JP4780959B2 - Ethynylation method - Google Patents

Ethynylation method Download PDF

Info

Publication number
JP4780959B2
JP4780959B2 JP2004530118A JP2004530118A JP4780959B2 JP 4780959 B2 JP4780959 B2 JP 4780959B2 JP 2004530118 A JP2004530118 A JP 2004530118A JP 2004530118 A JP2004530118 A JP 2004530118A JP 4780959 B2 JP4780959 B2 JP 4780959B2
Authority
JP
Japan
Prior art keywords
carbonyl compound
methyl
alkali metal
ammonia
metal hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004530118A
Other languages
Japanese (ja)
Other versions
JP2005538142A (en
Inventor
ボンラート,ヴェルナー
シェール,ペーター・エル
チュミ,ヨハンネス
ツェンハーオゼルン,レト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Publication of JP2005538142A publication Critical patent/JP2005538142A/en
Application granted granted Critical
Publication of JP4780959B2 publication Critical patent/JP4780959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/42Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/04Acyclic alcohols with carbon-to-carbon triple bonds
    • C07C33/042Acyclic alcohols with carbon-to-carbon triple bonds with only one triple bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Formation Of Insulating Films (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for the manufacture of an acetylenically unsaturated alcohol comprising reacting formaldehyde, an aldehyde or a ketone (a carbonyl compound) with acetylene in the presence of ammonia and an alkali metal hydroxide, the molar ratio of the alkali metal hydroxide to the carbonyl compound being less than 1:200. The reaction products, which depending on the starting carbonyl compound are propargyl alcohol or 1-monosubstituted or 1,1-disubstituted derivatives thereof, are of use as intermediates in the synthesis of many useful end products, inter alia in the field of vitamins and carotenoids.

Description

本発明は、エチニル化方法に関する。より具体的には、本発明は、アセチレン不飽和アルコール(acetylenically unsaturated alcohol)(プロパルギルアルコール又はその1−一置換又は1,1−二置換誘導体)の製造方法であって、ホルムアルデヒド、ホルムアルデヒド以外のアルデヒド、又はケトン(これらは、各々、本明細書中において、一般に「カルボニル化合物」と称する。)をアンモニア及び水酸化アルカリ金属の存在下でアセチレン(エチン)と反応させるが、ここで、水酸化アルカリ金属とカルボニル化合物とのモル比が1:200未満である方法に関する。   The present invention relates to an ethynylation process. More specifically, the present invention relates to a method for producing acetylenically unsaturated alcohol (propargyl alcohol or a 1-monosubstituted or 1,1-disubstituted derivative thereof), which comprises formaldehyde and an aldehyde other than formaldehyde Or a ketone, each of which is generally referred to herein as a “carbonyl compound”, is reacted with acetylene (ethyne) in the presence of ammonia and an alkali metal hydroxide, wherein the alkali hydroxide It relates to a process wherein the molar ratio of metal to carbonyl compound is less than 1: 200.

反応生成物は、多くの有用な最終生成物の合成における中間体として、特にビタミン及びカロチノイドの分野で有用である。例えば、そのような有用な中間体の1つはデヒドロリナロールであり、それ自体はシトラールを介してβ−イオノン及びイソフィトールに変換することができるが、それら自体は、それぞれ、ビタミンA及びビタミンEの既知出発材料である。   The reaction products are useful as intermediates in the synthesis of many useful end products, particularly in the fields of vitamins and carotenoids. For example, one such useful intermediate is dehydrolinalool, which can itself be converted to β-ionone and isophytol via citral, which are themselves vitamin A and vitamin E, respectively. Is a known starting material.

アンモニア及び水酸化アルカリ金属の存在下でケトンをアセチレンと反応させることによるアセチレン不飽和アルコールの製造は、例えばドイツのアウスレーゲシュリフト(German Auslegeschrift)(DAS)1232573から知られる。この特許公開広報によれば、水酸化アルカリ金属とケトンとのモル比を1:10〜1:200として水酸化アルカリ金属の存在下、−40℃〜+40℃の温度において、エチニル化反応を行うことができる。DAS1232573で提供される技術的データから明らかであるように、水酸化アルカリ金属の相対量が減少した場合、エチニル化生成物の収率は減少する。   The production of acetylenically unsaturated alcohols by reacting a ketone with acetylene in the presence of ammonia and an alkali metal hydroxide is known, for example, from German Auslegeschrift (DAS) 1232573 in Germany. According to this patent publication, the ethynylation reaction is carried out at a temperature of −40 ° C. to + 40 ° C. in the presence of an alkali metal hydroxide with a molar ratio of alkali metal hydroxide to ketone of 1:10 to 1: 200. be able to. As is apparent from the technical data provided in DAS1232573, the yield of ethynylated product decreases when the relative amount of alkali metal hydroxide is reduced.

驚いたことに、水酸化アルカリ金属とカルボニル化合物とのモル比が1:200未満である場合、すなわち該比が1:>200である場合、アンモニア及び水酸化アルカリ金属の存在下で適切なカルボニル化合物をアセチレンと反応させることにより、短い反応時間内に優れた収率でアセチレン不飽和アルコールを得ることができることが今や見出された。そのような少量の水酸化アルカリ金属、すなわち、DAS1232573の技術に従って用いることができる量よりも非常に少ない相対量の使用により、不要な副産物として処分される塩の量を減少するのみならず、驚いたことにジオール副産物の形成をも減少させる結果となる。従前に知られたケトンアセチル化では、温度が上がるにつれてジオール副産物の形成が増加する傾向にあるので、本発明による反応を、ジオール副産物の形成を低いレベルでなお維持しながら、より高温で、すなわち、冷却することなく行うことができる。   Surprisingly, when the molar ratio of alkali metal hydroxide to carbonyl compound is less than 1: 200, ie when the ratio is 1:> 200, an appropriate carbonyl in the presence of ammonia and alkali metal hydroxide. It has now been found that by reacting a compound with acetylene, an acetylenically unsaturated alcohol can be obtained in excellent yield within a short reaction time. The use of such a small amount of alkali metal hydroxide, i.e. much less than that which can be used according to the technology of DAS1232573, not only reduces the amount of salt disposed as an unwanted by-product, but is also surprising. This also reduces the formation of diol by-products. Since the previously known ketone acetylation tends to increase the formation of diol by-products with increasing temperature, the reaction according to the present invention can be carried out at higher temperatures, i.e. while still maintaining the diol by-product formation at a low level. Can be done without cooling.

したがって、本発明は、ホルムアルデヒド、アルデヒド、又はケトン(カルボニル化合物)をアンモニア及び水酸化アルカリ金属の存在下でアセチレンと反応させることを含むアセチレン不飽和アルコールの製造方法であって、水酸化アルカリ金属とカルボニル化合物とのモル比が1:200未満であることを特徴とする方法を提供する。   Accordingly, the present invention is a process for producing an acetylenically unsaturated alcohol comprising reacting formaldehyde, aldehyde, or ketone (carbonyl compound) with acetylene in the presence of ammonia and an alkali metal hydroxide, A method is provided wherein the molar ratio to the carbonyl compound is less than 1: 200.

本発明の方法に従ってアセチレンと反応することができる最も単純なカルボニル化合物は、ホルムアルデヒド(HCHO)であり、生成物はプロパルギルアルコール(HC≡CCHOH)である。 The simplest carbonyl compound that can react with acetylene according to the method of the present invention is formaldehyde (HCHO) and the product is propargyl alcohol (HC≡CCH 2 OH).

本発明の方法に従ってアセチレと反応することができる他の任意のアルデヒド又はケトンの性質は極めて重要というわけではないが、アセチレンと反応してアセチレン不飽和アルコールを形成することが知られている、すなわち、以下の式に従う任意のアルデヒド又はケトンを用いることができる。   The nature of any other aldehyde or ketone that can react with acetyles according to the method of the present invention is not critical, but is known to react with acetylenes to form acetylenically unsaturated alcohols, ie Any aldehyde or ketone according to the following formula can be used.

Figure 0004780959
Figure 0004780959

ここで、点線によって「中心」炭素原子に結合している不特定の部分は、既知のアルデヒド及びケトンあるいは他の任意のアルデヒド及びケトンにあるものであり、これらは既知のものと同様にして製造することができる。したがって、例えば、ホルムアルデヒドなどのアルデヒド、又はケトンは、ドイツのオッフェンレーグングスシュリフト(German Offenlegungsschrift)(DOS)2018971(その内容を参照目的のため本明細書中に取り入れる。)で定義されている式「R−CO−R」で示されるアルデヒド又はケトンのうちの1つであってもよい。好ましくは、出発カルボニル化合物は、以下の一般式で示されるケトンである。
−CH−CO−CH−R
(式中、R及びRの各々は、独立して、水素、アルキル、アルケニル、シクロアルキル−アルキル、シクロアルキル−アルケニル、シクロアルケニル−アルキル、又はシクロアルケニル−アルケニルを意味し、言及した基の最後の4つは、各々、必要に応じてそのシクロアルキル環又はシクロアルケニル環上において1〜3個のメチル基又はエチル基により場合により置換されており、−CH−CO−CH−部分の炭素原子を含む炭素原子の合計数が40個を上回らない。)
Here, the unspecified part bonded to the “center” carbon atom by the dotted line is in a known aldehyde and ketone or any other aldehyde and ketone, which are prepared in the same manner as known ones. can do. Thus, for example, aldehydes such as formaldehyde or ketones are defined in German Offenlegungsschrift (DOS) 2010971, the contents of which are incorporated herein for reference purposes. It may be one of an aldehyde or a ketone represented by the formula “R 5 —CO—R 6 ”. Preferably, the starting carbonyl compound is a ketone having the general formula:
R 1 —CH 2 —CO—CH 2 —R 2 I
In which each of R 1 and R 2 independently represents hydrogen, alkyl, alkenyl, cycloalkyl-alkyl, cycloalkyl-alkenyl, cycloalkenyl-alkyl, or cycloalkenyl-alkenyl the last four of each are optionally substituted by one to three methyl or ethyl groups on the cycloalkyl ring or cycloalkenyl ring optionally, -CH 2 -CO-CH 2 - (The total number of carbon atoms, including partial carbon atoms, does not exceed 40.)

一般式Iで示されるケトンの上記定義において、R及び/又はRが意味するアルキル基は、好適には、最高で22個の炭素原子を含有し、かつ直鎖又は分枝であってもよく、このことはアルケニル基にも適用される。さらに、該アルケニル基は、最高で4個の二重結合を特徴としてもよい。R及び/又はRが意味するシクロアルキル−アルキル、シクロアルケニル−アルキル、シクロアルキル−アルケニル、又はシクロアルケニル−アルケニル基は、必要に応じて、5〜12の環員を有するシクロアルキル又はシクロアルケニル環を特徴とし;そのような基のアルキル又はアルケニル部分は1〜8個の炭素原子を含有し、かつ、直鎖又は分枝であることができ、またそのような基の一部がアルケニルの場合には該アルケニル部分は最高で4つの二重結合を特徴とすることもできる。さらに、式Iの定義でも示している通り、このような基のシクロアルキル又はシクロアルケニルの環部分は、非置換であるか、あるいは1個、2個又は3個のメチル基又はエチル基により置換され、それにより二置換又は三置換の場合には置換基は同じ(メチル又はエチル)あるいは異なる(メチル置換基及びエチル置換基の混合)ことができる。場合により置換される特に好ましい(シクロアルケニル−アルキル又はシクロアルケニル−アルケニルの一部としての)シクロアルケニル基は、周知の2,6,6−トリメチル−1−シクロヘキセン−1−イル基である。 In the above definition of the ketone of the general formula I, the alkyl radicals represented by R 1 and / or R 2 preferably contain up to 22 carbon atoms and are straight-chain or branched. This also applies to alkenyl groups. Furthermore, the alkenyl group may be characterized by up to 4 double bonds. The cycloalkyl-alkyl, cycloalkenyl-alkyl, cycloalkyl-alkenyl, or cycloalkenyl-alkenyl group represented by R 1 and / or R 2 is optionally substituted with cycloalkyl or cyclohexane having 5 to 12 ring members. Characterized by an alkenyl ring; the alkyl or alkenyl part of such a group contains from 1 to 8 carbon atoms and may be straight-chain or branched, and a part of such a group may be alkenyl In this case, the alkenyl moiety can also be characterized by up to four double bonds. Furthermore, as also indicated in the definition of formula I, the cycloalkyl or cycloalkenyl ring part of such a group is unsubstituted or substituted by 1, 2 or 3 methyl or ethyl groups. Thus, in the case of di- or tri-substitution, the substituents can be the same (methyl or ethyl) or different (mixture of methyl and ethyl substituents). A particularly preferred cycloalkenyl group (as part of cycloalkenyl-alkyl or cycloalkenyl-alkenyl) optionally substituted is the well-known 2,6,6-trimethyl-1-cyclohexen-1-yl group.

適切な場合に、任意の環メチル置換基又は環エチル置換基を含む、R又はRいずれかの炭素原子合計数は、全体として最高で40個の炭素原子を含有するR−CH−CO−CH−R分子の基準を満たすため、明らかに、それぞれ残りのR又はRの炭素原子合計数により制限される。 Where appropriate, the total number of carbon atoms in either R 1 or R 2 , including any ring methyl substituent or ring ethyl substituent, is R 1 —CH 2 containing a total of up to 40 carbon atoms. In order to meet the criteria for —CO—CH 2 —R 2 molecules, it is clearly limited by the total number of carbon atoms in the remaining R 2 or R 1 respectively.

本発明の方法は、メチルエチルケトン(2−ブタノン)、6−メチル−5−ヘプテン−2−オン、6−メチル−5−オクテン−2−オン、6,10−ジメチル−2−ウンデカノン(ヘキサヒドロプソイドイオノン)、4−(2,6,6−トリメチル−1−シクロヘキセン−l−イル)−3−ブテン−2−オン、及び6,10,14−トリメチル−2−ペンタデカノン(式Iで示されるすべてのケトン)のエチニル化に適用される場合、さらに式Iで示されるケトンではないが、それにもかかわらず、本発明の方法に従ってアセチレンと反応することができるその他多数ある中のケトンの1つであるメチルグリオキサルジメチルアセタール[CHCOCH(OCH]のエチニル化に適用される場合に、特に興味深い。これらの具体的に命名されたケトンの中で、6−メチル−5−ヘプテン−2−オンは本発明の方法によってアセチレンと反応することができる特に好ましいケトンであり、この場合の生成物は3,7−ジメチル−6−オクテン−1−イン−3−オール(デヒドロリナロール)である。 The process of the present invention comprises methyl ethyl ketone (2-butanone), 6-methyl-5-hepten-2-one, 6-methyl-5-octen-2-one, 6,10-dimethyl-2-undecanone (hexahydropone). Soidionone), 4- (2,6,6-trimethyl-1-cyclohexen-1-yl) -3-buten-2-one, and 6,10,14-trimethyl-2-pentadecanone (shown in Formula I) Is one of the many other ketones that are not the ketones of formula I but nevertheless can be reacted with acetylene according to the process of the present invention. It is of particular interest when applied to the ethynylation of the methylglyoxal dimethyl acetal [CH 3 COCH (OCH 3 ) 2 ]. Among these specifically named ketones, 6-methyl-5-hepten-2-one is a particularly preferred ketone that can be reacted with acetylene by the process of the present invention, in which the product is 3 , 7-dimethyl-6-octen-1-in-3-ol (dehydrolinalool).

本発明の方法で塩基性触媒として用いられる水酸化アルカリ金属として、水酸化ナトリウム又は水酸化カリウムを用いてもよく、このうち後者を用いることが好ましい。   Sodium hydroxide or potassium hydroxide may be used as the alkali metal hydroxide used as the basic catalyst in the method of the present invention, and the latter is preferably used.

本発明の方法で溶媒として用いられるアンモニアを、温度及び圧力を適切に選択することによって液状で維持し、それによって、同時に反応容器中に十分なアセチレン圧力もまた付与され、維持されなければならない。反応温度は、約0℃〜約40℃の範囲であることが好都合である。圧力は、反応温度に依存して適切な値で維持され、約5bar〜約20bar(約0.5MPa〜約2MPa)が好適である。反応溶媒として液化アンモニアを用いることにより、本発明の方法は有機溶媒の使用を回避しており、このことは本発明の方法の有利な点の1つである。   Ammonia used as a solvent in the process of the present invention must be maintained in liquid form by appropriate selection of temperature and pressure, so that sufficient acetylene pressure must also be applied and maintained in the reaction vessel at the same time. The reaction temperature is conveniently in the range of about 0 ° C to about 40 ° C. The pressure is maintained at a suitable value depending on the reaction temperature, and is preferably about 5 bar to about 20 bar (about 0.5 MPa to about 2 MPa). By using liquefied ammonia as the reaction solvent, the process of the present invention avoids the use of organic solvents, which is one of the advantages of the process of the present invention.

エチニル化は、ほぼ室温(約20℃)〜約35℃の温度で行うことが好ましい。   The ethynylation is preferably performed at a temperature of about room temperature (about 20 ° C.) to about 35 ° C.

本発明の方法を行うための反応混合物中におけるアセチレンとホルムアルデヒド、アルデヒド、又はケトン(カルボニル化合物)、例えば式Iで示されるケトンとのモル比は、一般に、約2:1〜約6:1である。さらに、上記方法におけるアンモニアとカルボニル化合物とのモル比は、約8:1〜約35:1であり、好ましくは約10:1〜約30:1である。   The molar ratio of acetylene to formaldehyde, aldehyde, or ketone (carbonyl compound), for example a ketone of formula I, in the reaction mixture for carrying out the process of the invention is generally from about 2: 1 to about 6: 1. is there. Further, the molar ratio of ammonia to carbonyl compound in the above process is from about 8: 1 to about 35: 1, preferably from about 10: 1 to about 30: 1.

本発明の方法の特徴は、触媒として用いられる比較的に非常に少ない量の水酸化アルカリ金属であり、すなわち、水酸化アルカリ金属とカルボニル化合物とのモル比が1:200未満(1:>200)である。本発明の方法を行うモル範囲は、約1:500〜1:200が都合よく、約1:300〜約1:220が好ましい。   A feature of the process of the invention is the relatively very small amount of alkali metal hydroxide used as a catalyst, i.e. the molar ratio of alkali metal hydroxide to carbonyl compound is less than 1: 200 (1:> 200). ). The molar range for carrying out the process of the present invention is conveniently about 1: 500 to 1: 200, preferably about 1: 300 to about 1: 220.

カルボニル化合物のエチニル化のためにそれ自体で知られた方式で本発明の方法を行うことができる。典型的には、バッチ式操作について、所望の量の水酸化アルカリ金属水溶液、カルボニル化合物、及びアセチレンを反応器中に入れる。次いで、反応器を密封し、アンモニアを繰り返し充填し通気することにより不活性化させる。最後に、所望の量のアンモニアを反応器に入れる。次いで、アセチレンも所望の量で攪拌しながら添加して、反応を開始する。反応中に、一定のケトン:アセチレンモル比を維持するために、さらにアセチレンを半継続的に添加してもよい。   The process according to the invention can be carried out in a manner known per se for the ethynylation of carbonyl compounds. Typically, for batch operations, the desired amount of aqueous alkali metal hydroxide, carbonyl compound, and acetylene are placed in the reactor. The reactor is then sealed and deactivated by repeatedly filling and venting with ammonia. Finally, the desired amount of ammonia is placed in the reactor. Acetylene is then added in the desired amount with stirring to initiate the reaction. Additional acetylene may be added semi-continuously during the reaction to maintain a constant ketone: acetylene molar ratio.

あるいは、例えば、アセチレン及びアンモニアの混合物をカルボニル化合物及び水酸化アルカリ水溶液と一緒に反応器(例えば、ピストン型反応器)中に継続的に添加し、そして生成物を継続的に回収することにより、本発明による方法を継続的に行うことができる。本発明の方法は、継続的な方式で行うことが好ましい。   Alternatively, for example, by continuously adding a mixture of acetylene and ammonia together with a carbonyl compound and an aqueous alkali hydroxide solution into a reactor (eg, a piston-type reactor) and continuously recovering the product, The method according to the invention can be carried out continuously. The method of the present invention is preferably performed in a continuous manner.

以下の実施例は、本発明の方法を例示するものである。   The following examples illustrate the method of the present invention.

実施例1
3,7−ジメチル−6−オクテン−1−イン−オールを製造するための6−メチル−5−ヘプテン−2−オンのエチニル化
45%(wt./vol.)水溶液中の水酸化カリウム(KOH)796mg及び6−メチル−5−ヘプテン−2−オン(MH)194.5gを反応器中に入れた;したがってKOH:MHのモル比は1:250であった。反応器から4倍の空気を排気し、続いて窒素でフラッシュした(反応器の不活性化)後、アンモニア369gを入れた。次いで、アンモニア及びアセチレンの混合物中21%(wt./vol.)のアセチレンに相当するアセチレンを添加し、30℃で16.1bar(1.61MPa)の圧力を付与した。反応器の内容物をガス攪拌により攪拌した。ガスクロマトグラフィー(GC)による内容物の分析のため、試料を種々の時間間隔で採取した。主な量の所望の生成物である3,7−ジメチル−6−オクテン−1−イン−3−オール(デヒドロリナロール;DLL)並びにほんの少量のジオール副産物及び無変化のMHが存在していることを確証したため、5時間後に反応を最終的に終了した。結果を以下の表1に提示する。
Example 1
Ethynylation of 6-methyl-5-hepten-2-one to produce 3,7-dimethyl-6-octen-1-in-ol Potassium hydroxide in 45% (wt./vol.) Aqueous solution ( 796 mg (KOH) and 194.5 g 6-methyl-5-hepten-2-one (MH) were placed in the reactor; thus the molar ratio of KOH: MH was 1: 250. After evacuating the reactor 4 times air and subsequently flushing with nitrogen (reactor deactivation), 369 g of ammonia was added. Then, acetylene corresponding to 21% (wt./vol.) Acetylene in a mixture of ammonia and acetylene was added and a pressure of 16.1 bar (1.61 MPa) was applied at 30 ° C. The reactor contents were stirred by gas stirring. Samples were taken at various time intervals for analysis of the contents by gas chromatography (GC). The main amount of desired product 3,7-dimethyl-6-octen-1-in-3-ol (dehydrolinalol; DLL) and only a small amount of diol by-product and unchanged MH are present. The reaction was finally terminated after 5 hours. The results are presented in Table 1 below.

表1:時間に対する生成物の組成[分(min.)/時(hr.又はhrs.)]

Figure 0004780959
Table 1: Product composition over time [min (min.) / Hour (hr. Or hrs.)]
Figure 0004780959

実施例2
3,7,11−トリメチル−1−ドデシン−3−オールを製造するための6,10−ジメチル−2−ウンデカノンのエチニル化
実施例1と同様に、45%(wt./vol.)水溶液中の水酸化カリウム387mg、6,10−ジメチル−2−ウンデカノン(ヘキサヒドロプソイドイオノン;HPI)153.8g、アンモニア360g、及びアセチレンを16.3bar(1.63MPa)で30℃において反応させた;したがって、KOH:HPIのモル比は1:250であった。5時間後、主な量の所望の生成物である3,7,11−トリメチル−1−ドデシン−3−オール(C15−アセチレン性アルコール;C15−AA)並びにほんの少量のジオール副産物及び無変化のHPIが存在していることをGCにより確証した。結果を以下の表2に提示する。
Example 2
Ethynylation of 6,10-dimethyl-2-undecanone to produce 3,7,11-trimethyl-1-dodecin-3-ol Similar to Example 1, in 45% (wt./vol.) Aqueous solution 387 mg of potassium hydroxide, 153.8 g of 6,10-dimethyl-2-undecanone (hexahydropseudoionone; HPI), 360 g of ammonia, and acetylene were reacted at 16.3 bar (1.63 MPa) at 30 ° C. Therefore the molar ratio of KOH: HPI was 1: 250. After 5 hours, the desired product of major amounts 3,7,11-trimethyl-1-dodecyn-3-ol (C 15 - acetylenic alcohols; C 15 -AA) and only small amounts of diol by-products and free The presence of altered HPI was confirmed by GC. The results are presented in Table 2 below.

表2:時間に対する生成物の組成

Figure 0004780959
Table 2: Product composition over time
Figure 0004780959

実施例3
3,7,11,15−テトラメチル−1−ヘキサデシン−3−オールを製造するための6,10,14−トリメチル−2−ペンタデカノンのエチニル化
実施例1と同様に、45%(wt./vol.)水溶液中の水酸化カリウム358mg、6,10,14−トリメチル−2−ペンタデカノン(C18−ケトン)192.3g、アンモニア351g、及びアセチレンを16.8bar(1.68MPa)で30℃において反応させた;したがって、KOH:C18−ケトンのモル比は1:250であった。5時間後、主な量の所望の生成物である3,7,11,15−テトラメチル−1−ヘキサデシン−3−オール(デヒドロイソフィトール;DIP)並びにほんの少量のジオール副産物及び無変化のC18−ケトンが存在していることをGCにより確証した。結果を以下の表3に提示する。
Example 3
Ethynylation of 6,10,14-trimethyl-2-pentadecanone to produce 3,7,11,15-tetramethyl-1-hexadecin-3-ol 45% (wt./wt) as in Example 1. vol.) 358 mg of potassium hydroxide in aqueous solution, 192.3 g of 6,10,14-trimethyl-2-pentadecanone (C 18 -ketone), 351 g of ammonia, and acetylene at 16.8 bar (1.68 MPa) at 30 ° C. The molar ratio of KOH: C 18 -ketone was thus 1: 250. After 5 hours, the main amount of desired product 3,7,11,15-tetramethyl-1-hexadecin-3-ol (dehydroisophytol; DIP) and only a small amount of diol by-product and unchanged C The presence of 18 -ketone was confirmed by GC. The results are presented in Table 3 below.

表3:時間に対する生成物の組成

Figure 0004780959
Table 3: Product composition over time
Figure 0004780959

実施例4
3,7−ジメチル−6−ノネン−1−イン−3−オールを製造するための6−メチル−5−オクテン−2−オンのエチニル化
実施例1と同様に、45%(wt./vol.)水溶液中の水酸化カリウム593mg、6−メチル−5−オクテン−2−オン(MO)166.8g、アンモニア381g、及びアセチレンを16.1bar(1.61MPa)で30℃において反応させた;したがって、KOH:MOのモル比は1:250であった。5時間後、主な量の所望の生成物である3,7−ジメチル−6−ノネン−1−イン−3−オール(「エチルデヒドロリナロール」;EDLL)並びにほんの少量のジオール副産物及び無変化のMOが存在していることをGCにより確証した。結果を以下の表4に提示する。
Example 4
Ethynylation of 6-methyl-5-octen-2-one to produce 3,7-dimethyl-6-nonen-1-in-3-ol 45% (wt./vol) as in Example 1. .) 593 mg potassium hydroxide, 166.8 g 6-methyl-5-octen-2-one (MO), 381 g ammonia, and acetylene in aqueous solution were reacted at 30 ° C. at 16.1 bar (1.61 MPa); Therefore, the KOH: MO molar ratio was 1: 250. After 5 hours, the main amount of the desired product, 3,7-dimethyl-6-nonen-1-in-3-ol (“ethyl dehydrolinalol”; EDLL) and only a small amount of diol by-product and unchanged The presence of MO was confirmed by GC. The results are presented in Table 4 below.

表4:時間に対する生成物の組成

Figure 0004780959
Table 4: Product composition over time
Figure 0004780959

実施例5
2−エチル−3−ブチン−2−オールを製造するためのメチルエチルケトンのエチニル化
実施例1と同様に、45%(wt./vol.)の水溶液中の水酸化カリウム740mg、メチルエチルケトン(MEK)153.7g、アンモニア388g、及びアセチレンを16.0bar(1.60MPa)で30℃において反応させた;したがって、KOH:MEKのモル比は1:359であった。既に1時間後、主な量の所望の生成物である2−エチル−3−ブチン−2−オール(EB)並びにほんの少量のジオール副産物及び無変化のMEKが存在していることをGCにより確証した。結果を以下の表5に提示する。
Example 5
Ethynylation of methyl ethyl ketone to produce 2-ethyl-3-butyn-2-ol As in Example 1, 740 mg potassium hydroxide in a 45% (wt./vol.) Aqueous solution, methyl ethyl ketone (MEK) 153 0.7 g, 388 g ammonia, and acetylene were reacted at 16.0 bar (1.60 MPa) at 30 ° C .; thus the molar ratio of KOH: MEK was 1: 359. Already after 1 hour, GC confirms the presence of the main amount of desired product 2-ethyl-3-butyn-2-ol (EB) and only a small amount of diol by-product and unchanged MEK. did. The results are presented in Table 5 below.

表5:時間に対する生成物の組成

Figure 0004780959
Table 5: Product composition over time
Figure 0004780959

Claims (11)

ホルムアルデヒド、アルデヒド、又はケトン(カルボニル化合物)をアンモニア及び水酸化アルカリ金属の存在下でアセチレンと反応させることによるアセチレン不飽和アルコールの製造方法であって、前記水酸化アルカリ金属と前記カルボニル化合物とのモル比が1:500〜1:200であり、前記方法を行うための反応混合物中のアセチレンとカルボニル化合物とのモル比が2:1〜6:1であることを特徴とする方法。A process for producing an acetylenically unsaturated alcohol by reacting formaldehyde, aldehyde, or ketone (carbonyl compound) with acetylene in the presence of ammonia and an alkali metal hydroxide, wherein the mole of the alkali metal hydroxide and the carbonyl compound The method is characterized in that the ratio is 1: 500 to 1: 200, and the molar ratio of acetylene to carbonyl compound in the reaction mixture for carrying out the method is 2: 1 to 6: 1. 水酸化アルカリ金属とカルボニル化合物とのモル比が1:300〜1:220である請求項1に記載の方法。  The process according to claim 1, wherein the molar ratio of the alkali metal hydroxide to the carbonyl compound is from 1: 300 to 1: 220. カルボニル化合物が一般式I:
−CH−CO−CH−R
(式中、R及びRの各々が、独立して、水素、アルキル、アルケニル、シクロアルキル−アルキル、シクロアルキル−アルケニル、シクロアルケニル−アルキル、又はシクロアルケニル−アルケニルを意味し、言及した基の最後の4つは、各々、必要に応じて、そのシクロアルキル環又はシクロアルケニル環上において1〜3個のメチル基又はエチル基により場合により置換されており、−CH−CO−CH−部分の炭素原子を含む炭素原子の合計数が40個を上回らない)で示されるケトンである請求項1又は2に記載の方法。
The carbonyl compound is represented by the general formula I:
R 1 —CH 2 —CO—CH 2 —R 2 I
In which each of R 1 and R 2 independently represents hydrogen, alkyl, alkenyl, cycloalkyl-alkyl, cycloalkyl-alkenyl, cycloalkenyl-alkyl, or cycloalkenyl-alkenyl. the last four are each optionally its being optionally substituted by one to three methyl or ethyl groups on the cycloalkyl ring or cycloalkenyl ring, -CH 2 -CO-CH 2 The method according to claim 1, wherein the total number of carbon atoms including the carbon atoms of the moiety is not more than 40).
カルボニル化合物が、メチルエチルケトン、メチルグリオキサルジメチルアセタール、6−メチル−5−ヘプテン−2−オン、6−メチル−5−オクテン−2−オン、ヘキサヒドロプソイドイオノン、4−(2,6,6−トリメチル−1−シクロヘキセン−1−イル)−3−ブテン−2−オン、又は6,10,14−トリメチル−2−ペンタデカノンである請求項1〜3のいずれか1項に記載の方法。  The carbonyl compound is methyl ethyl ketone, methyl glyoxal dimethyl acetal, 6-methyl-5-hepten-2-one, 6-methyl-5-octen-2-one, hexahydropseudoionone, 4- (2,6 , 6-trimethyl-1-cyclohexen-1-yl) -3-buten-2-one, or 6,10,14-trimethyl-2-pentadecanone. . カルボニル化合物が6−メチル−5−ヘプテン−2−オンであり、生成物がデヒドロリナロールである請求項4に記載の方法。  The process according to claim 4, wherein the carbonyl compound is 6-methyl-5-hepten-2-one and the product is dehydrolinalool. 水酸化アルカリ金属が水酸化カリウムである請求項1〜5のいずれか1項に記載の方法。  The method according to any one of claims 1 to 5, wherein the alkali metal hydroxide is potassium hydroxide. 反応を0℃〜40℃の温度で行い、圧力がアンモニアを液化状態で維持するために前記反応温度に依存して5bar〜20bar(0.5MPa〜2MPa)の適切な値である請求項1〜6のいずれか1項に記載の方法。  The reaction is carried out at a temperature between 0 ° C. and 40 ° C. and the pressure is an appropriate value between 5 bar and 20 bar (0.5 MPa to 2 MPa) depending on the reaction temperature in order to maintain ammonia in a liquefied state. 7. The method according to any one of items 6. 反応を室温〜35℃の温度で行う請求項7に記載の方法。  The process according to claim 7, wherein the reaction is carried out at a temperature of room temperature to 35 ° C. 方法を行うための反応混合物中のアンモニアとカルボニル化合物とのモル比が8:1〜35:1である請求項1〜8のいずれか1項に記載の方法。  The process according to any one of claims 1 to 8, wherein the molar ratio of ammonia to carbonyl compound in the reaction mixture for carrying out the process is 8: 1 to 35: 1. 方法を行うための反応混合物中のアンモニアとカルボニル化合物とのモル比が10:1〜30:1である請求項9に記載の方法。  The process according to claim 9, wherein the molar ratio of ammonia to carbonyl compound in the reaction mixture for carrying out the process is from 10: 1 to 30: 1. 反応を継続的な方式で行う請求項1〜10のいずれか1項に記載の方法。  The method according to any one of claims 1 to 10, wherein the reaction is carried out in a continuous manner.
JP2004530118A 2002-08-16 2003-08-09 Ethynylation method Expired - Lifetime JP4780959B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02018458.6 2002-08-16
EP02018458 2002-08-16
PCT/EP2003/008867 WO2004018400A1 (en) 2002-08-16 2003-08-09 Ethynylation process

Publications (2)

Publication Number Publication Date
JP2005538142A JP2005538142A (en) 2005-12-15
JP4780959B2 true JP4780959B2 (en) 2011-09-28

Family

ID=31896835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004530118A Expired - Lifetime JP4780959B2 (en) 2002-08-16 2003-08-09 Ethynylation method

Country Status (10)

Country Link
US (1) US7638658B2 (en)
EP (1) EP1532092B1 (en)
JP (1) JP4780959B2 (en)
KR (1) KR20050056986A (en)
CN (1) CN1286789C (en)
AT (1) ATE413370T1 (en)
AU (1) AU2003255407A1 (en)
DE (1) DE60324564D1 (en)
RU (1) RU2323201C2 (en)
WO (1) WO2004018400A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277918B (en) * 2005-09-29 2012-11-14 帝斯曼知识产权资产管理有限公司 Cleavage of alkynediols
EP1963246B1 (en) * 2005-12-20 2017-08-23 DSM IP Assets B.V. Process for ubiquinone intermediates
ATE421496T1 (en) 2006-04-25 2009-02-15 Dsm Ip Assets Bv TRANSPORT OF ETHINE IN THE FORM OF AN ALPHA-ALKYNOL AS AN ETHINE PRECURSOR
KR100915390B1 (en) * 2008-05-02 2009-09-03 한국해양연구원 Composition comprising novel acetylenic alcohol compound or the extract of reniochalina sp. for preventing and treating cancer
CN102476978B (en) * 2010-11-24 2015-04-08 杨朝辉 Novel synthetic method preparing alkynol compound from acetylene
CN103113188A (en) * 2011-11-17 2013-05-22 河北百灵威超精细材料有限公司 Novel low-cost synthesis method of alkynol compounds
US20150307439A1 (en) 2012-10-08 2015-10-29 Dsm Ip Assets B.V. Flavor and fragrance formulation (i)
CN104854072A (en) 2012-12-18 2015-08-19 帝斯曼知识产权资产管理有限公司 (6r,10r)-6,10,14-trimetylpentadecan-2-one prepared from 6,10-dimetylundeca-3,5,9-trien-2-one
WO2014096098A1 (en) 2012-12-18 2014-06-26 Dsm Ip Assets B.V. (6r,10r)-6,10,14-trimetylpentadecan-2-one prepared from 6,10,14-trimetylpentadeca-5,9,13-trien-2-one or 6,10,14-trimetylpentadeca-5,9-dien-2-one
WO2014096067A1 (en) 2012-12-18 2014-06-26 Dsm Ip Assets B.V. (6r,10r)-6,10,14-trimetylpentadecan-2-one prepared from (r)-6,10,14-trimetylpentadec-5-en-2-one
EA027932B1 (en) * 2013-01-23 2017-09-29 ДСМ АйПи АССЕТС Б.В. Process for the production of 2-alkyl-3-butyn-2-ols
MX2015011881A (en) 2013-03-13 2016-01-25 Dsm Ip Assets Bv Process for the preparation of 3,7-dimethylnonan-1-ol.
WO2016059151A1 (en) * 2014-10-16 2016-04-21 Dsm Ip Assets B.V. Ethynylation of polyunsaturated aldehydes and ketones
US11078178B2 (en) 2017-09-04 2021-08-03 Dsm Ip Assets B.V. 6-chromanol derivatives and their synthesis
CN108358749B (en) * 2018-02-07 2021-06-22 重庆弛源化工有限公司 Method for producing propargyl alcohol
EP3640233A1 (en) 2018-10-16 2020-04-22 Basf Se Ethers and esters of tertiary alkanols for use as aroma chemicals
EP3640234A1 (en) 2018-10-16 2020-04-22 Basf Se Ethers and esters of 1-substituted cycloalkanols for use as aroma chemicals
CN110143849B (en) * 2019-06-05 2020-01-10 山东新和成维生素有限公司 Preparation method of alkynol
CN113880691B (en) * 2021-09-27 2023-09-01 四川众邦新材料股份有限公司 Method for synthesizing trimethyl dodecanol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517326A (en) * 1996-09-03 2000-12-26 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing alkyne diol or a mixture of alkyne diol and alkyne monool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283014A (en) * 1966-11-01 Acetylenic alcohols from ketones and acetylene using aqueous alkaline hy- droxide catalyst
US3082260A (en) * 1959-05-20 1963-03-19 Air Reduction Preparation of acetylenic alcohols
US3383427A (en) * 1962-12-17 1968-05-14 Dow Chemical Co Procedure for synthesis of propargyl alcohol
US3709946A (en) * 1970-07-31 1973-01-09 Air Prod & Chem Preparation of acetylenic alcohols
FR2236822A1 (en) * 1973-07-09 1975-02-07 Inst Orch Khim Tertiary acetylenic alcohols prodn - by reacting ketones with acetylene in liquid ammonia in the presence of alkai catalysts
DE10123066A1 (en) 2001-05-11 2002-11-14 Basf Ag Process for the production of higher alpha, beta-unsaturated alcohols
DE102004009311A1 (en) * 2004-02-26 2005-09-08 Basf Ag Process for the preparation of a propargyl alcohol and an allyl alcohol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517326A (en) * 1996-09-03 2000-12-26 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing alkyne diol or a mixture of alkyne diol and alkyne monool

Also Published As

Publication number Publication date
US20050240066A1 (en) 2005-10-27
ATE413370T1 (en) 2008-11-15
JP2005538142A (en) 2005-12-15
RU2323201C2 (en) 2008-04-27
US7638658B2 (en) 2009-12-29
AU2003255407A1 (en) 2004-03-11
CN1286789C (en) 2006-11-29
DE60324564D1 (en) 2008-12-18
KR20050056986A (en) 2005-06-16
EP1532092B1 (en) 2008-11-05
EP1532092A1 (en) 2005-05-25
RU2005107412A (en) 2006-01-27
WO2004018400A1 (en) 2004-03-04
CN1675152A (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP4780959B2 (en) Ethynylation method
US4310709A (en) Manufacture of but-2-en-1-ol compounds by isomerizing the corresponding but-3-en-1-ol compounds
US4094914A (en) Process for the production of divalent alcohols
JP4464131B2 (en) Ethynylation method
US5349071A (en) Process for preparing tertiary alkynols
JP2002524435A (en) Method for producing γ, δ-unsaturated ketone by Carroll reaction
JPH11236341A (en) Production of alcohol
US4010204A (en) Process for preparing condensation products
TW378201B (en) Process for the preparation of saturated alcohols
Das et al. Stereoselective three-component cascade synthesis of α-substituted 2, 4-dienamides from gem-difluorochloro ethanes
JPH10147548A (en) Production of gamma, delta-unsaturated ketone
JPH10265419A (en) Isomerization from starting material allyl alcohol to product allyl alcohol
US4055601A (en) Process for the oxidation of primary allylic alcohols
US6838575B2 (en) Catalytic system for aldol reactions
US4663488A (en) Oppenauer oxidation of geraniol/nerol
JP7206469B2 (en) Production of allene ketone using copper sulfate or its hydrate
US20020095059A1 (en) Method of making fluorinated alcohols
JPS6033370B2 (en) Method for producing 2-aryl ethanol
JP4386977B2 (en) Method for producing ketones methylated at α-position
WO2009128347A1 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
Sjöholm et al. Zinc mediated allylation of aldehydes and ketones with cinnamyl chloride in aqueous medium
JP2024504986A (en) Production of allene ketones using (thio)ammonium sulfate or (thio)hydrogen sulfate
JPS6411625B2 (en)
JPH08119904A (en) Production of lactic acid ester
JPS6045166B2 (en) Method for producing 3-(β-hydroxyethyl)butenols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term