JP4779574B2 - Polymer material degradation diagnosis method - Google Patents

Polymer material degradation diagnosis method Download PDF

Info

Publication number
JP4779574B2
JP4779574B2 JP2005315540A JP2005315540A JP4779574B2 JP 4779574 B2 JP4779574 B2 JP 4779574B2 JP 2005315540 A JP2005315540 A JP 2005315540A JP 2005315540 A JP2005315540 A JP 2005315540A JP 4779574 B2 JP4779574 B2 JP 4779574B2
Authority
JP
Japan
Prior art keywords
polymer material
deterioration
ultrasonic
spectrum intensity
propagated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005315540A
Other languages
Japanese (ja)
Other versions
JP2007121166A (en
Inventor
正保 降矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005315540A priority Critical patent/JP4779574B2/en
Publication of JP2007121166A publication Critical patent/JP2007121166A/en
Application granted granted Critical
Publication of JP4779574B2 publication Critical patent/JP4779574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、高分子材料の劣化度を診断する方法に関するもので、特に変電機器などの電気機器に絶縁部材として使用される高分子材料の劣化診断法に関するものである。   The present invention relates to a method for diagnosing the degree of degradation of a polymer material, and more particularly to a method for diagnosing degradation of a polymer material used as an insulating member in an electrical device such as a transformer device.

電気機器などには、絶縁部材としてエポキシ樹脂などの高分子材料が使用されている。使用条件は高温、多湿、温度変化を伴う場合があり、紫外線などの有害光に曝されたり、放射線下などの過酷な条件下で長時間にわたって使用されると、高分子材料の材質が変化し電気的又は機械的特性が低下する。これを劣化という。高分子材料の劣化が進行すると機器の不具合を引き起こし、安全上問題となる恐れがある。そこで、所定の期間ごとに劣化状態を調査診断し不具合が発生する以前に適切に対処することが求められる。
高分子材料の劣化機構には、分子鎖の切断による分子量の減少、末端原子の酸化によるC−C結合の遊離、末端官能基のカルボニル基などの生成や分解、側鎖の架橋の促進や破断、充填材として用いられている異質材料との結合の切断などがある。これらの機構によって、高分子材料の絶縁性能やその他の電気的特性が低下したり、機械的強度の低下により部材表面に亀裂が発生し、それが成長して破壊に至る恐れがある。
In electrical equipment and the like, a polymer material such as an epoxy resin is used as an insulating member. The usage conditions may involve high temperature, high humidity, and temperature changes. When exposed to harmful light such as ultraviolet rays, or when used for a long time under harsh conditions such as radiation, the material of the polymer material changes. The electrical or mechanical properties are degraded. This is called deterioration. If the deterioration of the polymer material progresses, it may cause a malfunction of the device, which may cause a safety problem. Therefore, it is required to investigate and diagnose the deterioration state every predetermined period and appropriately deal with it before a failure occurs.
The degradation mechanism of polymer materials includes molecular weight reduction due to molecular chain scission, release of CC bond by oxidation of terminal atom, generation and decomposition of carbonyl group of terminal functional group, acceleration and breakage of side chain crosslinking There is a disconnection of a bond with a foreign material used as a filler. By these mechanisms, there is a possibility that the insulating performance and other electrical characteristics of the polymer material are deteriorated, or a crack is generated on the surface of the member due to a decrease in mechanical strength, which grows and breaks.

高分子材料の劣化診断には多くの方法が適用されている。劣化度をなるべく正確に把握するには、実際使用中の機器に使われている高分子材料の部材全体や一部を取り出して、化学・物理的分析、機械的試験及び各種物性測定を行なうことになるが、これは破壊検査になる。この点で、診断結果として健全と判断された場合に機器を継続的に使用することができるようにするため、非破壊検査法を適用することが望ましいが、この場合でも出来る限り正確な劣化情報を得る必要がある。非破壊検査法としては、部材表面に対する色度試験、材料内部に対しては音響伝搬試験が行なわれている。
中でも音響伝搬試験法は、高分子材料中を伝搬してきた音波の波形や音速の変化を捉えて診断を行なうので、種々の劣化機構に基づく材質変化を総合的に捉えた有効な劣化診断法である。
Many methods are applied to the degradation diagnosis of polymer materials. In order to ascertain the degree of deterioration as accurately as possible, take out all or part of the polymeric material used in the equipment that is actually in use, and perform chemical / physical analysis, mechanical tests, and various physical property measurements. This is a destructive inspection. In this respect, it is desirable to apply the nondestructive inspection method so that the equipment can be used continuously when it is judged as healthy as a diagnostic result. Need to get. As a non-destructive inspection method, a chromaticity test for the member surface and an acoustic propagation test for the inside of the material are performed.
The acoustic propagation test method is an effective deterioration diagnosis method that comprehensively captures material changes based on various deterioration mechanisms, since it makes a diagnosis based on changes in the waveform and speed of sound waves that have propagated through polymer materials. is there.

音響伝搬特性を劣化度の診断に用いるとした既発明には、特許文献1ないし特許文献4に開示されているものなどがある。これらの発明はいずれも高分子材料に水平伝搬の横波音波、すなわちSH波を伝搬させるものであり、その伝搬時間または音速が劣化度合いを良く反映するとしている。また他に既発明として特許文献5に開示されているものがある。この発明で用いられる音波は水平伝搬の縦波であって、電線被覆材のような軟質材料に適しているとしており、伝播時間、すなわち音速を用いて診断を行なう方法を開示している。
特開平11−211699号公報 特開平10−104207号公報 特開平9−236585号公報 特開平9−5309号公報 特開平11−337532号公報
Examples of the inventions that have used the acoustic propagation characteristics for diagnosis of the degree of deterioration include those disclosed in Patent Documents 1 to 4. In any of these inventions, a laterally propagated transverse wave sound wave, that is, an SH wave, is propagated through a polymer material, and the propagation time or sound speed reflects the degree of deterioration well. In addition, there is an invention already disclosed in Patent Document 5. The sound wave used in the present invention is a longitudinal wave of horizontal propagation, which is suitable for a soft material such as a wire covering material, and discloses a method of making a diagnosis using propagation time, that is, the speed of sound.
Japanese Patent Laid-Open No. 11-211699 JP-A-10-104207 JP-A-9-236585 Japanese Patent Laid-Open No. 9-5309 JP-A-11-337532

現地に設置されている機器に用いられている高分子材料の劣化診断では、診断結果として健全と判断された場合に機器を継続的に使用することができるようにするため、非破壊的な診断法が求められる。しかしながら、従来から知られている高分子材料の非破壊的な劣化診断法では診断精度が必ずしも十分とは言えない。本発明においては超音波を用いて非破壊的に実用上十分に高い精度で高分子材料の劣化度を診断することができるようにすることを課題とする。   In the deterioration diagnosis of polymer materials used in equipment installed in the field, non-destructive diagnosis is made so that the equipment can be used continuously when the diagnosis result is judged to be healthy. Law is required. However, the conventional non-destructive diagnostic methods for polymer materials do not always have sufficient diagnostic accuracy. An object of the present invention is to make it possible to diagnose the degree of deterioration of a polymer material with a sufficiently high accuracy in a nondestructive manner using ultrasonic waves.

上記の課題を解決するため、本発明は、高分子材料に超音波を伝搬させて前記高分子材料の劣化度を非破壊的に診断する方法において、未劣化高分子材料の表面近傍を伝搬した超音波の波形から得られる音響スペクトル強度に対する劣化高分子材料の表面近傍を伝搬した超音波の波形から得られた音響スペクトル強度の比と劣化度との相関関係を用いて、前記高分子材料の劣化度を診断するものであって、前記音響スペクトル強度を求める3レベルの周波数、すなわちf1、f2及びf3、を選択し、それぞれの前記周波数において、横軸に未劣化高分子材料中を伝搬した音響スペクトル強度を、縦軸に前記未劣化高分子材料中を伝搬した音響スペクトル強度に対する劣化高分子材料中を伝搬した音響スペクトル強度の比をとってプロットし、それらの点を直線で結んで得られる三角形の面積を用いて劣化度を診断するものとする(請求項1の発明)。
上記のように、高分子材料に超音波を伝搬させてその劣化度を非破壊的に診断するために、本発明では、高分子材料の表面近傍に超音波を伝搬させた場合の音波波形から音響スペクトル強度を求める。予め劣化のない高分子材料における音響スペクトル強度と機械的強度及びその他の必要な特性値との関係を求める。一方で高分子材料を強制的に加速劣化させて劣化度を変えた試料を作成し、音響スペクトル強度と機械的強度及びその他の必要な特性値との相関関係を求める。その上で使用中の機器部材の高分子材料の音響スペクトル強度を測定することによって予め求めた相関関係から劣化度を換算して目的を達成する。
In order to solve the above problems, the present invention propagates near the surface of an undegraded polymer material in a method for non-destructively diagnosing the degradation degree of the polymer material by propagating ultrasonic waves to the polymer material. Using the correlation between the ratio of the acoustic spectrum intensity obtained from the waveform of the ultrasonic wave propagated near the surface of the degraded polymer material to the acoustic spectrum intensity obtained from the waveform of the ultrasonic wave and the degree of degradation, the polymer material This is a diagnosis of the degree of deterioration, and three levels of frequencies for obtaining the acoustic spectrum intensity, ie, f1, f2, and f3, are selected, and the horizontal axis propagates through the undegraded polymer material at each frequency. The acoustic spectrum intensity is plotted on the vertical axis by taking the ratio of the acoustic spectrum intensity propagated through the degraded polymer material to the acoustic spectrum intensity propagated through the undegraded polymer material. It shall diagnosing the deterioration degree by using the area of a triangle obtained by connecting the points with a straight line (the invention of claim 1).
As described above, in order to non-destructively diagnose the deterioration level by propagating ultrasonic waves to the polymer material, in the present invention, from the sound wave waveform when the ultrasonic waves are propagated near the surface of the polymer material. Obtain the acoustic spectrum intensity. The relationship between the acoustic spectrum intensity, mechanical strength, and other necessary characteristic values in a polymer material without deterioration is obtained in advance. On the other hand, a sample in which the polymer material is forcibly accelerated and deteriorated to change the degree of deterioration is prepared, and the correlation between the acoustic spectrum intensity, the mechanical intensity, and other necessary characteristic values is obtained. Then, the degree of deterioration is converted from the correlation obtained in advance by measuring the acoustic spectrum intensity of the polymer material of the equipment member in use, and the object is achieved.

なお、この場合、未劣化高分子材料の音響スペクトル強度に対する劣化高分子材料の音響スペクトル強度の比、すなわち規格化した値を用いて診断する。
また、上記のように、超音波を高分子材料の表面近傍を伝搬させるため、劣化診断の対象となる高分子材料の厚さや形状の影響を少なくすることができる
In this case, the diagnosis is performed using the ratio of the acoustic spectrum intensity of the deteriorated polymer material to the acoustic spectrum intensity of the undegraded polymer material, that is, a normalized value.
Further, as described above, since the ultrasonic wave is propagated in the vicinity of the surface of the polymer material, it is possible to reduce the influence of the thickness and shape of the polymer material to be subjected to the deterioration diagnosis .

また、上記のように音響スペクトル強度を3つの周波数で求めるので、劣化診断の信頼性および精度をより高くすることができる。
また、請求項に記載の高分子材料劣化診断法において、3周波数の関係をf1<f2<f3とし、f2が未劣化高分子材料中を伝搬した音響スペクトル強度のピークまたはピーク近傍であるとともに、f3−f2≒f2−f1の関係を満足するように3周波数を選定することが好ましい(請求項の発明)。
また、請求項または請求項に記載の高分子材料劣化診断法において、前記三角形の面積と前記高分子材料の特性との相関関係を予め求めておき、前記相関関係を用いて前記三角形の面積から劣化度を求めることが好ましい(請求項の発明)。
また、請求項1ないし請求項3のいずれか1項に記載の高分子材料劣化診断法において、前記高分子材料表面に超音波送信子及び超音波受信子を間隔を置いて配置し、前記超音波送信子から前記高分子材料に超音波を入射し、この入射された超音波を前記高分子材料の表面近傍を伝搬させて前記超音波受信子に接する表面部位に到達させ、この到達した超音波を前記超音波受信子で受信し、受信された超音波の波形から得られる音響スペクトル強度を用いることが好ましい(請求項4の発明)。
上記のように、高分子材料に超音波を伝搬させるために、超音波送信子及び超音波受信子を高分子材料の表面に適切な間隔をおいて配置し、超音波送信子及び超音波受信子間の高分子材料表面近傍に超音波を伝搬させる。この際、超音波送信子から高分子材料に入射された超音波が高分子材料の表面近傍を伝搬して超音波受信子に接する表面部位に到達し超音波受信子で受信されるような音響的屈折条件となるように構成された超音波送信子及び超音波受信子を高分子材料表面に配置するが、例えば、前記屈折条件となるようにスネルの法則に従った角度で加工されたスペーサを送信子及び受信子と高分子材料表面との間に介在させるようにするとよい。
また、請求項1ないし請求項のいずれか1項に記載の高分子材料劣化診断法において、診断対象部位より運転中の温度が低く、かつ機器の中で最も低い温度部位又はその近傍の高分子材料を未劣化高分子材料の代替材料としてもよい(請求項の発明)。
Moreover, since the acoustic spectrum intensity is obtained at three frequencies as described above, the reliability and accuracy of the deterioration diagnosis can be further increased.
Further, in the polymer material deterioration diagnosis method according to claim 1 , the relationship between the three frequencies is f1 <f2 <f3, and f2 is at or near the peak of the acoustic spectrum intensity propagated through the undegraded polymer material. , F3-f2≈f2-f1 is preferably selected so that the three frequencies are satisfied (invention of claim 2 ).
Further, in the polymer material deterioration diagnosis method according to claim 1 or 2 , a correlation between the area of the triangle and characteristics of the polymer material is obtained in advance, and the triangle is calculated using the correlation. It is preferable to determine the degree of deterioration from the area (invention of claim 3 ).
Further, in the polymer material deterioration diagnosis method according to any one of claims 1 to 3, an ultrasonic transmitter and an ultrasonic receiver are arranged at intervals on the surface of the polymer material, and the super An ultrasonic wave is incident on the polymer material from a sound wave transmitter, and the incident ultrasonic wave is propagated near the surface of the polymer material to reach a surface portion in contact with the ultrasonic wave receiver. It is preferable that sound waves are received by the ultrasonic wave receiver and an acoustic spectrum intensity obtained from the received ultrasonic waveform is used (invention of claim 4).
As described above, in order to propagate ultrasonic waves to the polymer material, the ultrasonic transmitter and the ultrasonic receiver are arranged at an appropriate interval on the surface of the polymer material, and the ultrasonic transmitter and the ultrasonic receiver are arranged. Ultrasonic waves are propagated near the surface of the polymer material between the children. At this time, an acoustic wave in which the ultrasonic wave incident on the polymer material from the ultrasonic transmitter propagates in the vicinity of the surface of the polymer material, reaches the surface portion in contact with the ultrasonic receiver, and is received by the ultrasonic receiver. An ultrasonic transmitter and an ultrasonic receiver configured to satisfy the refraction condition are arranged on the surface of the polymer material. For example, a spacer processed at an angle according to Snell's law so as to satisfy the refraction condition Is preferably interposed between the transmitter and receiver and the polymer material surface.
Further, in the polymer material deterioration diagnosis method according to any one of claims 1 to 4 , the temperature during operation is lower than that of the diagnosis target portion and the lowest temperature portion in the device or a high temperature in the vicinity thereof. The molecular material may be used as a substitute for the undegraded polymer material (the invention of claim 5 ).

上記のように、未劣化高分子材料としては、稼動中に最も温度が低い領域にあった高分子材料を用い、それと高温領域に曝された高分子材料との比較からも診断することができる。
また、請求項1ないし請求項のいずれか1項に記載の高分子材料劣化診断法において、劣化診断の対象となる高分子材料を構成材の一部に組み込んだ機器が、変圧器、変成器、開閉器、回転機、絶縁用スペーサ及び絶縁用ブッシングなどの電気機器であってもよい(請求項の発明)。
超音波音響スペクトルに基づく本発明の高分子材料劣化診断法は、高分子材料の劣化度を非破壊でかつ高精度に診断することができるので、特に高い信頼性が求められる上記のような電気機器にも好適に適用することができる。
As described above, the undegraded polymer material can be diagnosed by using the polymer material that was in the lowest temperature region during operation and comparing it with the polymer material that was exposed to the high temperature region. .
Further, in the polymer material deterioration diagnosis method according to any one of claims 1 to 5, an apparatus in which a polymer material to be subjected to deterioration diagnosis is incorporated in a part of a constituent material is a transformer, a transformer. It may be an electric device such as a switch, a switch, a rotating machine, an insulating spacer, and an insulating bushing (invention of claim 6 ).
The polymer material deterioration diagnosis method of the present invention based on the ultrasonic acoustic spectrum can diagnose the deterioration degree of the polymer material in a non-destructive and highly accurate manner. The present invention can also be suitably applied to devices.

本発明により、超音波を用いて高分子材料の劣化度を非破壊的に診断することができるとともに、特に超音波の音響スペクトル強度と劣化度との高い相関関係を用いていることにより、劣化診断精度を実用上十分に高いものとすることができる。
また、超音波を高分子材料の表面近傍を伝搬させるため、劣化診断の対象となる高分子材料の厚さや形状の影響を少なくすることができる。
According to the present invention, it is possible to nondestructively diagnose the degree of degradation of a polymer material using ultrasonic waves, and in particular, by using a high correlation between the acoustic spectrum intensity of the ultrasonic waves and the degree of degradation. The diagnostic accuracy can be made sufficiently high in practice.
Further, since the ultrasonic wave is propagated in the vicinity of the surface of the polymer material, the influence of the thickness and shape of the polymer material to be subjected to deterioration diagnosis can be reduced.

図1は、超音波伝搬特性測定系の概念図であり、図1(a)は超音波の垂直伝搬特性を用いて高分子材料の劣化を診断するための送信子1及び受信子2の配置概念図である。図1(a)は超音波を材料表面に対して垂直に伝搬させる場合のセンサーの配置を示しており、送信子1から送信された超音波パルスは試料10表面に垂直に入射し、試料10の厚さ101を伝搬して受信子2で受ける。図1(b)は音波波形の概念図である。超音波は試料10中を伝搬する間に生じる散乱拡散や吸収により減衰する。また、台形波で送信子1から入射したものが振動波形に変形して受信子2で検出され、そこで電気信号に変換され出力される。超音波伝搬特性として音速を用いる場合には、超音波パルスの入射時間と受信時間との差、すなわち超音波パルスの伝搬時間201と超音波伝搬距離101、すなわち試料の厚さが正確に分っておれば音速を算出できる。図1に示すように被測定材料の表裏に送信子1及び受信子2を設置する他に、表面に送受信子一体にしたセンサーを設置し裏面から反射してきた音響パルスを表面で受信し音速を測定することもできる。この方法は裏面に受信子を設置できない場合に有効であるが、これらの垂直伝搬法は実機に適用する場合には材料の厚さを正確に測定できないことが多く、被測定材料の形状も様々で場所により厚さが変化するなどの制限があり適用しにくい問題がある。また、図1(a)に示すセンサー配置の測定系において、受信子2で検出された音波波形をスペクトル解析することにより、超音波伝搬特性として音響スペクトル強度を求めることができる。   FIG. 1 is a conceptual diagram of an ultrasonic propagation characteristic measurement system, and FIG. 1A is an arrangement of a transmitter 1 and a receiver 2 for diagnosing degradation of a polymer material using ultrasonic vertical propagation characteristics. It is a conceptual diagram. FIG. 1A shows the arrangement of sensors in the case where ultrasonic waves are propagated perpendicularly to the material surface. The ultrasonic pulse transmitted from the transmitter 1 is incident on the surface of the sample 10 perpendicularly. Is received by the receiver 2. FIG. 1B is a conceptual diagram of a sound wave waveform. The ultrasonic wave is attenuated by scattering and absorption that occur while propagating through the sample 10. A trapezoidal wave incident from the transmitter 1 is transformed into a vibration waveform and detected by the receiver 2, where it is converted into an electrical signal and output. When the speed of sound is used as the ultrasonic propagation characteristic, the difference between the incident time and the reception time of the ultrasonic pulse, that is, the propagation time 201 of the ultrasonic pulse and the ultrasonic propagation distance 101, that is, the thickness of the sample is accurately known. If so, the speed of sound can be calculated. In addition to installing the transmitter 1 and the receiver 2 on the front and back of the material to be measured, as shown in FIG. It can also be measured. This method is effective when a receiver cannot be installed on the back side, but these vertical propagation methods often fail to accurately measure the thickness of the material when applied to an actual machine, and the shape of the material being measured varies. However, there is a problem that it is difficult to apply due to restrictions such as the thickness changing depending on the location. In addition, in the measurement system having the sensor arrangement shown in FIG. 1A, by performing spectrum analysis on the sound wave waveform detected by the receiver 2, the acoustic spectrum intensity can be obtained as the ultrasonic propagation characteristic.

図2は、超音波の水平伝搬特性を用いて高分子材料の劣化を診断するための送信子3及び受信子4の配置概念図であって、図2(a)は平面図であり、図2(b)は側面図である。送信子3から被測定試料11の表面近傍に入射された超音波パルスは試料11の表面に沿って伝搬して、受信子4に到達して電気信号として検出される。この場合に、送信子3から入射された超音波パルスが試料11の表面近傍を伝搬して受信子4に接する表面部位に到達し受信子4で受信されるような屈折条件となるように、送信子3と試料11の間及び受信子4と試料11の間にそれぞれ図示されないスペーサを設けるとともに、これらのスペーサは、これらのスペーサと試料の音速の違いに応じてスネルの法則に従った角度で加工したものを用いる。この水平伝搬方式は、垂直伝搬方式に比べ、超音波の伝搬路を試料表面付近とするため、試料の厚さ方向の形状や構造による制限を受けずに測定ができる。超音波伝播特性として音速を用いる場合には、実際にはセンサー内の音波の発信及び受信の位置が正確に把握できないので、送信子及び受信子間の距離を変えて発信から受信までの時間を測定しその差から音速を求める。また、図2に示すセンサー配置の測定系において、受信子4で検出された音波波形をスペクトル解析することにより、超音波伝播特性として音響スペクトル強度を求めることができる。   FIG. 2 is a conceptual diagram of the arrangement of the transmitter 3 and the receiver 4 for diagnosing deterioration of the polymer material using the horizontal propagation characteristic of ultrasonic waves, and FIG. 2 (a) is a plan view. 2 (b) is a side view. The ultrasonic pulse incident on the surface of the sample 11 to be measured from the transmitter 3 propagates along the surface of the sample 11, reaches the receiver 4 and is detected as an electrical signal. In this case, the ultrasonic pulse incident from the transmitter 3 propagates in the vicinity of the surface of the sample 11, reaches the surface portion in contact with the receiver 4, and satisfies the refraction condition such that it is received by the receiver 4. Spacers (not shown) are provided between the transmitter 3 and the sample 11 and between the receiver 4 and the sample 11, and these spacers have angles according to Snell's law according to the difference in sound speed between these spacers and the sample. Use what was processed in. Compared with the vertical propagation method, this horizontal propagation method makes the ultrasonic wave propagation path close to the sample surface, and therefore can perform measurement without being restricted by the shape and structure in the thickness direction of the sample. When the speed of sound is used as the ultrasonic propagation characteristic, it is actually impossible to accurately grasp the position of transmission and reception of sound waves in the sensor, so the time between transmission and reception can be changed by changing the distance between the transmitter and the receiver. Measure and calculate the speed of sound from the difference. In addition, in the measurement system having the sensor arrangement shown in FIG. 2, by performing spectrum analysis on the sound wave waveform detected by the receiver 4, the acoustic spectrum intensity can be obtained as the ultrasonic propagation characteristic.

高分子材料の劣化度を診断するためには、予め材料を高温で長時間加熱するなどして材質を強制的に変質させ、図1又は図2に示す方法で音響特性を測定することにより、材料の劣化と音響特性との関係を求めることができるが、本発明は、前記音響特性、すなわち超音波伝搬特性として、特に超音波の音響スペクトル強度を用いたものである。以下では、超音波音響スペクトルに基づく本発明の高分子材料劣化診断法をエポキシ樹脂に適用した例について、図3〜7により説明する。なお、劣化診断の対象としたエポキシ樹脂は図3〜7において同じ組成のものである。
図3は、エポキシ樹脂表面に矩形波の超音波パルスを伝搬させて透過した音波波形の例を示す。劣化処理を与えていない未劣化材料と空気中で180℃の加熱温度条件において加熱劣化した試料の波形を比較して示した。両者の試料透過波形には違いが認められる。これらの波形の第1ピークと第3ピークの範囲をスペクトル解析して得た周波数と音響スペクトル強度の関係を図4に示す。図4における音響スペクトルは正規分布に近い形状を示している。劣化によってスペクトル強度のピークが低周波数側にシフトしている。この周波数シフトを利用して劣化度が診断できる。
In order to diagnose the degree of degradation of the polymer material, the material is forcibly altered in advance, for example, by heating the material at a high temperature for a long time, and the acoustic characteristics are measured by the method shown in FIG. 1 or FIG. Although the relationship between the deterioration of the material and the acoustic characteristics can be obtained, the present invention particularly uses the acoustic spectrum intensity of the ultrasonic waves as the acoustic characteristics, that is, the ultrasonic propagation characteristics. Below, the example which applied the polymeric material degradation diagnostic method of this invention based on an ultrasonic acoustic spectrum to an epoxy resin is demonstrated with FIGS. In addition, the epoxy resin used as the object of the deterioration diagnosis has the same composition in FIGS.
FIG. 3 shows an example of a sound wave waveform transmitted through a rectangular wave ultrasonic wave propagating on the epoxy resin surface. The waveforms of the undegraded material that has not been subjected to degradation treatment and the sample that has been thermally degraded under the heating temperature condition of 180 ° C in air are compared and shown. There is a difference in the sample transmission waveform between the two. FIG. 4 shows the relationship between the frequency and acoustic spectrum intensity obtained by spectral analysis of the first peak and third peak ranges of these waveforms. The acoustic spectrum in FIG. 4 shows a shape close to a normal distribution. The peak of the spectrum intensity is shifted to the low frequency side due to the deterioration. Degradation can be diagnosed using this frequency shift.

また、図5は、図4に示した音響スペクトルの図に劣化試料の音響スペクトル強度を未劣化試料の音響スペクトル強度で除して規格化した結果を合わせて示す。劣化することにより高周波領域における規格化した値すなわち音響スペクトル強度比が低下している。なお、周波数4MHz付近に規格化した値にピークが見られるが、これは試料の裏側での音波の反射の影響によるもので、劣化状態と関係がない。
図6は、横軸に未劣化試料の音響スペクトル強度をとり、縦軸に180℃の加熱温度条件において加熱劣化した劣化試料の規格化したスペクトル強度をプロットした結果を示す。それぞれの点は3つの周波数、すなわち1MHz、2MHz及び3MHzにおける値をプロットした。中間周波数の2MHzは未劣化試料のスペクトル強度のピークに近い値である。3点を結ぶと三角形が形成される。劣化時間が長くなると、三角形の面積(求積値)が大きくなる傾向が認められた。なお、念のために周波数域を10分割し、11点でプロットした結果を比較して2点鎖線で併記したが、3点で形成した三角形と大差が見られなかった。なお、未劣化試料の求積値は当然0である。周波数を3レベル選定することにより、1点では変動が大きくばらつくため精度の高い診断が困難であった課題を克服でき、3点でも10点の結果と大差がないことも確認できたので、周波数を3レベル選ぶことによって信頼性の高い診断が可能になった。
FIG. 5 shows the result of normalization by dividing the acoustic spectrum intensity of the deteriorated sample by the acoustic spectrum intensity of the undegraded sample together with the acoustic spectrum diagram shown in FIG. Due to the deterioration, the normalized value in the high frequency region, that is, the acoustic spectrum intensity ratio is lowered. In addition, although the peak is seen in the value normalized in the frequency vicinity of 4 MHz, this is due to the influence of the reflection of the sound wave on the back side of the sample and has no relation to the deterioration state.
In FIG. 6, the horizontal axis represents the acoustic spectrum intensity of the undegraded sample, and the vertical axis represents the result of plotting the normalized spectral intensity of the degraded sample that has been heat-degraded under the heating temperature condition of 180 ° C. Each point plots values at three frequencies: 1 MHz, 2 MHz and 3 MHz. The intermediate frequency of 2 MHz is a value close to the peak of the spectral intensity of the undegraded sample. When three points are connected, a triangle is formed. As the deterioration time increased, the triangle area (quadrature value) tended to increase. As a precaution, the frequency range was divided into 10 parts, and the results plotted at 11 points were compared and shown together with a two-dot chain line, but a large difference was not seen from the triangle formed by 3 points. The quadrature value of the undegraded sample is naturally zero. By selecting three levels of frequency, it was possible to overcome the problem that high-precision diagnosis was difficult due to large variations at one point, and it was confirmed that even three points were not significantly different from the result of ten points. By selecting 3 levels, reliable diagnosis is possible.

図7は、エポキシ樹脂を加熱して劣化させた試料の該三角形の面積(求積値)と引張強度との関係をプロットした結果を示す。両者間には相関関係が成り立つことを確認できた。従って、高分子材料の種類ごとに引張強度と三角形求積値との相関関係を求め数式化しておけば、試料を伝搬してきた超音波の波形を解析し、音響スペクトル強度を求めることにより、高分子材料の劣化度を診断することができる。高分子材料は熱硬化性高分子材料と熱可塑性高分子材料に大別できるが、本発明はその原理から両者に適用可能である。
以上の説明で用いたデータは超音波波形のピーク/ピーク範囲でスペクトル解析を行なった結果であるが、ゼロクロス/ゼロクロス範囲で処理しても同じ結果が得られることを確認しており、本発明による高分子材料劣化診断法における音響スペクトル解析範囲境界は、透過音響波形のピークポイントであってもよく、また、透過音響波形のゼロクロスポイントであってもよい。
FIG. 7 shows the results of plotting the relationship between the area of the triangle (the quadrature value) and the tensile strength of a sample that has been deteriorated by heating an epoxy resin. It was confirmed that there was a correlation between the two. Therefore, if the correlation between the tensile strength and the quadrature quadrature value is obtained for each type of polymer material and expressed in mathematical formulas, the waveform of the ultrasonic wave that has propagated through the sample is analyzed, and the acoustic spectrum strength is obtained, The degree of deterioration of the molecular material can be diagnosed. The polymer material can be broadly classified into a thermosetting polymer material and a thermoplastic polymer material, but the present invention can be applied to both from the principle.
The data used in the above description is the result of spectral analysis performed at the peak / peak range of the ultrasonic waveform, but it has been confirmed that the same result can be obtained even if processing is performed in the zero cross / zero cross range. The boundary of the acoustic spectrum analysis range in the polymer material degradation diagnosis method according to the above may be a peak point of the transmitted acoustic waveform or a zero cross point of the transmitted acoustic waveform.

また、図3〜7により、本発明による高分子材料劣化診断法をエポキシ樹脂に適用した例について説明したが、上述の例では、劣化診断用の超音波として水平伝搬縦波を用いている。
また、本発明による高分子材料劣化診断法の診断対象となる材料は、上述のように、熱硬化性高分子材料であってもよく、また、熱可塑性高分子材料であってもよい。すなわち、材料ごとに個別に超音波音響スペクトルと各種特性との相関関係を予め求めておけば、診断対象材料が熱硬化性高分子材料であっても、熱可塑性高分子材料であっても、超音波音響スペクトルに基づく本発明の高分子材料劣化診断法を有効に適用することができる。
また、本発明による高分子材料劣化診断法の診断対象となる機器としては、高分子材料を用いた機器であれば全てが対象になるが、特に高い信頼性が求められる重要機器を診断対象とする場合には、非破壊での高精度の劣化度診断が可能な本発明の劣化診断法が好適である。劣化の検査、診断の対象になる機器の具体的な例としては、各種変電機器や回転機などの電気機器があり、代表的な変電機器として、樹脂絶縁された変圧器、計測用変成器、開閉器などがある。これらの機器に使用されている高分子材料の部材は通常、数10cmの大きさを持っており、本発明の診断部分の大きさである数mmから10数mmに比べ十分大きく、本発明は十分適用できる。
Moreover, although the example which applied the polymeric material degradation diagnostic method by this invention to the epoxy resin was demonstrated with FIGS. 3-7, in the above-mentioned example, the horizontal propagation longitudinal wave is used as an ultrasonic wave for degradation diagnosis.
In addition, as described above, the material to be diagnosed by the polymer material deterioration diagnosis method according to the present invention may be a thermosetting polymer material or a thermoplastic polymer material. In other words, if the correlation between the ultrasonic acoustic spectrum and various characteristics is obtained in advance for each material, whether the diagnosis target material is a thermosetting polymer material or a thermoplastic polymer material, The polymer material degradation diagnosis method of the present invention based on the ultrasonic acoustic spectrum can be effectively applied.
In addition, as a device to be diagnosed by the polymer material deterioration diagnosis method according to the present invention, all devices that use a polymer material are targeted, but particularly important devices that require high reliability are targeted for diagnosis. In this case, the deterioration diagnosis method of the present invention that can perform non-destructive and highly accurate deterioration degree diagnosis is preferable. Specific examples of equipment to be inspected and diagnosed for deterioration include electrical equipment such as various transformers and rotating machines. Representative transformers include resin-insulated transformers, measuring transformers, There are switches. The member of the polymer material used in these devices usually has a size of several tens of centimeters, which is sufficiently larger than several mm to several tens of mm, which is the size of the diagnostic part of the present invention. Applicable enough.

高分子材料の劣化の主な原因は高温に長時間曝されることである。高分子材料の温度は高分子材料の使用場所によって異なる。すなわち発熱部に近い箇所、下部より上部にある箇所、対流の悪い箇所などは温度が高くなりやすく劣化が進行しやすいので、それらの箇所の高分子材料が診断の対象になる。これに対して運転中に温度が殆ど上昇しない箇所の高分子材料は劣化が進行しないことから、劣化を受けていない試料として扱うことができる。変電機器などの健全性評価は20〜30年間使用後行なわれることが多く、診断対象の機器に用いられている高分子材料と同じ種類の未使用の材料を新規に入手できない場合が多い。そのような場合、本発明では、上記のような低温箇所の高分子材料を劣化診断の比較サンプルとして利用することができる。   The main cause of polymer material degradation is long exposure to high temperatures. The temperature of the polymer material varies depending on where the polymer material is used. That is, locations near the heat generating portion, locations above the lower portion, locations with poor convection, and the like tend to be high in temperature and deteriorate easily, so the polymer material at those locations is the object of diagnosis. On the other hand, the polymer material where the temperature hardly rises during operation does not proceed with deterioration, so that it can be handled as a sample that has not been deteriorated. The soundness evaluation of substation equipment and the like is often performed after use for 20 to 30 years, and an unused material of the same type as the polymer material used in the equipment to be diagnosed is often not newly available. In such a case, in the present invention, a polymer material at a low temperature as described above can be used as a comparative sample for deterioration diagnosis.

本発明は、各種変電機器、例えば樹脂絶縁された変圧器、計測用変成器及び開閉器などに最適に利用できる。この外、樹脂絶縁された一般の電気機器あるいは高分子材料を構造部材とする製品に利用できる。   The present invention can be optimally used for various transformers, for example, resin insulated transformers, measuring transformers and switches. In addition to this, it can be used for general electric equipments that are resin-insulated or products having a polymer material as a structural member.

超音波伝搬特性測定系の概念図Conceptual diagram of ultrasonic propagation characteristics measurement system 超音波の水平伝搬特性を用いて高分子材料の劣化を診断するための送信子及び受信子の配置概念図Schematic diagram of transmitter and receiver placement for diagnosing degradation of polymer materials using ultrasonic horizontal propagation characteristics エポキシ樹脂表面近傍を伝搬させた超音波の波形例を示す図The figure which shows the waveform example of the ultrasonic wave which propagated the epoxy resin surface neighborhood 図3の超音波波形の音響スペクトル解析結果を示す図The figure which shows the acoustic spectrum analysis result of the ultrasonic waveform of FIG. 図4の音響スペクトルに劣化材料の音響スペクトルの規格化結果を合わせて示す図The figure which shows the normalization result of the acoustic spectrum of a deterioration material together with the acoustic spectrum of FIG. 未劣化試料の音響スペクトル強度(横軸)及び劣化試料の規格化スペクトル強度(縦軸)の3つの周波数におけるプロット点を示す特性図Characteristic diagram showing plot points at three frequencies: acoustic spectrum intensity of undegraded sample (horizontal axis) and normalized spectral intensity of degraded sample (vertical axis) 図6で形成される三角形の面積(三角形求積値)と引張強度の関係を示す特性図Fig. 6 is a characteristic diagram showing the relationship between the area of the triangle formed in Fig. 6 (triangle quadrature) and the tensile strength.

符号の説明Explanation of symbols

1・・・垂直送信子、 2・・・垂直受信子、 3・・・水平送信子
4・・・水平受信子、10・・・被測定試料(垂直用)、11・・・被測定試料(水平用)
101・・・超音波伝搬距離(試料厚さ)、102・・・超音波伝搬距離(水平用)
201・・・超音波伝搬時間
DESCRIPTION OF SYMBOLS 1 ... Vertical transmitter, 2 ... Vertical receiver, 3 ... Horizontal transmitter 4 ... Horizontal receiver, 10 ... Sample to be measured (for vertical), 11 ... Sample to be measured (For horizontal)
101 ... Ultrasonic propagation distance (sample thickness), 102 ... Ultrasonic propagation distance (horizontal)
201 ... Ultrasonic propagation time

Claims (6)

高分子材料に超音波を伝搬させて前記高分子材料の劣化度を非破壊的に診断する方法において、未劣化高分子材料の表面近傍を伝搬した超音波の波形から得られる音響スペクトル強度に対する劣化高分子材料の表面近傍を伝搬した超音波の波形から得られた音響スペクトル強度の比と劣化度との相関関係を用いて、前記高分子材料の劣化度を診断するものであって、前記音響スペクトル強度を求める3レベルの周波数、すなわちf1、f2及びf3、を選択し、それぞれの前記周波数において、横軸に未劣化高分子材料中を伝搬した音響スペクトル強度を、縦軸に前記未劣化高分子材料中を伝搬した音響スペクトル強度に対する劣化高分子材料中を伝搬した音響スペクトル強度の比をとってプロットし、それらの点を直線で結んで得られる三角形の面積を用いて劣化度を診断することを特徴とする高分子材料劣化診断法。 In the method of non-destructively diagnosing the degradation level of the polymer material by propagating ultrasonic waves to the polymer material, the degradation to the acoustic spectrum intensity obtained from the waveform of the ultrasound propagated near the surface of the undegraded polymer material using the correlation between the ratio and the degree of deterioration of the sound spectrum intensity obtained from the ultrasonic wave propagated through the vicinity of the surface of the polymer material, there is for diagnosing the deterioration degree of the polymeric material, the acoustic Three levels of frequencies for obtaining the spectrum intensity, namely f1, f2 and f3, are selected. At each of the frequencies, the horizontal axis represents the acoustic spectrum intensity propagated in the undegraded polymer material, and the vertical axis represents the undegraded high frequency. Plotting the ratio of the acoustic spectrum intensity propagated in the degraded polymer material to the acoustic spectrum intensity propagated in the molecular material, and connecting these points with a straight line Polymeric material degradation diagnostic method, which comprises diagnosing the deterioration degree by using an area shape. 請求項に記載の高分子材料劣化診断法において、3周波数の関係をf1<f2<f3とし、f2が未劣化高分子材料中を伝搬した音響スペクトル強度のピークまたはピーク近傍であるとともに、f3−f2≒f2−f1の関係を満足するように3周波数を選定する ことを特徴とする高分子材料劣化診断法。 2. The polymer material deterioration diagnosis method according to claim 1 , wherein the relationship between the three frequencies is f1 <f2 <f3, and f2 is the peak of the acoustic spectrum intensity propagated in the undegraded polymer material or near the peak, and f3 A method for diagnosing deterioration of a polymer material, wherein three frequencies are selected so as to satisfy a relationship of -f2≈f2-f1. 請求項または請求項に記載の高分子材料劣化診断法において、前記三角形の面積と前記高分子材料の特性との相関関係を予め求めておき、前記相関関係を用いて前記三角形の面積から劣化度を求めることを特徴とする高分子材料劣化診断法。 In the polymeric material deterioration diagnostic method according to claim 1 or 2 , a correlation between the area of the triangle and the characteristics of the polymeric material is obtained in advance, and the correlation is used to calculate the area of the triangle. A method for diagnosing deterioration of a polymer material characterized by determining the degree of deterioration. 請求項1ないし請求項3のいずれか1項に記載の高分子材料劣化診断法において、前記高分子材料表面に超音波送信子及び超音波受信子を間隔を置いて配置し、前記超音波送信子から前記高分子材料に超音波を入射し、この入射された超音波を前記高分子材料の表面近傍を伝搬させて前記超音波受信子に接する表面部位に到達させ、この到達した超音波を前記超音波受信子で受信し、受信された超音波の波形から得られる音響スペクトル強度を用いることを特徴とする高分子材料劣化診断法。 The polymer material degradation diagnosis method according to any one of claims 1 to 3 , wherein an ultrasonic transmitter and an ultrasonic receiver are arranged on the surface of the polymer material at intervals, and the ultrasonic transmission is performed. An ultrasonic wave is incident on the polymer material from a child, and the incident ultrasonic wave is propagated near the surface of the polymer material to reach a surface portion in contact with the ultrasonic wave receiver. A method for diagnosing deterioration of a polymer material, characterized in that an acoustic spectrum intensity obtained from a waveform of an ultrasonic wave received by the ultrasonic wave receiver is used. 請求項1ないし請求項のいずれか1項に記載の高分子材料劣化診断法において、診断対象部位より運転中の温度が低く、かつ機器の中で最も低い温度部位又はその近傍の高分子材料を未劣化高分子材料の代替材料とすることを特徴とする高分子材料劣化診断法。 In the polymer material degradation diagnostic method according to any one of claims 1 to 4, diagnosed low temperature during operation than the site, and the lowest temperature or near the site in the equipment polymeric material A method for diagnosing deterioration of polymer materials, characterized by using as a substitute for undegraded polymer materials. 請求項1ないし請求項のいずれか1項に記載の高分子材料劣化診断法において、劣化診断の対象となる高分子材料を構成材の一部に組み込んだ機器が、変圧器、変成器、開閉器、回転機、絶縁用スペーサ及び絶縁用ブッシングなどの電気機器であることを特徴とする高分子材料劣化診断法。 The polymer material degradation diagnosis method according to any one of claims 1 to 5 , wherein a device in which a polymer material to be subjected to degradation diagnosis is incorporated in a part of a constituent material includes a transformer, a transformer, A method for diagnosing deterioration of a polymer material, which is an electrical device such as a switch, a rotating machine, an insulating spacer, and an insulating bushing.
JP2005315540A 2005-10-31 2005-10-31 Polymer material degradation diagnosis method Active JP4779574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315540A JP4779574B2 (en) 2005-10-31 2005-10-31 Polymer material degradation diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315540A JP4779574B2 (en) 2005-10-31 2005-10-31 Polymer material degradation diagnosis method

Publications (2)

Publication Number Publication Date
JP2007121166A JP2007121166A (en) 2007-05-17
JP4779574B2 true JP4779574B2 (en) 2011-09-28

Family

ID=38145166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315540A Active JP4779574B2 (en) 2005-10-31 2005-10-31 Polymer material degradation diagnosis method

Country Status (1)

Country Link
JP (1) JP4779574B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817270B2 (en) * 2018-10-10 2021-01-20 株式会社フジクラ Laser device, resin deterioration detection method, and optical power detection method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826260A (en) * 1981-08-10 1983-02-16 Toshiba Corp Monitoring device for fatigue of body to be inspected
JPH02278150A (en) * 1989-04-19 1990-11-14 Hitachi Ltd Method and apparatus for diagnosing residual life of creep-damaged article
JP2855800B2 (en) * 1990-06-25 1999-02-10 石川島播磨重工業株式会社 Fatigue damage measurement method
JPH095309A (en) * 1995-06-22 1997-01-10 Toshiba Tungaloy Co Ltd Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
JPH09236585A (en) * 1996-03-01 1997-09-09 Toshiba Tungaloy Co Ltd Diagnostic measurement sensor for surface degradation, hardening, fatigue, etc., and diagnostic device and diagnostic method
JPH10104207A (en) * 1996-09-26 1998-04-24 Toshiba Tungaloy Co Ltd Diagnostic measuring sensor, diagnostic device and diagnostic method for various kinds of material
JP3349090B2 (en) * 1998-05-26 2002-11-20 三菱電線工業株式会社 Method for diagnosing deterioration of organic polymer article and ultrasonic propagation time measuring device used therefor
JPH11211699A (en) * 1998-01-21 1999-08-06 Toshiba Tungaloy Co Ltd Measuring sensor for diagnosing various material and various solution, diagnosing device, and diagnosing method

Also Published As

Publication number Publication date
JP2007121166A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US8046177B2 (en) Method and apparatus for detecting damage in armor structures
CN105987950B (en) Ultrasonic flaw detection system, ultrasonic flaw detection method, and aircraft part manufacturing method
US20030037615A1 (en) Non-destructive evaluation of wire insulation and coatings
US20170167949A1 (en) Distributed nondestructive inspection system and method for identifying slickline cable defects and mechanical strength degradation trend
Lee et al. An acoustic diagnostic technique for use with electric machine insulation
Aljets et al. ACOUSTIC EMISSION SOURCE LOCATION IN PLATE-LIKE STRUCTURES USING A CLOSELY ARRANGED TRIANGULAR SENSOR ARRAY.
WO1999027360A1 (en) Method and device for diagnosing deterioration of an article having at least a covering layer of organic polymer material
KR20090015596A (en) Method for structural health monitoring using ultrasonic guided wave
US20220170888A1 (en) Evaluation Method for Reflected Wave
US20130192334A1 (en) Method and system for calibrating an ultrasonic wedge and a probe
JP4779574B2 (en) Polymer material degradation diagnosis method
KR101814462B1 (en) Device and method for measuring yield strength using ultrasonic
JP5450177B2 (en) Nondestructive inspection method and nondestructive inspection device for grout filling degree
KR20100090912A (en) Method for structural health monitoring using ultrasonic guided wave
JPS6321135B2 (en)
KR101191364B1 (en) System and apparatus for measuring non-linearity of ultrasonic wave
JP4160601B2 (en) Defect detection method for cable connections
JP2007057327A (en) Polymer material deterioration diagnosis method
KR101452442B1 (en) Elasticity Test method
US20150323505A1 (en) Apparatus and method for measuring nonlinear parameters
JPH095309A (en) Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
JP5172595B2 (en) SAW sensor discrimination device and SAW sensor discrimination method
CN112179297A (en) Composite insulator sheath core displacement detection method based on microwave reflection technology
JP3707188B2 (en) Insulation deterioration diagnosis device
JP3349090B2 (en) Method for diagnosing deterioration of organic polymer article and ultrasonic propagation time measuring device used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4779574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250