to claim 2, wherein the noble metal catalyst is platinum, palladium or silver. 磁化処理した酸化マンガン−活性炭複合体が、活性炭の存在下、可溶性マンガン塩含有溶液に磁場内でマイクロ波照射しながら加熱することによって形成されたものである請求項1ないし3のいずれかに記載の活性酸素消去能を有する活性水の製造方法。 4. The magnetized manganese oxide-activated carbon composite is formed by heating a soluble manganese salt-containing solution in the presence of activated carbon while irradiating with a microwave in a magnetic field. A method for producing active water having active oxygen scavenging ability .
JP2005054828A 2005-02-28 2005-02-28 Process for producing active water having active oxygen scavenging ability Active JP4782443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054828A JP4782443B2 (en) 2005-02-28 2005-02-28 Process for producing active water having active oxygen scavenging ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054828A JP4782443B2 (en) 2005-02-28 2005-02-28 Process for producing active water having active oxygen scavenging ability

Publications (2)

Publication Number Publication Date
JP2006239480A JP2006239480A (en) 2006-09-14
JP4782443B2 true JP4782443B2 (en) 2011-09-28

Family

ID=37046406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054828A Active JP4782443B2 (en) 2005-02-28 2005-02-28 Process for producing active water having active oxygen scavenging ability

Country Status (1)

Country Link
JP (1) JP4782443B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249993A (en) * 1985-08-29 1987-03-04 Kenzo Nishio Apparatus for producing mineralized active water containing igneous rock
JPH01262988A (en) * 1988-04-11 1989-10-19 Shoko Kagaku Kenkyusho:Kk Water quality improving structure
JPH079493U (en) * 1993-07-13 1995-02-10 孝志 前 Mashimizu Demineralizer
JPH09122636A (en) * 1995-11-01 1997-05-13 Sekisui Chem Co Ltd Water purifying apparatus
JPH1128360A (en) * 1997-07-08 1999-02-02 Nippon Boshoku Kogyo Kk Atomic oxygen-generating catalyst and method for generating atomic oxygen
JP4354172B2 (en) * 2002-10-31 2009-10-28 株式会社ユニフィードエンジニアリング Method for producing activated water

Also Published As

Publication number Publication date
JP2006239480A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
Khataee et al. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process
Suksabye et al. Mechanism of Cr (VI) adsorption by coir pith studied by ESR and adsorption kinetic
JP6345774B2 (en) Ammonia adsorbent
Shen et al. Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants
US9051198B2 (en) Nitrogen doped A2Nb4O11, process for preparation thereof, and method for degradation of organic pollutants
CN110193373A (en) The preparation method and applications of visible light-responded doped yttrium bismuth oxychloride catalyst
US20090074877A1 (en) Water containing active Hydrogen and process for producing the same
Wang et al. Dual-ligand Terbium Metal–Organic Framework for visual ratiometric fluorescence sensing of Nitrites in Pickles
Yola et al. A novel electrochemical detection method for butylated hydroxyanisole (BHA) as an antioxidant: a BHA imprinted polymer based on a nickel ferrite@ graphene nanocomposite and its application
Yao et al. Trace Co coupled and tourmaline doped g-C3N4 for visible-light synergistic persulfate system for degradation of perfluorooctanoic acid
CN110018146B (en) Method for detecting palladium ions based on fluorescent carbon quantum dots
Ali et al. Study of Isothermal, Kinetic and Thermodynamic Parameters of Adsorption of Glycolic Acid by a Mixture of Adsorbent Substance with ab-Initio Calculations
JP4782443B2 (en) Process for producing active water having active oxygen scavenging ability
CN105712460B (en) A kind of catalytic wet oxidation method of phenol wastewater
EP4204127A1 (en) Copper, iron, and nitrogen treated sorbent and method for making same
CN111847625B (en) Method and device for removing methyl mercury in sewage by using ternary composite nano material
Kon’kova et al. Cobalt-containing catalysts based on Al 2 O 3 for the oxidative destruction of organic dyes in the aqueous phase
JP4354172B2 (en) Method for producing activated water
CN105709746B (en) Catalytic wet oxidation catalyst and preparation method thereof
CN114715980B (en) Activated persulfate and O 2 Electrochemical method for synergistic degradation of perfluorinated compounds
CN108003870B (en) Cadmium sulfide quantum dot fluorescent probe and preparation method and application thereof
CN105712459B (en) A kind of ozone catalytic wet oxidation method of acrylicacidandesters waste water
CN112495341B (en) Medical stone adsorbent and preparation method thereof, chlorine dioxide preparation and preparation method and application thereof
Inui et al. Oxidation of ethanol induced by simple polyphenols: Prooxidant property of polyphenols
CN112642461A (en) Modified cuprous ferrite catalyst rich in oxygen vacancies and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250