JP4780109B2 - Analytical pretreatment apparatus and analysis pretreatment method for organic chemicals - Google Patents
Analytical pretreatment apparatus and analysis pretreatment method for organic chemicals Download PDFInfo
- Publication number
- JP4780109B2 JP4780109B2 JP2007533257A JP2007533257A JP4780109B2 JP 4780109 B2 JP4780109 B2 JP 4780109B2 JP 2007533257 A JP2007533257 A JP 2007533257A JP 2007533257 A JP2007533257 A JP 2007533257A JP 4780109 B2 JP4780109 B2 JP 4780109B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- solid phase
- phase cartridge
- substance
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004458 analytical method Methods 0.000 title claims description 108
- 239000000126 substance Substances 0.000 title claims description 81
- 238000002203 pretreatment Methods 0.000 title claims description 18
- 239000007790 solid phase Substances 0.000 claims description 143
- 239000002904 solvent Substances 0.000 claims description 113
- 239000000243 solution Substances 0.000 claims description 70
- 239000007788 liquid Substances 0.000 claims description 60
- 239000013076 target substance Substances 0.000 claims description 56
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 51
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 45
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 39
- 239000012491 analyte Substances 0.000 claims description 28
- 239000012156 elution solvent Substances 0.000 claims description 26
- 238000004140 cleaning Methods 0.000 claims description 25
- 239000012535 impurity Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 238000002347 injection Methods 0.000 claims description 20
- 239000007924 injection Substances 0.000 claims description 20
- 239000000945 filler Substances 0.000 claims description 17
- 239000000741 silica gel Substances 0.000 claims description 16
- 229910002027 silica gel Inorganic materials 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 14
- 238000011010 flushing procedure Methods 0.000 claims description 13
- 239000000356 contaminant Substances 0.000 claims description 12
- YTJSFYQNRXLOIC-UHFFFAOYSA-N octadecylsilane Chemical group CCCCCCCCCCCCCCCCCC[SiH3] YTJSFYQNRXLOIC-UHFFFAOYSA-N 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000010408 sweeping Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims 2
- 239000000523 sample Substances 0.000 description 98
- 230000003750 conditioning effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 9
- 238000007781 pre-processing Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 229940088597 hormone Drugs 0.000 description 7
- 239000005556 hormone Substances 0.000 description 7
- 239000002699 waste material Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000003905 agrochemical Substances 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 235000013311 vegetables Nutrition 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000004811 liquid chromatography Methods 0.000 description 3
- 239000000575 pesticide Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000001044 reversed-phase solid-phase extraction Methods 0.000 description 3
- 239000003570 air Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- -1 ciduron Chemical compound 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- PROQIPRRNZUXQM-UHFFFAOYSA-N (16alpha,17betaOH)-Estra-1,3,5(10)-triene-3,16,17-triol Natural products OC1=CC=C2C3CCC(C)(C(C(O)C4)O)C4C3CCC2=C1 PROQIPRRNZUXQM-UHFFFAOYSA-N 0.000 description 1
- MXAZMWGALDAMFV-JBBJNLNBSA-N (8R,9S,13S,14S)-15-ethyl-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@]4(C)C(O)CC(CC)[C@H]4[C@@H]3CCC2=C1 MXAZMWGALDAMFV-JBBJNLNBSA-N 0.000 description 1
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 1
- WNTGYJSOUMFZEP-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)propanoic acid Chemical compound OC(=O)C(C)OC1=CC=C(Cl)C=C1C WNTGYJSOUMFZEP-UHFFFAOYSA-N 0.000 description 1
- RRNIZKPFKNDSRS-UHFFFAOYSA-N Bensulide Chemical compound CC(C)OP(=S)(OC(C)C)SCCNS(=O)(=O)C1=CC=CC=C1 RRNIZKPFKNDSRS-UHFFFAOYSA-N 0.000 description 1
- 239000005747 Chlorothalonil Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000005867 Iprodione Substances 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- MMUFAGXJPKNAHT-UHFFFAOYSA-N copper;quinolin-8-ol Chemical compound [Cu].C1=CN=C2C(O)=CC=CC2=C1 MMUFAGXJPKNAHT-UHFFFAOYSA-N 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003687 estradiol congener Substances 0.000 description 1
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 1
- 229960001348 estriol Drugs 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- ONUFESLQCSAYKA-UHFFFAOYSA-N iprodione Chemical compound O=C1N(C(=O)NC(C)C)CC(=O)N1C1=CC(Cl)=CC(Cl)=C1 ONUFESLQCSAYKA-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000447 pesticide residue Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- PIILXFBHQILWPS-UHFFFAOYSA-N tributyltin Chemical compound CCCC[Sn](CCCC)CCCC PIILXFBHQILWPS-UHFFFAOYSA-N 0.000 description 1
- SBXWFLISHPUINY-UHFFFAOYSA-N triphenyltin Chemical compound C1=CC=CC=C1[Sn](C=1C=CC=CC=1)C1=CC=CC=C1 SBXWFLISHPUINY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/405—Concentrating samples by adsorption or absorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/14—Preparation by elimination of some components
- G01N2030/143—Preparation by elimination of some components selective absorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/38—Flow patterns
- G01N30/46—Flow patterns using more than one column
- G01N30/461—Flow patterns using more than one column with serial coupling of separation columns
- G01N30/462—Flow patterns using more than one column with serial coupling of separation columns with different eluents or with eluents in different states
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Description
本発明は、有機化学物質の分析において、複数の固相カートリッジを利用することにより、分析対象物質を含有した溶液中の夾雑物を除去し、ガスクロマトグラフィによる定量分析の精度及び作業性を向上させるための分析前処理装置及びその分析前処理方法に関する。 The present invention uses a plurality of solid phase cartridges in the analysis of organic chemical substances to remove impurities in the solution containing the substance to be analyzed, thereby improving the accuracy and workability of quantitative analysis by gas chromatography. The present invention relates to an analysis pretreatment apparatus and an analysis pretreatment method therefor.
有機化学物質、特に農薬の分析については、液体クロマトグラフィによる分析法が採用されてきた(例えば、特許文献1参照。)。また、ゴルフ場において使用される農薬の分析についても液体クロマトグラフィが応用されてきた(例えば、特許文献2参照。)。その後、農作物に付着している残留農薬の安全性が問題となり、液体クロマトグラフィのみではなく、ガスクロマトグラフィも利用されるようになってきた。さらには、ガスクロマトグラフィと赤外吸収スペクトルを併用する方法あるいはガスクロマトグラフィ分析の前処理としてマイクロトラップを使用する方法も提案された(例えば、特許文献3および特許文献4参照。)。一方、環境問題がクローズアップされるにつれて、ダイオキシンなどの分析方法も検討されてきた(例えば、特許文献5参照。)。また、固相カートリッジとガスクロマトグラフとを連結する研究が行われ、分析対象物質を減成させるパッキングを利用せず、バルブを利用し、自動化する方法が提案されている(例えば、非特許文献1参照。)。
For the analysis of organic chemical substances, particularly agricultural chemicals, an analysis method by liquid chromatography has been employed (for example, see Patent Document 1). Liquid chromatography has also been applied to the analysis of agricultural chemicals used in golf courses (see, for example, Patent Document 2). Since then, the safety of residual pesticides attached to agricultural products has become a problem, and not only liquid chromatography but also gas chromatography has come to be used. Furthermore, a method using both gas chromatography and an infrared absorption spectrum or a method using a microtrap as a pretreatment for gas chromatography analysis has been proposed (see, for example,
環境問題が重要視されるにつれて、残留農薬、環境ホルモンなどの有機化学物質を分析するに際して、その分析精度及び作業性を上げるための努力が払われてきた。しかし、大気、飲料水、排水、植物性及び動物性の食品などの分析対象試料より抽出された分析対象物質を含有した溶液には常に夾雑物が混入されており、この夾雑物を如何に効率よく除去し、分析対象物質の分析精度を如何に高めるかが、これらの有機化学物質の分析において、大きな課題であった。本発明は、これらの課題を解決するために、合理的な分析前処理を提案し、その前処理を実施することが可能な自動分析前処理装置を提案することである。 As environmental issues have become more important, efforts have been made to improve the accuracy and workability of organic chemicals such as pesticide residues and environmental hormones. However, contaminants are always mixed in the solution containing the analysis target substance extracted from the analysis target sample such as air, drinking water, waste water, vegetable and animal foods. How to remove them well and improve the analysis accuracy of the substances to be analyzed was a big problem in the analysis of these organic chemical substances. In order to solve these problems, the present invention proposes a rational analysis pretreatment and proposes an automatic analysis pretreatment apparatus capable of performing the pretreatment.
本発明者は、上記課題を解決するために鋭意検討を行った結果、本発明を提案するに至った。すなわち、分析対象物質を注入する注入部と、前記注入部に注入された前記分析対象物質を押し流すための溶媒を送り出す第1送液ポンプと、分析対象物質と前記押し流すための溶媒とからなる溶液に含まれる無極性の夾雑物を吸着させるための第1固相カートリッジと、前記分析対象物質を吸着させる第2固相カートリッジと、夾雑物が除去された分析対象物質を含有した溶液の極性を変更するための極性変更用溶媒を送り出すための第2送液ポンプと、夾雑物が除去された分析対象物質を含有した溶液に前記第2送液ポンプからの極性変更用溶媒を送り出して混合された混合液を前記第2固相カートリッジに供給し、分析対象物質を吸着することによって分析対象物質を取得するサンプル取得制御手段を備えたことを特徴とする有機化学物質の分析前処理装置である。
サンプル取得制御手段により、分析対象物質が注入部に注入されると、第1送液ポンプにて送り出される溶媒によって分析対象物質が押し流され、分析対象物質と押し流すための溶媒とからなる溶液に含まれる無極性の夾雑物が第1固相カートリッジに吸着除去される。前記第1固相カートリッジを通過した溶液に第2送液ポンプにて極性変更用溶媒を加えて第2固相カートリッジに供給して、分析対象物質を第2固相カートリッジに吸着させて、サンプルの取得を完了し、サンプル取得制御が終了する。尚、サンプルの取得が完了すると、第2固相カートリッジを別の装置に移動させてから、溶出用溶媒を供給して第2固相カートリッジに吸着されたサンプルを溶出し、溶出したサンプルと共に流れる溶液のうちのイオン性の夾雑物を第3固相カートリッジなどに吸着させて、サンプルを取り出すことができるようにしてもよい。又、前記取り出したサンプルをガスクロマトグラフの注入口に投入してサンプルの分析を行うことになる。
上記のように溶液の極性を変更する極性変更用溶媒を加えることによる逆相的固相抽出法を用いることによって、連続してサンプルの取得を行うことができ、自動化を行うことができる。As a result of intensive studies to solve the above problems, the present inventor has come to propose the present invention. That is, a solution comprising an injection part for injecting an analysis target substance, a first liquid feed pump for sending out a solvent for flushing out the analysis target substance injected into the injection part, and an analysis target substance and the solvent for flushing out A first solid phase cartridge for adsorbing non-polar contaminants contained in the sample, a second solid phase cartridge for adsorbing the analyte, and the polarity of the solution containing the analyte from which the contaminant is removed. A second liquid-feeding pump for sending out the polarity-changing solvent for changing, and a solution containing the substance to be analyzed from which impurities are removed, and the solvent for polarity-changing from the second liquid-feeding pump is sent out and mixed. And a sample acquisition control means for acquiring the analysis target substance by supplying the mixed liquid to the second solid phase cartridge and adsorbing the analysis target substance. An analysis pre-processing device quality.
When the analysis target substance is injected into the injection part by the sample acquisition control means, the analysis target substance is pushed away by the solvent sent out by the first liquid feeding pump, and is included in the solution composed of the analysis target substance and the solvent for flushing away. The nonpolar contaminants are removed by adsorption to the first solid phase cartridge. A solvent for changing polarity is added to the solution that has passed through the first solid phase cartridge by a second liquid feed pump and supplied to the second solid phase cartridge, and the substance to be analyzed is adsorbed to the second solid phase cartridge to obtain a sample. Acquisition is completed, and sample acquisition control ends. When the acquisition of the sample is completed, the second solid phase cartridge is moved to another apparatus, and then the elution solvent is supplied to elute the sample adsorbed on the second solid phase cartridge and flow with the eluted sample. The sample may be taken out by adsorbing ionic impurities in the solution to a third solid phase cartridge or the like. In addition, the sample taken out is put into the inlet of the gas chromatograph and the sample is analyzed.
By using the reverse-phase solid-phase extraction method by adding a polarity-changing solvent that changes the polarity of the solution as described above, the sample can be continuously obtained and automation can be performed.
又、分析対象物質を貯留するサンプル貯留部と、無極性の夾雑物を吸着させるための第1固相カートリッジと、前記分析対象物質を吸着させる第2固相カートリッジと、イオン性の夾雑物を吸着させるための第3固相カートリッジと、前記分析対象物質を押し流すための溶媒、該分析対象物質を含有した溶液の極性を変更するための極性変更用溶媒、前記第2固相カートリッジに吸着させた分析対象物質を溶出させるための溶出用溶媒をそれぞれ貯留する少なくとも3つの溶媒貯留部と、該溶出用溶媒と前記サンプル貯留部からの分析対象物質とをそれぞれ受け止めるための少なくとも2つの注入口と、該溶媒貯留部に貯留された溶媒を該注入口に供給するために設けた少なくとも3つの送液ポンプと、該送液ポンプにて前記注入口に供給された特定の溶媒を受け止めて前記3つの固相カートリッジのうちの特定の固相カートリッジに接続された所定の流路へ流出させるために、該注入口の位置を切り替えるための切り替え手段と、前記分析対象物質を押し流すための送液ポンプに接続されている前記注入口の出口側に前記サンプル貯留部を接続して該分析対象物質の所定量を該送液ポンプにて吸引した後、前記押し流すための溶媒により送り出して該分析対象物質と溶媒とを含む溶液を前記第1固相カートリッジに供給し、該第1固相カートリッジを通過した溶液に極性変更用溶媒を加えて前記第2固相カートリッジに供給するためのサンプル取得制御手段と、前記サンプル取得制御手段にて第2固相カートリッジに吸着されたサンプルを溶出するための前記溶出用溶媒を供給し、溶出したサンプルと共に流れる溶液を前記第3固相カートリッジに供給し、該第3固相カートリッジにイオン性の夾雑物を吸着してサンプルを取り出すためのサンプル送り出し制御手段とを備えたことを特徴とする有機化学物質の分析前処理装置であってもよい。
サンプル取得制御手段により、サンプル貯留部の分析対象物質を送液ポンプにて注入口を介して所定量吸引してから、該送液ポンプにて分析対象物質を押し流すための溶媒を押し出して第1固相カートリッジに供給し、第1固相カートリッジに夾雑物を吸着させて除去する。前記第1固相カートリッジを通過した溶液に極性変更用溶媒を加えて第2固相カートリッジに供給して、分析対象物質を第2固相カートリッジに吸着させて、サンプルの取得を完了する。次に、サンプル送り出し制御手段により、溶出用溶媒を供給して第2固相カートリッジに吸着されたサンプルを溶出し、溶出したサンプルと共に流れる溶液のうちの脂肪酸などのイオン性の夾雑物を第3固相カートリッジに吸着させて、サンプルを取り出してサンプルの取り出しを完了する。尚、取り出したサンプルをガスクロマトグラフの注入口に投入してサンプルの分析を行うことになる。
上記のように溶液の極性を変更する極性変更用溶媒を加えることによる逆相的固相抽出法を用いることによって、連続してサンプルの取得を行うことができ、自動化を行うことができる。
又、溶出用溶媒の注入口と分析対象物質の注入口とを異なる注入口から構成することによって、溶出用溶媒の流路を構成する管の洗浄を行う必要がなく、サンプルである分析対象物質が通過する流路を構成する管のみを洗浄するだけで済み、その分制御構成の簡略化を実現することができるだけでなく、洗浄工程数を減らすことで精度よくサンプルの取り出しを行うことができる。In addition, a sample reservoir for storing the analysis target substance, a first solid phase cartridge for adsorbing nonpolar impurities, a second solid phase cartridge for adsorbing the analysis target substance, and an ionic contaminant A third solid phase cartridge for adsorption; a solvent for flushing out the analyte; a polarity changing solvent for altering the polarity of the solution containing the analyte; and the second solid phase cartridge. At least three solvent reservoirs for respectively storing the elution solvent for eluting the analyzed analyte, and at least two inlets for receiving the elution solvent and the analyte from the sample reservoir, respectively. , At least three liquid feed pumps provided to supply the solvent stored in the solvent reservoir to the inlet, and the liquid pump supplies the solvent to the inlet. A switching means for switching the position of the inlet in order to receive the specific solvent and cause it to flow out to a predetermined flow path connected to the specific solid phase cartridge of the three solid phase cartridges, and the analysis The sample reservoir is connected to the outlet side of the injection port connected to a liquid feed pump for flushing out the target substance, and a predetermined amount of the analyte is sucked by the liquid feed pump and then flushed away. The solution containing the substance to be analyzed and the solvent is supplied to the first solid phase cartridge, and the polarity changing solvent is added to the solution that has passed through the first solid phase cartridge. Sample acquisition control means for supplying to the sample and the elution solvent for eluting the sample adsorbed on the second solid phase cartridge by the sample acquisition control means And a sample delivery control means for supplying a solution flowing together with the eluted sample to the third solid phase cartridge, and adsorbing ionic impurities to the third solid phase cartridge to take out the sample. It may also be a pre-analytical processing apparatus for organic chemical substances.
The sample acquisition control means sucks a predetermined amount of the substance to be analyzed in the sample storage section through the inlet by the liquid feed pump, and then pushes out a solvent for flushing out the substance to be analyzed by the liquid feed pump. It supplies to a solid phase cartridge, and a foreign substance is made to adsorb | suck and remove to a 1st solid phase cartridge. The polarity changing solvent is added to the solution that has passed through the first solid phase cartridge and supplied to the second solid phase cartridge, and the substance to be analyzed is adsorbed to the second solid phase cartridge to complete the acquisition of the sample. Next, the elution solvent is supplied by the sample delivery control means to elute the sample adsorbed on the second solid phase cartridge, and ionic impurities such as fatty acids in the solution flowing together with the eluted sample are thirdly removed. The sample is adsorbed on the solid phase cartridge, and the sample is removed to complete the sample removal. The sample taken out is put into the inlet of the gas chromatograph and the sample is analyzed.
By using the reverse-phase solid-phase extraction method by adding a polarity-changing solvent that changes the polarity of the solution as described above, the sample can be continuously obtained and automation can be performed.
Also, by configuring the elution solvent injection port and the analysis target substance injection port from different injection ports, it is not necessary to clean the pipes that make up the elution solvent flow path, and the analysis target substance is a sample. It is only necessary to wash only the tubes that make up the flow path through which the gas passes, and not only can the control configuration be simplified accordingly, but also the number of washing steps can be reduced so that the sample can be taken out with high accuracy. .
洗浄用の溶媒を貯留する溶媒貯留部と該溶媒貯留部の溶媒を送り出すための送液ポンプを設け、前記分析対象物質を押し出すための溶媒を貯留する溶媒貯留部からこれに対応する前記注入口までの流路の途中部分に切り替えバルブを設け、前記送液ポンプにて吸引される分析対象物質が該切り替えバルブのポートに入る手前で吸引動作を終了するように送液ポンプの作動を制御するように構成し、該切り替えバルブに前記洗浄用の溶媒を供給して前記流路に流出可能な状態に構成し、前記洗浄用の溶媒を供給する洗浄動作状態と前記分析対象物質を押し出すための溶媒を供給するサンプル取得動作状態とに前記切り替えバルブを切り替える切り替え制御手段を備えることによって、切り替えバルブのポートに分析対象物質が入り込むことがないから、流路内を洗浄するだけで済むから、次回のサンプルの取り出し時に、ポート内に残留する前回の分析対象物質が溶媒にて送り出されてしまうことがなく、サンプルの分析を精度よく行うことができ、サンプル分析の自動化を実現することができる。 Provided with a solvent storage part for storing the solvent for washing and a liquid feed pump for sending out the solvent in the solvent storage part, the corresponding inlet from the solvent storage part for storing the solvent for extruding the substance to be analyzed A switching valve is provided in the middle of the flow path to control the operation of the liquid feeding pump so that the analyte to be aspirated by the liquid feeding pump ends the suction operation before entering the port of the switching valve. Configured to supply the cleaning solvent to the switching valve so as to be able to flow out to the flow path, and to supply the cleaning solvent and to push out the analyte By providing the switching control means for switching the switching valve to the sample acquisition operation state for supplying the solvent, the analyte can be prevented from entering the port of the switching valve. Therefore, it is only necessary to clean the inside of the flow path, so that when the next sample is taken out, the previous analysis target substance remaining in the port is not sent out by the solvent, and the sample is analyzed accurately. Thus, automation of sample analysis can be realized.
また、前記サンプルを吸着した第2固相カートリッジを乾燥させるための乾燥手段を備えてもよい。 Moreover, you may provide the drying means for drying the 2nd solid-phase cartridge which adsorb | sucked the said sample.
前記第1固相カートリッジの充填剤がオクタデシルシランシリカゲル(C18)であり、前記第2固相カートリッジの充填剤がオクタデシルシランシリカゲル(C18)又はスチルジビニルベンゼン重合体(SDB)であり、前記第3固相カートリッジの充填剤がエチルジアミン−N−プロピルシランシリカゲル(PSA)であることが好ましく、前記分析対象物質を押し出すための溶媒がアセトニトリルと水とからなる溶液であって、アセトニトリルと水との比率が4:1〜1:1であり、前記溶出用溶媒がヘキサンとアセトンとからなる溶液であって、ヘキサンとアセトンとの比率が1:1〜4:1であることが好ましい。 The filler of the first solid phase cartridge is octadecylsilane silica gel (C18), the filler of the second solid phase cartridge is octadecylsilane silica gel (C18) or stildivinylbenzene polymer (SDB), and the third The filler of the solid phase cartridge is preferably ethyldiamine-N-propylsilane silica gel (PSA), and the solvent for extruding the substance to be analyzed is a solution composed of acetonitrile and water, and includes a solution of acetonitrile and water. It is preferable that the ratio is 4: 1 to 1: 1, the elution solvent is a solution composed of hexane and acetone, and the ratio of hexane and acetone is 1: 1 to 4: 1.
本発明の第二は、分析対象物質を押し流すための溶媒により該分析対象物質を含有した溶液を第1固相カートリッジに供給し、夾雑物が除去された溶出液に極性変更用溶媒を供給して混合された混合液を第2固相カートリッジに供給し、分析対象物質を吸着させる有機化学物質の分析前処理方法であって、分析対象物質を吸着させた前記第2固相カートリッジを乾燥し、次いで溶出用溶媒を第2固相カートリッジに供給し、溶出した分析対象物質と共に流れる溶液を第3固相カートリッジに供給してイオン性の夾雑物を吸着させてガスクロマトグラフに供給するサンプルを定容用容器に採り、定容とすることを特徴としている。前記第1固相カートリッジの充填剤がオクタデシルシランシリカゲル(C18)であり、前記第2固相カートリッジの充填剤がオクタデシルシランシリカゲル(C18)又はスチルジビニルベンゼン重合体(SDB)であり、前記第3固相カートリッジの充填剤がエチルアミン−N−プロピルシランシリカゲル(PSA)であることが好ましく、前記分析対象物質を押し流すための溶媒がアセトニトリルと水とからなる溶液であって、アセトニトリルと水との比率が4:1〜1:1であり、前記第2固相カートリッジに供給する溶媒がヘキサンとアセトンとからなる溶液であって、ヘキサンとアセトンとの比率が1:1〜4:1であることが特に好ましく、前記極性変更用溶媒が水又は食塩水であることが好ましく、食塩水の場合には5〜25重量%に設定することが好ましく、20重量%とした場合が特に好ましい。
In the second aspect of the present invention, a solution containing the analysis target substance is supplied to the first solid phase cartridge by a solvent for flushing out the analysis target substance, and a polarity changing solvent is supplied to the eluate from which impurities are removed. mixed mixture Te was supplied to the second solid phase cartridge, the analyte I analytical pretreatment method der organic chemicals Ru is adsorbed, the second solid phase cartridge was adsorbed analyte A sample that is dried, and then the elution solvent is supplied to the second solid phase cartridge, and the solution that flows along with the eluted substance to be analyzed is supplied to the third solid phase cartridge to adsorb ionic impurities and supplied to the gas chromatograph. It is characterized by taking a constant volume container and making it constant volume. The filler of the first solid phase cartridge is octadecylsilane silica gel (C18), the filler of the second solid phase cartridge is octadecylsilane silica gel (C18) or stildivinylbenzene polymer (SDB), and the third The filler of the solid phase cartridge is preferably ethylamine-N-propylsilane silica gel (PSA), and the solvent for pushing away the analyte is a solution comprising acetonitrile and water, and the ratio of acetonitrile to water Is 4: 1 to 1: 1, and the solvent supplied to the second solid phase cartridge is a solution composed of hexane and acetone, and the ratio of hexane and acetone is 1: 1 to 4: 1. Is particularly preferable, and the polarity-changing solvent is preferably water or saline. In the case of saline, the solvent is preferably set to 5 to 25% by weight. Properly, particularly preferred case of a 20 wt%.
従来、残留農薬などの有機化学物質の分析における前処理方法は非常に複雑であったので、自動化が不可能であった。また、たとえ自動化しても溶出用溶媒と分析対象物質(サンプル)とが混ざり合うことにより、前処理が不充分となり満足できる効果が得られなかった。本発明の固相カートリッジを利用した有機化学物質の分析前処理装置及び分析前処理方法は、前処理の過程に逆相的固相抽出法を用いることにより、自動化が困難であるとされているロータリーエバポレーターや窒素パージによる濃縮操作を省くことができ、また試料量を少量化することができたので、オンラインの装置化をすることができた。従って、本発明の分析前処理装置を用いることによって、従来手作業で行っていた操作とほぼ同一の効果を発揮することができるので、有機化学物質の分析の精度を高め、しかも分析前処理方法を効率よく実施することができるようになった。 Conventionally, the pretreatment method in the analysis of organic chemical substances such as residual agricultural chemicals has been very complicated, and thus cannot be automated. Further, even if it is automated, the elution solvent and the substance to be analyzed (sample) are mixed with each other, so that the pretreatment is insufficient and a satisfactory effect cannot be obtained. The analysis pretreatment apparatus and analysis pretreatment method for organic chemicals using the solid phase cartridge of the present invention are difficult to automate by using a reverse phase solid phase extraction method in the pretreatment process. Concentration operation by rotary evaporator and nitrogen purge could be omitted, and the amount of sample could be reduced. Therefore, by using the pre-analysis apparatus of the present invention, it is possible to exert almost the same effect as the operation that has been performed manually, so that the accuracy of the analysis of organic chemical substances is improved, and the pre-analysis method for analysis Can be implemented efficiently.
本発明にいう有機化学物質は、特に限定されるものではないが、分析の対象としては残留農薬、環境ホルモンなどの微量成分が本発明を実施する上で好ましい。残留農薬としては、アシュラム、オキシン銅、メコプロップ、チウラム、シデュロン、イプロジオン、クロロタロニル、ペンシクロン、ベンスリドなどを例示することができる。また、環境ホルモンとしては、ノニルフェノール、ビスフェノールAなどのフェノール類、フタル酸エステル、PCBやダイオキシン類など、トリブチル錫、トリフェニル錫などの有機錫化合物、エチルエストラジオール、エストリオールなどの合成エストロゲンなどを例示することができる。 Although the organic chemical substance referred to in the present invention is not particularly limited, trace components such as residual agricultural chemicals and environmental hormones are preferred as objects of analysis for carrying out the present invention. Examples of residual pesticides include ashram, oxine copper, mecoprop, thiuram, ciduron, iprodione, chlorothalonil, pencyclon, bensulide and the like. Examples of environmental hormones include phenols such as nonylphenol and bisphenol A, phthalates, PCBs and dioxins, organotin compounds such as tributyltin and triphenyltin, and synthetic estrogens such as ethylestradiol and estriol. can do.
本発明にいう分析対象試料とは、大気及び飲料水、排水などの各種の水並びに植物性及び動物性の食品などであって、それらに含まれている有機化学物質及びその表面に付着している有機化学物質を分析すべき対象の試料をいう。例えば、野菜類の表面に付着している残留農薬あるいは環境ホルモンなどの分析を行うべき野菜類などのことである。 Samples to be analyzed in the present invention are various waters such as air, drinking water, drainage, vegetable and animal foods, etc., which are attached to organic chemical substances and their surfaces. This refers to the sample to be analyzed for organic chemicals. For example, vegetables that should be analyzed for residual agricultural chemicals or environmental hormones adhering to the surface of vegetables.
本発明にいう分析対象物質とは、分析対象試料中に含まれ、その含有量を分析しようとしている有機化学物質のことをいう。例えば、大気中に含まれている環境ホルモンなどの有機化学物質及び水中に含まれている環境ホルモン、残留農薬などの有機化学物質並びに食品の成分として含まれている有機化学物質および食品の表面に付着している有機化学物質などの分析すべき目的の有機化学物質をいう。 The substance to be analyzed in the present invention refers to an organic chemical substance that is contained in the sample to be analyzed and whose content is to be analyzed. For example, organic chemicals such as environmental hormones contained in the atmosphere, environmental hormones contained in water, organic chemicals such as residual agricultural chemicals, and organic chemicals contained in food ingredients and food surfaces. This refers to the target organic chemicals to be analyzed, such as attached organic chemicals.
本発明においては、大気及び飲料水、排水などの各種の水では分析対象試料をそのまま分析用試料とすることができるが、植物性及び動物性の食品などにおいては、通常、分析を行うべき有機化学物質を溶剤により抽出し、定容とし、分析用試料を調製する。例えば、野菜、果実類は細切りとし、穀類、豆類は粉砕後、水を加え十分に膨潤させた後、溶剤としてアセトニトリルを加え、ホモジナイズした後、ろ別し有機化学物質の抽出を行い、定容とする。分析用試料は液体クロマトグラフのカラムに吸着させた後、液体クロマトグラフに流入した移動相液とは異なる移動相液により溶出するが、このとき分析対象物質の溶出時間を予め設定し、目的とする物質のみを含有した溶液について、本発明による前処理方法を行うものである。 In the present invention, the sample to be analyzed can be used as an analysis sample as it is in various waters such as air, drinking water, and wastewater. However, in plant foods and animal foods, the organic material to be analyzed is usually used. Extract chemical substances with a solvent to make a constant volume, and prepare a sample for analysis. For example, vegetables and fruits are shredded, and cereals and beans are pulverized, sufficiently swelled with water, acetonitrile as a solvent, homogenized, filtered, and extracted with organic chemicals. And After the sample for analysis is adsorbed on the column of the liquid chromatograph, it is eluted with a mobile phase liquid different from the mobile phase liquid that has flowed into the liquid chromatograph. The pretreatment method according to the present invention is performed on a solution containing only the substance to be treated.
本発明にいう固相カートリッジとは、充填剤としてスチルジビニルベンゼン重合体(SDB)、オクタデシルシランシリカゲル(C18)、エチルジアミン−N−プロピルシランシリカゲル(PSA)などを用いた固相カートリッジをいい、充填剤は目的とする有機化学物質及び除去すべき夾雑物により、分離性のよいものを使用する。また、色素を除去するためにグラファイトカーボンを使用してもよい。 The solid phase cartridge referred to in the present invention refers to a solid phase cartridge using a stildivinylbenzene polymer (SDB), octadecylsilane silica gel (C18), ethyldiamine-N-propylsilane silica gel (PSA) or the like as a filler, A filler having a good separability is used depending on the target organic chemical substance and impurities to be removed. Graphite carbon may be used to remove the pigment.
本発明において極性変更用溶媒とは、夾雑物及び分析対象物質などを含有した溶液を第1固相カートリッジに通液し、夾雑物を第1固相カートリッジに吸着させた後、分析対象物質を第2固相カートリッジに吸着させるために、第1固相カートリッジの流出液に異なった溶媒を混合するが、このときの流出液と異なった溶媒のことをいう。 In the present invention, the polarity-changing solvent means that a solution containing impurities and an analysis target substance is passed through the first solid phase cartridge, the impurities are adsorbed on the first solid phase cartridge, and then the analysis target substance is In order to adsorb to the second solid phase cartridge, a different solvent is mixed with the effluent of the first solid phase cartridge.
図1に、前記分析対象試料中に含まれている分析対象物質を取り出すための自動前処理装置の概略を示している。この自動前処理装置は、分析対象物質を取得する第1装置と、取得した分析対象物質のうちの脂肪酸などのイオン性の夾雑物を取り除いた溶出液を取り出すための第2装置とからなっている。
前記第1装置は、分析対象物質を注入する注入部Fと、この注入部Fに注入された分析対象物質を押し流すために管L1を介して溶媒を流し込むための第1送液ポンプP1と、前記注入部Fから管L2を介して流れ込む無極性の夾雑物を吸着させる第1固相カートリッジS1と、この第1固相カートリッジS1を通して管L3に供給された分析対象物質を含有した溶液の極性を変更するための極性変更用溶媒を管L4を介して管L3に合流させるための第2送液ポンプP2と、合流された溶液を撹拌させるためのミキサーM(無くてもよい)と、撹拌された溶液が管L5を介して供給され、その供給された溶液のうちの分析対象物質を吸着させるための第2固相カートリッジS2と、この第2固相カートリッジS2に吸着されなかった極性の夾雑物を外部に排出するための管L6とを備えて、分析対象物質を取得することができるようになっている。つまり、図示していない制御装置にサンプル取得制御手段を備えさせてあり、このサンプル取得制御手段により、分析対象物質が注入部Fに注入されると、第1送液ポンプP1にて送り出される溶媒によって分析対象物質が押し流され、分析対象物質と押し流すための溶媒とからなる溶液に含まれる無極性の夾雑物が第1固相カートリッジS1に吸着除去される。続いて前記第1固相カートリッジS1を通過した溶液に第2送液ポンプP2にて極性変更用溶媒を加えて第2固相カートリッジS2に供給して、分析対象物質を第2固相カートリッジS2に吸着させて、サンプルの取得を完了し、サンプル取得制御が終了するようになっている。
前記第2装置は、分析対象物質を取得した第2固相カートリッジS2に管L7を介して溶出用溶媒を供給するための第3送液ポンプP3と、第2固相カートリッジS2から溶出された溶液を管L8を介して供給され、脂肪酸などのイオン性の夾雑物を吸着するための第3固相カートリッジS3と、この第3固相カートリッジS3を通過した分析対象物質と共に流れる溶液を定容用試験管Wに排出するための管L9とを備えて、分析対象物質を取り出すことができるようになっている。第1装置の第2固相カートリッジS2を第2装置へ移動させる手段としては、回転体に第2固相カートリッジS2を備えさせ、その回転体を回転させて第2装置側へ移動させる他、スライド移動させる手段を用いて移動させるなど、どのような手段を用いてもよい。尚、図示していないが、第2固相カートリッジS2に取得させた分析対象物質を溶出用溶媒にて溶出する前に乾燥手段にて第2固相カートリッジS2を乾燥させておくことになる。FIG. 1 shows an outline of an automatic pretreatment apparatus for taking out an analysis target substance contained in the analysis target sample. This automatic pretreatment apparatus includes a first apparatus for acquiring an analysis target substance, and a second apparatus for taking out an eluate from which ionic impurities such as fatty acids in the acquired analysis target substance are removed. Yes.
The first device includes an injection part F for injecting an analysis target substance, a first liquid feed pump P1 for injecting a solvent through a pipe L1 to push the analysis target substance injected into the injection part F, A first solid phase cartridge S1 for adsorbing nonpolar contaminants flowing from the injection section F through the tube L2, and the polarity of the solution containing the analyte to be supplied supplied to the tube L3 through the first solid phase cartridge S1 A second liquid-feeding pump P2 for merging the polarity-changing solvent for changing the amount into the tube L3 via the tube L4, a mixer M (which may be omitted) for stirring the combined solution, and stirring The supplied solution is supplied via the tube L5, and the second solid phase cartridge S2 for adsorbing the analysis target substance in the supplied solution and the polarity not adsorbed on the second solid phase cartridge S2 are used. And a pipe L6 for discharging contaminants from the composition to the outside, so that it is possible to obtain the analyte. In other words, a sample acquisition control means is provided in a control device (not shown), and when the substance to be analyzed is injected into the injection part F by this sample acquisition control means, the solvent sent out by the first liquid feed pump P1. As a result, the substance to be analyzed is swept away, and the nonpolar contaminants contained in the solution comprising the substance to be swollen and the solvent to be swept away are adsorbed and removed by the first solid phase cartridge S1. Subsequently, a solvent for polarity change is added to the solution that has passed through the first solid phase cartridge S1 by the second liquid feeding pump P2, and the solvent is supplied to the second solid phase cartridge S2. The sample acquisition is completed, and the sample acquisition control is completed.
The second device was eluted from the second solid phase cartridge S2 and the third liquid feed pump P3 for supplying the elution solvent to the second solid phase cartridge S2 from which the substance to be analyzed was obtained via the tube L7. The solution is supplied through the tube L8, and the third volume solid phase cartridge S3 for adsorbing ionic impurities such as fatty acids and the solution flowing together with the analyte to be analyzed that has passed through the third solid phase cartridge S3 have a constant volume. And a tube L9 for discharging to the test tube W, the substance to be analyzed can be taken out. As a means for moving the second solid phase cartridge S2 of the first device to the second device, the rotating body is provided with the second solid phase cartridge S2, and the rotating body is rotated and moved to the second device side. Any means may be used, such as moving by means of sliding movement. Although not shown, the second solid phase cartridge S2 is dried by a drying means before the analysis target substance obtained by the second solid phase cartridge S2 is eluted with the elution solvent.
前記自動前処理装置の更に具体的なものを図2〜図11に動作を含めて示している。
この自動前処理装置は、コンディショニング工程、サンプル取得工程、乾燥工程、サンプル取り出し工程、サンプル管路洗浄工程、サンプル管路コンディショニング工程の6つの工程から前処理作業を完了するようになっている。
具体的には、分析対象物質を貯留するサンプル貯留部としてのサンプルバイアルB5と、無極性の夾雑物を吸着させるための第1固相カートリッジS1と、前記分析対象物質を吸着させる第2固相カートリッジS2と、脂肪酸などのイオン性の夾雑物を吸着させるための第3固相カートリッジS3と、前記分析対象物質を押し流すための溶媒(アセトニトリルと水とからなる溶液で、それらの比率が4:1になっているが、4:1〜1:1の範囲であればどのような比率に設定してもよい)、該分析対象物質を含有した溶液の極性を変更するための極性変更用溶媒(水又は食塩水)、前記第2固相カートリッジS2に吸着させた分析対象物質を溶出させるための溶出用溶媒(ヘキサンとアセトンとからなる溶液で、それらの比率が1:1になっているが、1:1〜4:1の範囲であればどのような比率に設定してもよい)をそれぞれ貯留する3つ(4つ以上でもよい)の溶媒貯留部を構成する第1〜第3ボトルB1,B2,B3と、該ボトルからの溶媒をそれぞれ受け止めるために該ボトルと同数設けた(溶出用溶媒と分析対象物質との注入口とが異なるのであれば、同数でなくてもよい、ここでは3つであるが、2つでもよい)注入口A,B,Cと、該ボトルに貯留された溶媒をそれに対応する該注入口に供給するために設けた3つの第1〜第3送液ポンプP1,P2,P3と、該送液ポンプにて前記注入口に供給された特定の溶媒を受け止めて前記3つの固相カートリッジのうちの特定の固相カートリッジに接続された所定の流路へ流出させるために、該注入口の位置を切り替えるための切り替え手段Hと、前記分析対象物質を押し流すための第1送液ポンプP1に接続されている前記注入口Aの出口側に前記サンプルバイアルB5を接続して該分析対象物質の所定量を該第1送液ポンプP1にて吸引した後、前記第1ボトルB1の溶媒により送り出して該分析対象物質と溶媒とを含む溶液を前記第1固相カートリッジS1に供給し、該第1固相カートリッジS1を通過した溶液に第2送液ポンプP2にて第2ボトルB2内の極性変更用溶媒を加えて前記第2固相カートリッジS2に供給するためのサンプル取得制御手段Nと、前記サンプル取得制御手段Nにて第2固相カートリッジS2に吸着されたサンプルを溶出するための前記第3送液ポンプP3にて第3ボトルB3内の溶出用溶媒を供給し、溶出したサンプルと共に流れる溶液を前記第3固相カートリッジS3に供給し、脂肪酸などのイオン性の夾雑物を第3固相カートリッジS3に吸着して抽出液バイアルB6にサンプルを取り出すためのサンプル送り出し制御手段Rとを備えている。図2に示すTは、前記サンプルバイアルB5と後述する洗浄容器B7とを備えたサンプルロードユニットである。前記溶出用溶媒として、アセトン、ヘキサン、トルエンの混合溶媒であってもよい。More specific examples of the automatic pretreatment apparatus are shown in FIGS.
This automatic pretreatment apparatus is configured to complete the pretreatment work from six steps of a conditioning process, a sample acquisition process, a drying process, a sample removal process, a sample pipe cleaning process, and a sample pipe conditioning process.
Specifically, the sample vial B5 as a sample reservoir for storing the analysis target substance, the first solid phase cartridge S1 for adsorbing nonpolar impurities, and the second solid phase for adsorbing the analysis target substance Cartridge S2, a third solid phase cartridge S3 for adsorbing ionic impurities such as fatty acids, and a solvent (a solution composed of acetonitrile and water for sweeping away the substance to be analyzed, with a ratio of 4: 1 but it may be set to any ratio as long as it is in the range of 4: 1 to 1: 1), and the polarity changing solvent for changing the polarity of the solution containing the substance to be analyzed (Water or saline), an elution solvent for eluting the analyte to be adsorbed on the second solid phase cartridge S2 (a solution comprising hexane and acetone, the ratio of which is 1: 1) However, as long as it is in the range of 1: 1 to 4: 1, any ratio may be set). Each of the first to first constituting three (four or more) solvent reservoirs may be stored. The same number of the third bottles B1, B2, B3 and the bottles for receiving the solvent from the bottles are provided (if the number of injection ports for the elution solvent and the substance to be analyzed is different, the number is not necessarily the same. (In this case, there may be three, but two may be used) three inlets A, B, and C, and three first to three provided to supply the solvent stored in the bottle to the corresponding inlets. A third liquid feed pump P1, P2, P3 and a predetermined solvent connected to a specific solid phase cartridge among the three solid phase cartridges by receiving a specific solvent supplied to the injection port by the liquid supply pump Switch the position of the inlet to flow into the The sample vial B5 is connected to the outlet side of the inlet A connected to the switching means H for switching and the first liquid-feeding pump P1 for flushing out the analyte, and a predetermined amount of the analyte Is sucked by the first liquid feeding pump P1, and then sent out by the solvent in the first bottle B1 to supply a solution containing the substance to be analyzed and the solvent to the first solid phase cartridge S1, and the first solid phase cartridge S1. Sample acquisition control means N for adding the solvent for changing polarity in the second bottle B2 to the solution that has passed through the phase cartridge S1 and supplying it to the second solid phase cartridge S2 by the second liquid feeding pump P2, and the sample The acquisition control means N supplies the elution solvent in the third bottle B3 by the third liquid feed pump P3 for eluting the sample adsorbed on the second solid phase cartridge S2, and A sample delivery control means R for supplying the solution flowing together to the third solid phase cartridge S3, adsorbing ionic impurities such as fatty acids to the third solid phase cartridge S3, and taking out the sample into the extract vial B6; It has. T shown in FIG. 2 is a sample loading unit including the sample vial B5 and a cleaning container B7 described later. The elution solvent may be a mixed solvent of acetone, hexane, and toluene.
又、洗浄用の溶媒(アセトン)を貯留する溶媒貯留部を構成する第4ボトルB4と該第4ボトルB4内の溶媒を送り出すための第4送液ポンプP4を設け、前記分析対象物質を押し流すための溶媒を貯留する第1ボトルB1からこれに対応する前記注入口Aまでの流路の途中部分に切り替えバルブVを設け、前記第1送液ポンプP1にて吸引される分析対象物質が該切り替えバルブVのポート6に入る手前で吸引動作を終了するように第1送液ポンプP1の作動を制御するように構成し(実際には第1送液ポンプP1の作動時間を設定することにより、設定量吸引している)、該切り替えバルブVに前記洗浄用の溶媒を供給して流路LAに流出可能な状態に構成し、前記洗浄用の溶媒を供給する洗浄動作状態と前記分析対象物質を押し流すための溶媒を供給するサンプル取得動作状態とに前記切り替えバルブVを切り替える切り替え制御手段Xを備えて、切り替えバルブVと注入口Aとの間の流路LA内を洗浄するだけで済ませることができるようにしている。 In addition, a fourth bottle B4 that constitutes a solvent storage unit that stores a solvent for washing (acetone) and a fourth liquid feed pump P4 for sending out the solvent in the fourth bottle B4 are provided, and the analysis target substance is swept away. A switching valve V is provided in the middle portion of the flow path from the first bottle B1 for storing the solvent to the inlet A corresponding to the first bottle B1, and the analysis target substance sucked by the first liquid feeding pump P1 is It is configured to control the operation of the first liquid pump P1 so that the suction operation ends before entering the port 6 of the switching valve V (in practice, by setting the operation time of the first liquid pump P1) A set amount is sucked), the cleaning solvent is supplied to the switching valve V so as to be able to flow into the flow path LA, and the cleaning operation state for supplying the cleaning solvent and the analysis target Washed away material The switching control means X for switching the switching valve V to the sample acquisition operation state for supplying the solvent is provided so that only the inside of the flow path LA between the switching valve V and the inlet A can be cleaned. I have to.
前記切り替えバルブVは6つのポート1〜6を備え、図2の位置と図3の位置の2位置に切り替えることができるようになっている。つまり、ポート1とポート2、ポート3とポート4、ポート5とポート6とがそれぞれ連通状態となる第1位置と、ポート1とポート6、ポート2とポート3、ポート4とポート5とがそれぞれ連通状態となる第2位置と切り替えることができるようになっている。前記ボトルB1〜B4及び送液ポンプP1〜P4をボトル保管場Uとし、前記切り替えバルブVを切り替える切り替え制御手段Xなどの溶媒を制御する溶媒制御部を備えている。前記洗浄用の溶媒が前記流路LAを通った後は、洗浄容器B7を介して廃液受B8へ排出されることになる。
The switching valve V includes six
又、前記サンプルを吸着した第2固相カートリッジS2を乾燥させるための乾燥手段としての乾燥ユニットKを備えている。この乾燥ユニットKは、窒素ボンベK1とこの窒素ボンベK1からの窒素の流量を制御するための流量制御部K2から構成しているが、他の構成であってもよい。 In addition, a drying unit K is provided as a drying means for drying the second solid phase cartridge S2 that has adsorbed the sample. Although this drying unit K is comprised from the nitrogen cylinder K1 and the flow volume control part K2 for controlling the flow volume of the nitrogen from this nitrogen cylinder K1, other structures may be sufficient.
前記各ボトルB1〜B4には、図2の紙面の左上に示す4つの方向のみ流すことができるバルブvを備えている。 Each of the bottles B1 to B4 is provided with a valve v that can flow only in the four directions shown in the upper left of the paper surface of FIG.
前記4つの注入口A〜Dは、上下軸芯周りで回転自在な回転体(図示せず)に備えられており、その回転体を所定角度回転させることにより、特定の注入口の出口を所定の流路へ接続できるようにして前記切り替え手段Hを構成しているが、4つの注入口を一挙に又は別々に水平方向にスライドさせることにより、特定の注入口の出口を所定の流路へ接続できるように構成してもよい。 The four inlets A to D are provided in a rotating body (not shown) that is rotatable around a vertical axis, and by rotating the rotating body by a predetermined angle, an outlet of a specific inlet is predetermined. The switching means H is configured so that it can be connected to the flow path of the liquid. However, by sliding the four inlets at once or separately in the horizontal direction, the outlets of the specific inlets to the predetermined flow path. You may comprise so that it can connect.
このように構成された自動前処理装置を用いて、前述したように、コンディショニング工程、サンプル取得工程、乾燥工程、サンプル取り出し工程、サンプル管路洗浄工程、サンプル管路コンディショニングの6つの工程を経てサンプルを取り出すことについて説明する。
まず、コンディショニング工程は、図2〜図5に示し、第1番目に、図2に示すように、バルブVを第1位置に切り替えると共に回転体を回転させて図2に示す注入口Bの出口が第2固相カートリッジS2に通じる流路LB1に接続される状態にした後、第4送液ポンプP4にて第4ボトルB4からアセトン(洗浄用の溶媒)をバルブVに流し、流路LBを介して注入口Bに供給する。供給されたアセトンは、前記注入口Bから第2固相カートリッジS2、第3固相カートリッジS3の順に通って廃液受B8に流される。
第2番目に、図3に示すように、バルブVを第2位置に切り替えると共に前記回転体を回転させて注入口Cの出口が第2固相カートリッジS2に通じる流路LC1に接続される状態にした後、第3送液ポンプP3にて第3ボトルB3からヘキサンとアセトンとからなる溶液(溶出用溶媒)をバルブVに流し、流路LCを介して注入口Cに供給する。供給された溶液は、前記注入口Cから第2固相カートリッジS2、第3固相カートリッジS3の順に通って廃液受B8に流される。
第3番目に、図4に示すように、バルブVを第1位置に切り替えると共に前記回転体を回転させて注入口Bの出口が第1固相カートリッジS1に通じる流路LB2(LB1とは異なる流路になる)に接続される状態にした後、第4送液ポンプP4にて第4ボトルB4からアセトン(洗浄用の溶媒)をバルブVに流し、流路LBを介して注入口Bに供給する。供給された溶液は、前記注入口Bから第1固相カートリッジS1、極性変更用溶媒が供給されるT字状のジョイント部J、第2固相カートリッジS2の順に通って廃液受B8に流される。
第4番目に、図5に示すように、バルブVを第2位置に切り替えると共に前記回転体を回転させて注入口Bの出口が第1固相カートリッジS1に通じる流路LB3(LB1、LB2とは異なる流路になる)に接続される状態にした後、第1送液ポンプP1にて第1ボトルB1からアセトニトリルと水からなる溶液(分析対象物質を押し出すための溶媒)をバルブVに流し、流路LBを介して注入口Bに供給する。供給された溶液は、前記注入口Bから第1固相カートリッジS1、極性変更用溶媒が供給されるT字状のジョイント部J、第2固相カートリッジS2の順に通って廃液受B8に流される。Using the automatic pretreatment apparatus configured in this manner, as described above, the sample passes through the six steps of the conditioning process, the sample acquisition process, the drying process, the sample removal process, the sample pipe cleaning process, and the sample pipe conditioning. The taking out will be described.
First, the conditioning process is shown in FIG. 2 to FIG. 5. First, as shown in FIG. 2, the valve V is switched to the first position and the rotating body is rotated to exit the inlet B shown in FIG. Is connected to the flow path LB1 leading to the second solid phase cartridge S2, and then the acetone (cleaning solvent) is flowed from the fourth bottle B4 to the valve V by the fourth liquid feeding pump P4. To the injection port B. The supplied acetone flows from the inlet B to the waste liquid receiver B8 through the second solid phase cartridge S2 and the third solid phase cartridge S3 in this order.
Secondly, as shown in FIG. 3, the valve V is switched to the second position and the rotating body is rotated so that the outlet of the inlet C is connected to the flow path LC1 leading to the second solid phase cartridge S2. After that, a solution (elution solvent) composed of hexane and acetone is flowed from the third bottle B3 to the valve V from the third bottle B3 by the third liquid feeding pump P3, and is supplied to the inlet C via the flow path LC. The supplied solution flows from the inlet C to the waste liquid receiver B8 through the second solid phase cartridge S2 and the third solid phase cartridge S3 in this order.
Third, as shown in FIG. 4, the valve V is switched to the first position, and the rotating body is rotated so that the outlet B of the inlet B leads to the first solid phase cartridge S1 (different from LB1). Then, acetone (cleaning solvent) is caused to flow from the fourth bottle B4 to the valve V through the fourth liquid pump P4 to the inlet B via the flow path LB. Supply. The supplied solution flows from the inlet B to the waste liquid receiver B8 through the first solid phase cartridge S1, the T-shaped joint portion J to which the polarity changing solvent is supplied, and the second solid phase cartridge S2. .
Fourth, as shown in FIG. 5, the valve V is switched to the second position and the rotating body is rotated so that the outlet of the inlet B leads to the first solid phase cartridge S1 (LB3 (LB1, LB2). Are connected to different flow paths), and then a solution (a solvent for extruding the substance to be analyzed) consisting of acetonitrile and water is flowed to the valve V from the first bottle B1 by the first liquid pump P1. , And supplied to the inlet B through the flow path LB. The supplied solution flows from the inlet B to the waste liquid receiver B8 through the first solid phase cartridge S1, the T-shaped joint portion J to which the polarity changing solvent is supplied, and the second solid phase cartridge S2. .
サンプル取得工程は、図6及び図7に示し、まず、図6に示すように、バルブVを第1位置に切り替えると共に前記回転体を回転させて注入口Aの出口がサンプルバイアルB5に通じる流路LA1に接続される状態にした後、サンプル取得制御手段Nにより、サンプルバイアルB5の分析対象物質を第1送液ポンプP1にて注入口Aを介して所定量(流路LAを一杯にしない程度の量)吸引してから、図7に示すように、前記回転体を回転させて注入口Aが第1固相カートリッジS1に通じる流路LA2に接続される状態にした後、該送液ポンプP1にて分析対象物質を押し流すための溶媒(アセトニトリルと水からなる溶液)を押し出して、注入口A、流路LA2、第1固相カートリッジS1に供給し、第1固相カートリッジS1に無極性の夾雑物を吸着させて除去する。続いて前記第1固相カートリッジS1を通過して流路LA3を流れる溶液に第2送液ポンプP2にて第2ボトルB2内の食塩水(水でもよい、極性変更用溶媒)を流路LEを介して加えて第2固相カートリッジS2に供給して、分析対象物質を第2固相カートリッジS2に吸着させて、サンプルの取得を完了する。前記サンプルバイアルB5の分析対象物質を第1送液ポンプP1にて注入口Aを介して流路LAを一杯にしない程度の量(実際には流路LAの1/3又は1/2程度の量)にすることによって、ポート6に分析対象物質が入り込むことがなく、流路LAだけに分析対象物質を保持させることができ、バルブVのポートに分析対象物質と溶媒とが混入することがないようにしている。
この後、乾燥工程に移行し、図8に示すように、前記回転体を回転させて乾燥ユニットKと注入口Dとを接続し、かつ、該注入口Dの出口と第2固相カートリッジS2とを流路LD1にて接続する状態とした後、窒素を流路LD、注入口D、流路LD1を介して第2固相カートリッジS2を乾燥させるようにしている。The sample acquisition process is shown in FIGS. 6 and 7. First, as shown in FIG. 6, the valve V is switched to the first position and the rotating body is rotated so that the outlet of the inlet A leads to the sample vial B5. After the state connected to the path LA1, the sample acquisition control means N causes the sample vial B5 to be analyzed in a predetermined amount via the inlet A by the first liquid feed pump P1 (do not fill the path LA). After the suction, as shown in FIG. 7, the rotating body is rotated so that the inlet A is connected to the flow path LA2 communicating with the first solid phase cartridge S1, and then the liquid feeding A solvent (solution consisting of acetonitrile and water) for pushing away the substance to be analyzed is pushed out by the pump P1 and supplied to the inlet A, the flow path LA2, and the first solid phase cartridge S1, and the first solid phase cartridge S1 has no polarity. sex Contaminants adsorbed and removed. Subsequently, the saline solution (which may be water or a polarity changing solvent) in the second bottle B2 is passed through the first solid phase cartridge S1 and the solution flowing through the flow path LA3 by the second liquid feeding pump P2. In addition, the sample is supplied to the second solid phase cartridge S2, and the substance to be analyzed is adsorbed to the second solid phase cartridge S2, thereby completing the sample acquisition. An amount of the analyte in the sample vial B5 that does not fill the flow path LA via the inlet A with the first liquid feed pump P1 (actually about 1/3 or 1/2 of the flow path LA) Therefore, the analysis target substance can be held only in the flow path LA, and the analysis target substance and the solvent can be mixed into the port of the valve V. I am trying not to.
Thereafter, the process proceeds to the drying step, and as shown in FIG. 8, the rotating body is rotated to connect the drying unit K and the inlet D, and the outlet of the inlet D and the second solid phase cartridge S2 are connected. Are connected to each other through the flow path LD1, and then the second solid phase cartridge S2 is dried through the flow path LD, the inlet D, and the flow path LD1 with nitrogen.
次に、サンプル取り出し工程に移り、図9に示すように、前記回転体を回転させて注入口Cの出口が第2固相カートリッジS2に通じる流路LC1に接続される状態にした後、サンプル送り出し制御手段Rにより、送液ポンプP3にて第3ボトルB3内の溶出用溶媒(ヘキサンとアセトンとからなる溶液)を供給して第2固相カートリッジS2に吸着されたサンプルを溶出し、溶出したサンプルと共に流れる溶液のうちの脂肪酸などのイオン性の夾雑物を第3固相カートリッジS3に吸着させて、抽出液バイアルB6にサンプルを取り出してサンプルの取り出しを完了する。尚、抽出液バイアルB6に取り出したサンプルをガスクロマトグラフの注入口に投入してサンプルの分析を行うことになる。
上記のように分析対象物質の注入口Aに対して溶出用溶媒の注入口Cを別に設けることによって、両者が混ざり合うことがなく、溶出用溶媒の流路を構成する管を洗浄する必要がない。又、分析対象物質の吸引時に切り替えバルブVのポート6に分析対象物質が入り込むことがなく、ポートの洗浄をも不要にすることができ、精度よくサンプルの取り出しを行うことができる利点がある。Next, the process moves to the sample removal step, and as shown in FIG. 9, the rotating body is rotated so that the outlet of the inlet C is connected to the flow path LC1 leading to the second solid phase cartridge S2. The delivery control means R supplies the elution solvent (solution consisting of hexane and acetone) in the third bottle B3 with the delivery pump P3 to elute the sample adsorbed on the second solid phase cartridge S2, and elution The ionic impurities such as fatty acids in the solution flowing together with the sample are adsorbed on the third solid phase cartridge S3, and the sample is taken out into the extractant vial B6 to complete the taking out of the sample. The sample taken out to the extract vial B6 is put into the inlet of the gas chromatograph to analyze the sample.
By providing the elution solvent injection port C separately from the analysis target material injection port A as described above, it is necessary to wash the tubes constituting the elution solvent flow path without mixing them together. Absent. Further, there is an advantage that the analysis target substance does not enter the port 6 of the switching valve V when the analysis target substance is aspirated, the cleaning of the port can be made unnecessary, and the sample can be taken out with high accuracy.
サンプルの取り出しが完了した後は、サンプル管路洗浄工程に移る。図10に示すように、バルブVを第2位置に切り替えると共に前記回転体を回転させて注入口Aの出口が洗浄容器B7に通じる流路LA3(LA1、LA2とは異なる流路になる)に接続される状態にした後、第4送液ポンプP4にて第4ボトルB4からアセトン(洗浄用の溶媒)を流路LP4を介してバルブVのポート1からポート6に流し、流路LAを介して注入口Aに供給する。供給された洗浄用の溶媒は、前記注入口Aから流路LA3、洗浄容器B7、流路LA4の順に通って廃液受B8に流されて、洗浄工程を完了する。
After the removal of the sample is completed, the process moves to the sample line cleaning step. As shown in FIG. 10, the valve V is switched to the second position and the rotating body is rotated so that the outlet of the inlet A leads to the flow path LA3 (the flow path is different from LA1 and LA2) leading to the cleaning container B7. After being connected, acetone (cleaning solvent) is flowed from the fourth bottle B4 to the port 6 from the
次に、図11に示すように、前記洗浄した管路(流路)内のコンディショニングを行って一連の制御動作を終了する。つまり、バルブVを第1位置に切り替えると共に前記回転体を回転させて注入口Aの出口が洗浄容器B7に通じる流路LA3(LA1、LA2とは異なる流路になる)に接続される状態にした後、第1送液ポンプP1にて第1ボトルB1からアセトニトリルと水とからなる溶液(分析対象物質を押し出すための溶媒)を流路LP1を介してバルブVのポート5からポート6に流し、流路LAを介して注入口Aに供給する。供給された溶液は、前記注入口Aから流路LA3、洗浄容器B7、流路LA4の順に通って廃液受B8に流されて、最後の工程を終了する。 Next, as shown in FIG. 11, conditioning in the cleaned pipeline (flow path) is performed, and a series of control operations is completed. That is, the valve V is switched to the first position and the rotating body is rotated so that the outlet of the injection port A is connected to the flow path LA3 (the flow path is different from LA1 and LA2) leading to the cleaning container B7. After that, a solution consisting of acetonitrile and water (solvent for extruding the substance to be analyzed) is flowed from the first bottle B1 to the port 5 to the port 6 of the valve V through the flow path LP1 by the first liquid feeding pump P1. , And supplied to the inlet A through the flow path LA. The supplied solution flows from the inlet A to the waste liquid receiver B8 through the flow path LA3, the cleaning container B7, and the flow path LA4 in this order, and the last step is completed.
本発明の自動前処理装置は、有機化学物質のガスクロマトグラフによる分析において、分析用試料の前処理を速やかに行うことができ、多成分の残留農薬および環境ホルモンを速やかに、しかも精密に測定することが可能であり、対象とする食品などの安全性を迅速に評価することに適している。
又、前記第3固相カートリッジS3の充填剤を、PSAのみで構成する他、色素除去を行うグラファイトカーボンも加えたものであってもよい。この場合、PSAとグラファイトカーボンとを区分けして充填してもよいし、両者が完全に混合した混合状態で充填してもよい。
The automatic pretreatment apparatus of the present invention can quickly perform pretreatment of analytical samples in gas chromatographic analysis of organic chemical substances, and promptly and precisely measure multi-component residual pesticides and environmental hormones. It is possible to quickly evaluate the safety of the target food.
Further, the filler of the third solid phase cartridge S3 may be composed of only PSA, and may be added with graphite carbon for removing the dye. In this case, PSA and graphite carbon may be divided and filled, or may be filled in a mixed state in which both are completely mixed.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007533257A JP4780109B2 (en) | 2005-08-30 | 2006-08-29 | Analytical pretreatment apparatus and analysis pretreatment method for organic chemicals |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005248925 | 2005-08-30 | ||
JP2005248925 | 2005-08-30 | ||
JP2007533257A JP4780109B2 (en) | 2005-08-30 | 2006-08-29 | Analytical pretreatment apparatus and analysis pretreatment method for organic chemicals |
PCT/JP2006/316969 WO2007026693A1 (en) | 2005-08-30 | 2006-08-29 | Apparatus for pre-analysis treatment of organic chemical substance and method for the pre-analysis treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007026693A1 JPWO2007026693A1 (en) | 2009-03-05 |
JP4780109B2 true JP4780109B2 (en) | 2011-09-28 |
Family
ID=37808782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007533257A Active JP4780109B2 (en) | 2005-08-30 | 2006-08-29 | Analytical pretreatment apparatus and analysis pretreatment method for organic chemicals |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4780109B2 (en) |
CN (1) | CN101253406A (en) |
WO (1) | WO2007026693A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104713753A (en) * | 2013-12-11 | 2015-06-17 | 北京六角体科技发展有限公司 | Sample-control pre-processing system |
US9891199B2 (en) | 2014-08-12 | 2018-02-13 | Aisti Science Co., Ltd. | Pre-analysis treatment device usable for amino acid, organic acid, and glucide and pre-analysis treatment method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4840511B2 (en) * | 2007-10-02 | 2011-12-21 | 株式会社島津製作所 | Preparative purification equipment |
US8974666B2 (en) | 2007-10-02 | 2015-03-10 | Shimadzu Corporation | Preparative separation/purification system |
US20120121464A1 (en) * | 2009-01-29 | 2012-05-17 | Hitachi High-Technologies Corporation | Apparatus for pretreating biological samples, and mass spectrometer equipped with same |
JP5519538B2 (en) * | 2009-01-29 | 2014-06-11 | 株式会社日立ハイテクノロジーズ | Sample pretreatment apparatus and mass spectrometer equipped with the same |
JP5275158B2 (en) * | 2009-07-07 | 2013-08-28 | ジーエルサイエンス株式会社 | Solid phase extraction pretreatment method and apparatus |
CN102133488B (en) * | 2010-01-26 | 2013-09-04 | 上海安谱科学仪器有限公司 | Solid-phase extraction column for synchronously extracting melamine and cyanuric acid as well as preparation method and application thereof |
JP5452383B2 (en) * | 2010-06-15 | 2014-03-26 | 株式会社日立ハイテクノロジーズ | Biological sample pretreatment method and apparatus |
CN101936963B (en) * | 2010-07-28 | 2012-10-03 | 河北科技大学 | Automatic test instrument for organic tin |
JP6519852B2 (en) * | 2015-01-16 | 2019-05-29 | 株式会社アイスティサイエンス | Analytical sample preparation apparatus and analytical sample preparation method |
WO2018043465A1 (en) * | 2016-08-30 | 2018-03-08 | 三浦工業株式会社 | Method for preparing sample for analyzing residual agricultural chemical |
JP6866256B2 (en) * | 2016-08-30 | 2021-04-28 | 三浦工業株式会社 | Method for preparing samples for analysis of residual pesticides |
CN108387655A (en) * | 2018-02-11 | 2018-08-10 | 四川省食品药品检验检测院 | A method of for detecting persticide residue in Radix Ophiopogonis |
CN111595956B (en) * | 2020-04-23 | 2021-07-13 | 浙江大学 | Method for detecting hormone and neurotransmitter in serum |
CN114082275B (en) * | 2021-11-22 | 2024-03-29 | 杭州谱育科技发展有限公司 | Device and method for preparing aldehyde ketone compound adsorption tube on line |
CN117288553B (en) * | 2023-11-24 | 2024-01-26 | 烟台至公生物医药科技有限公司 | Sample rapid filtering type purifying device for portable mass spectrometer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968519A (en) * | 1995-08-31 | 1997-03-11 | Shimadzu Corp | Liquid chromatograph |
JP2001330598A (en) * | 2000-05-22 | 2001-11-30 | Fuji Chemical Industries Ltd | Multi-layer filler packed column |
JP2002181673A (en) * | 2000-12-18 | 2002-06-26 | Miura Co Ltd | Pretreatment method in concentration measurement of pcb and sampling device and refining device used in this pretreatment |
JP2004184215A (en) * | 2002-12-03 | 2004-07-02 | Shimadzu Corp | Method and device for analyzing acrylamide |
JP2005009940A (en) * | 2003-06-17 | 2005-01-13 | Miura Co Ltd | Method and apparatus for preparing sample for use in analyzing dioxins, and sampling device for sample used in analyzing dioxins |
JP2005172758A (en) * | 2003-12-15 | 2005-06-30 | Miura Co Ltd | Method and apparatus for preparing sample for analyzing dioxins |
-
2006
- 2006-08-29 JP JP2007533257A patent/JP4780109B2/en active Active
- 2006-08-29 WO PCT/JP2006/316969 patent/WO2007026693A1/en active Application Filing
- 2006-08-29 CN CNA2006800317373A patent/CN101253406A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968519A (en) * | 1995-08-31 | 1997-03-11 | Shimadzu Corp | Liquid chromatograph |
JP2001330598A (en) * | 2000-05-22 | 2001-11-30 | Fuji Chemical Industries Ltd | Multi-layer filler packed column |
JP2002181673A (en) * | 2000-12-18 | 2002-06-26 | Miura Co Ltd | Pretreatment method in concentration measurement of pcb and sampling device and refining device used in this pretreatment |
JP2004184215A (en) * | 2002-12-03 | 2004-07-02 | Shimadzu Corp | Method and device for analyzing acrylamide |
JP2005009940A (en) * | 2003-06-17 | 2005-01-13 | Miura Co Ltd | Method and apparatus for preparing sample for use in analyzing dioxins, and sampling device for sample used in analyzing dioxins |
JP2005172758A (en) * | 2003-12-15 | 2005-06-30 | Miura Co Ltd | Method and apparatus for preparing sample for analyzing dioxins |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104713753A (en) * | 2013-12-11 | 2015-06-17 | 北京六角体科技发展有限公司 | Sample-control pre-processing system |
CN104713753B (en) * | 2013-12-11 | 2019-03-29 | 北京六角体科技发展有限公司 | Sample control type preprocessing system |
US9891199B2 (en) | 2014-08-12 | 2018-02-13 | Aisti Science Co., Ltd. | Pre-analysis treatment device usable for amino acid, organic acid, and glucide and pre-analysis treatment method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007026693A1 (en) | 2009-03-05 |
WO2007026693A1 (en) | 2007-03-08 |
CN101253406A (en) | 2008-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4780109B2 (en) | Analytical pretreatment apparatus and analysis pretreatment method for organic chemicals | |
US5468643A (en) | Switching valve system for direct biological sample injection for LC analysis | |
Capriotti et al. | Recent trends in matrix solid-phase dispersion | |
JPH05256830A (en) | Method and apparatus for extracting component from sample | |
Londonio et al. | Online solid phase extraction-HPLC-ICP-MS system for mercury and methylmercury preconcentration using functionalised carbon nanotubes for their determination in dietary supplements | |
JP4697141B2 (en) | Organic chemical analysis device using solid phase cartridge | |
GB2503792A (en) | Needle washing mechanism | |
Quintana et al. | Online coupling of bead injection lab-on-valve analysis to gas chromatography: application to the determination of trace levels of polychlorinated biphenyls in solid waste leachates | |
Kreuzig et al. | Use of supercritical fluid extraction in the analysis of pesticides in soil | |
EP2343549B1 (en) | Analyzing device and method for controlling same | |
JP4492541B2 (en) | Organic chemical analysis equipment | |
JP6519852B2 (en) | Analytical sample preparation apparatus and analytical sample preparation method | |
JP2011509414A (en) | Device for measuring the content of an analyte in a fluid | |
JP6086597B2 (en) | Extraction method of polychlorinated biphenyls | |
EP2975376B1 (en) | Solute extraction device | |
JP2014002099A (en) | Auto-sampler of atomic absorption spectrophotometer | |
Subramanian | Quality assurance in environmental monitoring: instrumental methods | |
KR102249195B1 (en) | Sample preparation workstation | |
EP2093555B1 (en) | Automatic sample clean-up system | |
KR101278622B1 (en) | Apparatus for purificating column | |
US20200300820A1 (en) | Systems, methods and devices for reducing band dispersion in chromatography | |
JP4520947B2 (en) | DUT collection device and DUT collection method | |
JP4065090B2 (en) | PCB simple measuring device | |
US20030133843A1 (en) | Set comprising a pipette and a cartridge, as well as a method for applying a sample to the cartridge and an analytical method | |
JP2006058238A (en) | Method and apparatus for separating organic chemical component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080222 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
AA92 | Notification that decision to refuse application was cancelled |
Free format text: JAPANESE INTERMEDIATE CODE: A971092 Effective date: 20110222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140715 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4780109 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |