JP4775541B2 - Distortion correction method for captured images - Google Patents

Distortion correction method for captured images Download PDF

Info

Publication number
JP4775541B2
JP4775541B2 JP2005148850A JP2005148850A JP4775541B2 JP 4775541 B2 JP4775541 B2 JP 4775541B2 JP 2005148850 A JP2005148850 A JP 2005148850A JP 2005148850 A JP2005148850 A JP 2005148850A JP 4775541 B2 JP4775541 B2 JP 4775541B2
Authority
JP
Japan
Prior art keywords
aberration
movement
amount
coordinate
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005148850A
Other languages
Japanese (ja)
Other versions
JP2006330772A (en
Inventor
聡 米山
久雄 菊田
彰一 北側
和彦 谷
襄介 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Osaka Prefecture University
Original Assignee
Hitachi Zosen Corp
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Osaka Prefecture University filed Critical Hitachi Zosen Corp
Priority to JP2005148850A priority Critical patent/JP4775541B2/en
Publication of JP2006330772A publication Critical patent/JP2006330772A/en
Application granted granted Critical
Publication of JP4775541B2 publication Critical patent/JP4775541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、撮影画像における歪曲収差補正方法に関する。   The present invention relates to a distortion aberration correction method for a captured image.

近年、デジタルカメラなどの撮影機器の性能向上により、高画質の画像が比較的簡単に得られるようになっており、例えば、橋梁などの構造物をデジタルカメラで撮影し、その撮影画像から構造物の形状、大きさなどの各種寸法を、非接触にて且つ高精度に計測し得るシステムが開発されている。   In recent years, with the improvement in performance of photography equipment such as digital cameras, it has become relatively easy to obtain high-quality images. For example, a structure such as a bridge is photographed with a digital camera, and the structure is obtained from the photographed image. A system has been developed that can measure various dimensions such as the shape and size of the non-contact and with high accuracy.

しかし、デジタルカメラなどの光学レンズを用いたシステムでは、レンズの歪曲収差による計測誤差が含まれてしまう。
このため、計測対象物に予めターゲットマークが設けられたキャリブレーション板を取り付けておき、このキャリブレーション板を撮影することにより、歪曲収差を補正するようにした計測方法が提案されている(例えば、特許文献1参照)。
特開平5−110926
However, in a system using an optical lens such as a digital camera, a measurement error due to lens distortion is included.
For this reason, a measurement method has been proposed in which a calibration plate on which a target mark is provided in advance is attached to a measurement object, and distortion is corrected by photographing the calibration plate (for example, Patent Document 1).
JP-A-5-110926

上述したように、計測対象物に取り付けられた基準となるキャリブレーション板を撮影することにより歪曲収差を補正する計測方法によると、橋梁などの大型構造物である計測対象物、すなわち撮影対象物が広範囲におよぶものには、不向きである。   As described above, according to the measurement method for correcting distortion by photographing the reference calibration plate attached to the measurement object, the measurement object that is a large structure such as a bridge, that is, the imaging object is It is unsuitable for a wide range.

そこで、本発明は、撮影対象物に、予め、基準となるキャリブレーション板を付けること無く歪曲収差の補正を行い得る撮影画像における歪曲収差補正方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a distortion aberration correction method in a captured image that can correct distortion aberration without attaching a reference calibration plate in advance to an object to be imaged.

上記課題を解決するため、本発明の請求項1に係る撮影画像における歪曲収差補正方法は、
レンズを介して撮影対象物の所定領域を、当該レンズと相対位置が異なるようにいずれかをずらせて少なくとも2枚の撮影画像を得るステップと、
これら少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上での所定領域のずれ量(u′,u′)を検出するステップと、
下記(A)式および(B)式にて表わされる収差を表す収差モデル量(α,α)にずれによる回転移動および並行移動を考慮した平面の式(下記(C)式および(D)式に示す)で表されるずれ量算出式を加えて得られる下記(E)式および(F)式で示される変形量算出式に、上記ステップで検出されたずれ量を代入し、最小二乗法を用いて当該変形量算出式の少なくとも収差モデル量を表す係数を決定するステップと、
上記決定された収差モデル量の係数を用いて歪曲収差の補正を行うステップとを具備した方法である。
α =k x(x +y ) ・・・(A)
α =k y(x +y ) ・・・(B)
=a x+a y+a ・・・(C)
=a x+a y+a ・・・(D)
u′ =a x+a y+a +k {x (x +y )−x (x +y )} ・・・(E)
u′ =a x+a y+a +k {y (x +y )−y (x +y )} ・・・(F)
但し、u′ は収差を含んだx方向の移動量、u′ は収差を含んだy方向の移動量、x は移動前のx座標(収差を含まず)、y は移動前のy座標(収差を含まず)、x は移動後のx座標(収差を含まず)、y は移動後のy座標(収差を含まず)、u はx方向移動量(収差を含まず)、u はy方向移動量(収差を含まず)である。
In order to solve the above-described problem, a distortion aberration correction method for a captured image according to claim 1 of the present invention includes:
Shifting at least two photographed images by shifting any one of the predetermined regions of the subject to be photographed through the lens so that the relative positions thereof are different from the lens;
Applying a digital image correlation method to the at least two photographed images to detect a deviation amount (u ′ x , u ′ y ) of a predetermined region on both photographed images;
The plane model considering the rotational movement and the parallel movement due to the deviation in the aberration model quantity (α x , α y ) representing the aberration represented by the following expressions (A) and (B) ( the following expressions (C) and (D) The displacement amount detected in the above step is substituted into the deformation amount calculation equation represented by the following equations (E) and (F) obtained by adding the displacement amount calculation equation represented by ( Determining a coefficient representing at least an aberration model amount of the deformation amount calculation formula using a square method;
And correcting the distortion using the coefficient of the determined aberration model quantity.
α x = k 1 x (x 2 + y 2 ) (A)
α y = k 1 y (x 2 + y 2 ) (B)
u x = a 1 x + a 2 y + a 3 (C)
u y = a 4 x + a 5 y + a 6 (D)
u ′ x = a 1 x + a 2 y + a 3 + k 1 {x d (x d 2 + y d 2 ) −x u (x u 2 + yu 2 )} (E)
u ′ y = a 4 x + a 5 y + a 6 + k 1 {y d (x d 2 + y d 2 ) −y u (x u 2 + yu 2 )} (F)
Where u ′ x is the amount of movement in the x direction including aberration, u ′ y is the amount of movement in the y direction including aberration, x u is the x coordinate before movement (excluding aberration), and yu is before movement. Y coordinate (not including aberration), x d is the x coordinate after movement (not including aberration), y d is the y coordinate after movement (not including aberration), and u x is the amount of movement in the x direction (aberration). And u y is the amount of movement in the y direction (excluding aberrations).

記歪曲収差補正方法によると、撮影対象物をずれた位置で撮影した少なくとも2枚の撮影画像における所定領域についての収差を含むずれ量を、収差モデル量にずれによる回転移動および並行移動を表す平面の式を加えて得られた変形量算出式で表すとともに、この変形量算出式に係る平面を表す式の少なくとも収差モデル量の係数を、デジタル画像相関法で求められたずれ量を用いて、最小二乗法により決定するようにしたので、例えば基準となるキャリブレーション板を用いることなく、撮影画像だけで、歪曲収差の補正を行うことができる。 According to the above Kiibitsu songs aberration correcting method, the shift amount including the aberrations in the predetermined region in at least two photographed images taken with a position shifted a shooting target, the rotational movement and translational movement due to the deviation in the aberration model weight Using the amount of deviation obtained by the digital image correlation method for the coefficient of at least the aberration model amount of the equation representing the plane related to this deformation amount calculation formula. Thus, since the determination is made by the least square method, for example, it is possible to correct the distortion aberration using only the captured image without using a reference calibration plate.

[実施の形態]
以下、本発明の実施の形態に係る撮影画像における歪曲収差補正方法を、図面に基づき説明する。
[Embodiment]
Hereinafter, a distortion correction method for a captured image according to an embodiment of the present invention will be described with reference to the drawings.

本実施の形態においては、例えばデジタルカメラなどの撮影機器(以下、カメラという)を用いて、すなわちレンズを介して計測対象物を撮影するとともに、このカメラで撮影された計測対象物の撮影画像に基づき当該計測対象物の形状、大きさなどの表面に関わる各種寸法を計測する際に、レンズの歪曲収差による変位分が誤差として含まれているため、この歪曲収差による変位分を除去するための歪曲収差補正方法について説明する。   In the present embodiment, for example, a measurement object is photographed using a photographing device (hereinafter referred to as a camera) such as a digital camera, that is, through a lens, and a photographed image of the measurement object photographed by the camera is used. When measuring various dimensions related to the surface, such as the shape and size of the measurement object, the displacement due to the distortion of the lens is included as an error, so the displacement due to this distortion is removed. A distortion aberration correction method will be described.

本実施の形態に係るに歪曲収差補正方法は、計測対象物、すなわち撮影対象物の所定領域(以下、計算領域といい、具体的には、数十画素×数十画素の範囲)を、カメラに対して所定距離だけずらせた状態で撮影した少なくとも2枚の撮影画像に、デジタル画像相関法を適用して、両撮影画像におけるそのずれ量を求めるとともに、このずれ量を用いてレンズによる歪曲収差を補正する方法である。   The distortion aberration correction method according to the present embodiment uses a predetermined area (hereinafter referred to as a calculation area, specifically, a range of several tens of pixels × several tens of pixels) of a measurement object, that is, a photographing object, as a camera. The digital image correlation method is applied to at least two shot images taken at a predetermined distance with respect to the image to determine the amount of deviation between the two images, and the amount of deviation is used to cause distortion by the lens. Is a method of correcting the above.

まず、デジタル画像相関法を用いて、撮影対象物のずれ量(ここでは、移動量と称して説明する)を測定する方法について説明する。
デジタル画像相関法においては、計算領域の移動量を輝度値分布の相関を用いて検出する。これは、物体表面の乱反射像は物体表面と共に移動し、移動の前後でその特徴が保存されるということに基づくもので、移動前後の画像における輝度値の相関は下記(1)式で求められる。
First, a method for measuring a deviation amount (hereinbelow referred to as a movement amount) of a photographing object using a digital image correlation method will be described.
In the digital image correlation method, the amount of movement of the calculation area is detected using the correlation of the luminance value distribution. This is based on the fact that the diffuse reflection image of the object surface moves with the object surface, and the characteristics are preserved before and after the movement. The correlation between the luminance values in the images before and after the movement is obtained by the following equation (1). .

Figure 0004775541
ここで、I(x,y)は移動前画像の座標(x,y)における輝度値、I(x,y)は移動後画像の座標(x,y)における輝度値である。座標(x,y)と(x,y)との間には下記(2)式の関係がある。
Figure 0004775541
Here, I y (x, y) is the luminance value at the coordinates (x, y) of the image before movement, and I d (x * , y * ) is the luminance value at the coordinates (x * , y * ) of the image after movement. It is. The relationship of the following formula (2) exists between the coordinates (x, y) and (x * , y * ).

Figure 0004775541
ここで、uおよびuはそれぞれ計算領域画像の中心におけるx方向およびy方向の移動量である。図1に示すように、移動前のP点が移動後にP′点に移動したとすると、P点の移動量がu,uになる。
Figure 0004775541
Here, u x and u y are movement amounts in the x direction and y direction at the center of the calculation area image, respectively. As shown in FIG. 1, if the P point before the movement is moved to the P ′ point after the movement, the movement amounts of the P point are u x and u y .

そして、上記(1)式のSを最小とする移動量u,uを決定すればよい。なお、1画素以下の解像度で変位を検出する場合には、双一次関数または3次のスプライン関数を利用して、輝度値を補間すればよい。また、計算速度を短縮するため、実際の相関演算方法としては、ニュートン・ラフソン法などが用いられる。 Then, the movement amounts u x and u y that minimize S in the above equation (1) may be determined. When detecting displacement with a resolution of 1 pixel or less, a luminance value may be interpolated using a bilinear function or a cubic spline function. In order to reduce the calculation speed, Newton-Raphson method or the like is used as an actual correlation calculation method.

次に、歪曲収差について説明する。
歪曲収差とは、例えば直線である物体が曲線となって撮影される現象を言い、収差の中心(多くの場合は、画像の中心であるが、そうでない場合もある)からの距離を用いてモデル化することができる。
Next, distortion will be described.
Distortion refers to a phenomenon in which a straight object is photographed as a curve, for example, using the distance from the center of the aberration (in many cases the center of the image, but not always) Can be modeled.

例えば、図2に示すように、本来、A点の位置に写るべき点が歪曲収差によりB点に写ったとする。
このA点とB点の距離(収差の量)は、半径方向(放射方向)歪曲収差αと円周方向歪曲収差αθとに分解することができる。
For example, as shown in FIG. 2, it is assumed that a point that should originally appear at the position of the point A is reflected at the point B due to distortion.
The distance between the points A and B (the amount of aberration) can be decomposed into a radial direction (radial direction) distortion alpha r and circumferential distortion alpha theta.

そして、円周方向歪曲収差αθは半径方向歪曲収差αに比べて十分に小さく、例えば円周方向歪曲収差αθを無視した場合、半径方向歪曲収差αは、収差の中心からの距離rの関数として、下記(3)式にて表される。 The circumferential distortion aberration α θ is sufficiently smaller than the radial distortion aberration α r . For example, when the circumferential distortion aberration α θ is ignored, the radial distortion aberration α r is a distance from the center of the aberration. As a function of r, it is expressed by the following equation (3).

Figure 0004775541
ここで、k,k,k,・・・は収差の量を表す係数である。多くの場合、高次項を無視できるので、(3)式は下記(4)式にて近似することができる。
Figure 0004775541
Here, k 1 , k 2 , k 3 ,... Are coefficients representing the amount of aberration. In many cases, higher-order terms can be ignored, so equation (3) can be approximated by equation (4) below.

Figure 0004775541
すなわち、画像上の歪曲収差の量(幾何学的なずれ量)は収差の中心からの距離rの3乗に比例し、その係数kを決定することで歪曲収差の量を知ることができ、これに基づき補正を行うことができる。
Figure 0004775541
That is, the amount of distortion of the image (geometric deviation amount) is proportional to the cube of the distance r from the center of the aberration, it is possible to know the amount of distortion by determining the coefficients k 1 Based on this, correction can be performed.

そして、上記半径方向歪曲収差αをx方向およびy方向に分解した場合、すなわち直交座標系における歪曲収差の量は、下記(5)式で表される。 When it is disassembled the radial distortion alpha r in the x and y directions, i.e., the amount of distortion in the orthogonal coordinate system is expressed by the following equation (5).

Figure 0004775541
ここで、θ=arctan(x,y)である。
Figure 0004775541
Here, θ = arctan (x, y).

上述したように、デジタル画像相関法により、撮影対象物をそのまま移動させた場合、すなわち剛体変位をさせた場合の移動前後における撮影画像から、画像における輝度値の相関を用いて当該撮影対象物の移動量を検出することができる。言い換えれば、この方法を用いることにより、撮影対象物の剛体並進変位(以下、並行移動または剛体並行移動という)の分布を求めることができる。また、剛体回転変位(以下、回転移動または剛体回転移動という)の分布も求めることができる。   As described above, when the subject is moved as it is by the digital image correlation method, that is, from the taken images before and after the movement when the rigid body is displaced, the correlation of the luminance value in the image is used. The amount of movement can be detected. In other words, by using this method, the distribution of the rigid translational displacement (hereinafter referred to as parallel movement or rigid body parallel movement) of the object to be imaged can be obtained. Further, the distribution of rigid body rotational displacement (hereinafter referred to as rotational movement or rigid body rotational movement) can also be obtained.

図3は、x方向(水平方向)に撮影対象物を移動させた場合にデジタル画像相関法で得られた変位分布を示す。レンズに歪曲収差が無い場合には、変位に分布は現れずに一様な値となる。一方、収差がある場合には、図3に示すような変位分布が現れる。この分布を用いて歪曲収差を検出することになる。なお、図3の(a)はx方向変位を示し、(b)はy方向変位を示している。   FIG. 3 shows a displacement distribution obtained by the digital image correlation method when the object to be photographed is moved in the x direction (horizontal direction). When there is no distortion in the lens, the distribution does not appear in the displacement and becomes a uniform value. On the other hand, when there is aberration, a displacement distribution as shown in FIG. 3 appears. Distortion is detected using this distribution. 3A shows displacement in the x direction, and FIG. 3B shows displacement in the y direction.

ここで、収差を含む点の座標値をx′,y′、収差の無い理想的な場合の点の座標をx,y、x方向およびy方向の収差の量をα,αとすると、それらの関係は下記(6)式で表される。 Here, if the coordinate value of the point including the aberration is x ′, y ′, the coordinate of the ideal point without aberration is x, y, the amount of aberration in the x direction and the y direction is α x , α y. Their relationship is expressed by the following equation (6).

Figure 0004775541
デジタル画像相関法により得られる移動量、すなわち収差を含んだx方向およびy方向の移動量u′,u′は下記(7)式で表される。
Figure 0004775541
The amount of movement obtained by the digital image correlation method, that is, the amounts of movement u ′ x , u ′ y in the x and y directions including aberration are expressed by the following equation (7).

Figure 0004775541
ここで、x′は移動前のx座標(収差を含む)、y′は移動前のy座標(収差を含む)、x′は移動後のx座標(収差を含む)、y′は移動後のy座標(収差を含む)、αxuは点(x,y)におけるx方向収差、αyuは点(x,y)におけるy方向収差、αxdは点(x,y)におけるx方向収差、αydは点(x,y)におけるy方向収差、xは移動前のx座標(収差を含まず)、yは移動前のy座標(収差を含まず)、xは移動後のx座標(収差を含まず)、yは移動後のy座標(収差を含まず)、uはx方向移動量(収差を含まず)、uはy方向移動量(収差を含まず)である。
Figure 0004775541
Here, x ′ u is the x coordinate before movement (including aberration), y ′ u is the y coordinate before movement (including aberration), x ′ d is the x coordinate after movement (including aberration), y ′ d (including aberration) y-coordinate after movement, alpha xu is the point (x u, y u) x-direction aberration in, alpha yu is the point (x u, y u) y-direction aberration in, alpha xd is the point ( x direction aberration at x d , y d ), α yd is the y direction aberration at point (x d , y d ), x u is the x coordinate before movement (excluding aberration), and yu is the y coordinate before movement. (Without aberration), x d is the x coordinate after movement (without aberration), y d is the y coordinate after movement (without aberration), and u x is the amount of movement in the x direction (without aberration) , U y are y-direction movement amounts (not including aberrations).

ところで、撮影対象物が剛体並行移動および剛体回転移動(剛体変位でもある)した場合を考えてみると、その移動量(ずれ量)については、平面を表す方程式(ずれ量算出式)でもって近似し得るという知見を得た。   By the way, considering the case where the object to be imaged is a rigid body parallel movement and a rigid body rotational movement (also a rigid body displacement), the movement amount (deviation amount) is approximated by an equation representing a plane (deviation amount calculation formula). The knowledge that it is possible was obtained.

撮影対象物が剛体並行移動した場合には、移動量uおよびuは、下記(8)式にて表すことができる。 When the object to be imaged is moved in parallel with the rigid body, the movement amounts u x and u y can be expressed by the following equation (8).

Figure 0004775541
ここで、移動量uおよびuは撮影画像上で一様の値(定数)となる。一方、撮影対象物が剛体回転移動した場合には、移動前座標と移動後座標との関係は回転行列を用いて、下記(9)式にて表される。
Figure 0004775541
Here, the movement amounts u x and u y are uniform values (constants) on the captured image. On the other hand, when the object to be imaged is rotated and moved rigidly, the relationship between the coordinates before movement and the coordinates after movement is expressed by the following equation (9) using a rotation matrix.

Figure 0004775541
したがって、撮影対象物が剛体回転移動した場合の移動量uおよびuは、下記(10)式で表すことができる。
Figure 0004775541
Therefore, the movement amounts u x and u y when the object to be photographed is rotated and rotated rigidly can be expressed by the following equation (10).

Figure 0004775541
ここでθは回転角度であるので、撮影した特定の画像に対して定数となる。
Figure 0004775541
Here, since θ is a rotation angle, it is a constant for a specific image taken.

すなわち、剛体並行移動を測定した場合には、上記(7)式におけるuおよびuは一定値(測定領域内で一様)となる。一方、剛体並行移動と剛体回転移動の両者を測定した場合には、uおよびuは2次元の平面として表すことができるため、測定した移動量は下記(11)式で示す変形量算出式にて表される。 That is, when measured rigid body translational movement becomes the (7) u x and u y are constant values in the equation (measured area in one night). On the other hand, when measured both rigid translational movement and the rigid rotation movement, since u x and u y may be represented as a two-dimensional plane, the movement amount of deformation amount calculation represented by the following formula (11) was measured It is expressed by a formula.

Figure 0004775541
収差のモデルは収差を含まない座標の関数として表されているが、測定結果は収差を含む座標の関数として得られる。
Figure 0004775541
Although the aberration model is expressed as a function of coordinates including no aberration, the measurement result is obtained as a function of coordinates including aberration.

ところで、デジタル画像相関法により得られる移動量(ずれ量)は、収差を含む点(x′,y′)の関数として得られるが、(11)式の収差のモデルは当該収差を含まない点(x,y)の関数として与えられている。そのため、各係数を直接決定することはできない。そこで、最小二乗法と繰返し演算を組み合わせて各係数を決定する。   By the way, the movement amount (deviation amount) obtained by the digital image correlation method is obtained as a function of the point (x ′, y ′) including the aberration, but the aberration model of the equation (11) does not include the aberration. It is given as a function of (x, y). Therefore, each coefficient cannot be determined directly. Therefore, each coefficient is determined by combining the least square method and the iterative calculation.

まず、収差を含む座標値(x′,y′)を(x,y)に初期値として代入し、最小二乗法により各係数の近似値を決定する。すなわち、下記(12)式にて計算することができる。勿論、最小二乗法を用いる場合には、複数の画素について計算が行われる。   First, coordinate values (x ′, y ′) including aberrations are substituted into (x, y) as initial values, and approximate values of the respective coefficients are determined by a least square method. That is, it can be calculated by the following equation (12). Of course, when the least square method is used, calculation is performed for a plurality of pixels.

Figure 0004775541
ここで、
Figure 0004775541
here,

Figure 0004775541
上記式中、下付添字の1・・・nはデータ点のインデックスを示す。以上の計算により得られた各係数の近似値を用い、収差を含まない座標(x,y)の近似値を計算する。その座標値(x,y)を用い、再び、同様の最小二乗法により各係数を計算する。これを各係数の値が収束するまで繰り返すことにより、各係数を決定することができる。
Figure 0004775541
In the above formula, subscripts 1... N indicate data point indexes. Using the approximate value of each coefficient obtained by the above calculation, the approximate value of coordinates (x, y) not including aberration is calculated. Using the coordinate value (x, y), each coefficient is calculated again by the same least square method. By repeating this until the value of each coefficient converges, each coefficient can be determined.

なお、収差の中心を求める必要がある場合には、収差の中心座標を未知数とし、非線形最小二乗法を用いればよい。
以上の方法により、収差モデル量すなわち収差量を決定した後、その値を用いて撮影画像が補正される。撮影画像の歪みを補正する場合、例えば画像の輝度値補間法などが用いられる。
If it is necessary to determine the center of aberration, the center coordinate of the aberration is set as an unknown and a nonlinear least square method may be used.
After determining the aberration model amount, that is, the aberration amount by the above method, the captured image is corrected using the value. When correcting the distortion of the captured image, for example, an image luminance value interpolation method or the like is used.

ここで、具体例について説明しておく。
上述した図3には剛体並行移動量の測定結果が示されており、(a)はx方向、(b)はy方向である。この測定結果から歪曲収差を検出した。
Here, a specific example will be described.
FIG. 3 described above shows the measurement result of the rigid body parallel movement amount, where (a) is the x direction and (b) is the y direction. From this measurement result, distortion was detected.

すなわち、得られた各係数を用いて、図3の移動量分布に収差補正を行った結果を、図4に示す。図4(a)はx方向、図4(b)はy方向を示す。すなわち、収差補正後には画像上の各点において移動量の値はほぼ一様となっており、剛体並行移動の測定としては、妥当な結果が得られている。   That is, FIG. 4 shows the result of aberration correction performed on the movement amount distribution of FIG. 3 using the obtained coefficients. 4A shows the x direction, and FIG. 4B shows the y direction. That is, after the aberration correction, the value of the movement amount is almost uniform at each point on the image, and an appropriate result is obtained as the measurement of the rigid parallel movement.

ここで、上述した歪曲収差補正方法をステップ様式にて記載しておく。
すなわち、この歪曲収差補正方法は、レンズを介して撮影対象物の所定領域を、当該レンズと相対位置が異なるようにいずれかをずらせて少なくとも2枚の撮影画像を得るステップと、これら少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上での所定領域のずれ量(u′,u′)を検出するステップと、収差を表す収差モデル量(α,α)にずれによる回転移動および並行移動を考慮した平面の式で表されるずれ量算出式を加えて得られる下記(A)式および(B)式で示される変形量算出式に、上記ステップで検出されたずれ量を代入し、最小二乗法を用いて当該変形量算出式の少なくとも収差モデル量を表す係数を決定するステップと、上記決定された収差モデル量の係数を用いて歪曲収差の補正を行うステップとが具備されている。
Here, the distortion aberration correction method described above is described in a step format.
That is, this distortion aberration correction method includes a step of obtaining at least two photographed images by shifting a predetermined region of a subject to be photographed via a lens so that the relative position differs from that of the lens, and at least two of these. A step of detecting a deviation amount (u ′ x , u ′ y ) of a predetermined region on both the captured images by applying a digital image correlation method to the captured images of the lens, and an aberration model amount (α x , α y ) representing the aberration. ) To the deformation amount calculation formula shown by the following formulas (A) and (B) obtained by adding a shift amount calculation formula expressed by a plane formula considering rotational movement and parallel movement due to shift, Substituting the detected deviation amount and determining a coefficient representing at least an aberration model quantity of the deformation amount calculation formula using the least square method, and correcting distortion aberration using the coefficient of the determined aberration model quantity The Cormorants and steps are provided.

u′=ax+ay+a+α ・・・(A)
u′=ax+ay+a+α ・・・(B)
上述したように、撮影対象物をずれた位置で撮影した少なくとも2枚の撮影画像における計算領域についての収差を含むずれ量を、収差モデル量に撮影画像のずれによる回転移動および並行移動を表す平面の式を加えた変形量算出式で表すとともに、この変形量算出式に係る平面を表す方程式の各係数、少なくとも収差モデル量を表す係数を、デジタル画像相関法で求められたずれ量を用いて、最小二乗法により決定するようにしたので、例えば基準となるキャリブレーション板を用いることなく、撮影画像だけで歪曲収差の補正を行うことができる。
u ′ x = a 1 x + a 2 y + a 3 + α x (A)
u ′ y = a 4 x + a 5 y + a 6 + α y (B)
As described above, the displacement amount including the aberration for the calculation region in at least two photographed images photographed at the position where the photographing object is displaced is a plane representing rotational movement and parallel movement due to the displacement of the photographed image as the aberration model amount. Using the deviation amount obtained by the digital image correlation method, each coefficient of an equation representing a plane relating to the deformation amount calculation formula, at least a coefficient representing an aberration model amount, Since the determination is made by the least square method, for example, it is possible to correct distortion by using only the photographed image without using a reference calibration plate.

ところで、上記実施の形態においては、計測対象物を剛体変位させた場合について説明したが、その替わりに、カメラを移動させてもよい。   By the way, in the said embodiment, although the case where the measurement target object was displaced rigidly was demonstrated, you may move a camera instead.

本発明の実施の形態に係る歪曲収差補正方法を説明するための撮影対象物の計算領域の位置関係を示す図である。It is a figure which shows the positional relationship of the calculation area | region of the imaging | photography target object for demonstrating the distortion aberration correction method which concerns on embodiment of this invention. 同歪曲収差補正方法を説明するための歪曲収差を示す図である。It is a figure which shows the distortion aberration for demonstrating the same distortion aberration correction method. 同歪曲収差補正方法における剛体変位を測定した際の変位分布を示す図で、(a)はx方向変位、(b)はy方向変位を示す。It is a figure which shows the displacement distribution at the time of measuring the rigid body displacement in the same distortion correction method, (a) shows displacement in x direction, (b) shows displacement in y direction. 同変位分布に対して収差補正を行った場合の変位分布を示す図で、(a)はx方向変位、(b)はy方向変位を示す。It is a figure which shows the displacement distribution at the time of performing aberration correction with respect to the displacement distribution, (a) shows displacement in x direction, (b) shows displacement in y direction.

Claims (1)

レンズを介して撮影対象物の所定領域を、当該レンズと相対位置が異なるようにいずれかをずらせて少なくとも2枚の撮影画像を得るステップと、
これら少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上での所定領域のずれ量(u′,u′)を検出するステップと、
下記(A)式および(B)式にて表わされる収差を表す収差モデル量(α,α)にずれによる回転移動および並行移動を考慮した平面の式(下記(C)式および(D)式に示す)で表されるずれ量算出式を加えて得られる下記(E)式および(F)式で示される変形量算出式に、上記ステップで検出されたずれ量を代入し、最小二乗法を用いて当該変形量算出式の少なくとも収差モデル量を表す係数を決定するステップと、
上記決定された収差モデル量の係数を用いて歪曲収差の補正を行うステップとを具備したことを特徴とする撮影画像における歪曲収差補正方法。
α =k x(x +y ) ・・・(A)
α =k y(x +y ) ・・・(B)
=a x+a y+a ・・・(C)
=a x+a y+a ・・・(D)
u′ =a x+a y+a +k {x (x +y )−x (x +y )} ・・・(E)
u′ =a x+a y+a +k {y (x +y )−y (x +y )} ・・・(F)
但し、u′ は収差を含んだx方向の移動量、u′ は収差を含んだy方向の移動量、x は移動前のx座標(収差を含まず)、y は移動前のy座標(収差を含まず)、x は移動後のx座標(収差を含まず)、y は移動後のy座標(収差を含まず)、u はx方向移動量(収差を含まず)、u はy方向移動量(収差を含まず)である。
Shifting at least two photographed images by shifting any one of the predetermined regions of the subject to be photographed through the lens so that the relative positions thereof are different from the lens;
Applying a digital image correlation method to the at least two photographed images to detect a deviation amount (u ′ x , u ′ y ) of a predetermined region on both photographed images;
The plane model considering the rotational movement and the parallel movement due to the deviation in the aberration model quantity (α x , α y ) representing the aberration represented by the following expressions (A) and (B) ( the following expressions (C) and (D) The displacement amount detected in the above step is substituted into the deformation amount calculation equation represented by the following equations (E) and (F) obtained by adding the displacement amount calculation equation represented by ( Determining a coefficient representing at least an aberration model amount of the deformation amount calculation formula using a square method;
And a step of correcting distortion using the coefficient of the determined aberration model quantity. A method of correcting distortion in a photographed image.
α x = k 1 x (x 2 + y 2 ) (A)
α y = k 1 y (x 2 + y 2 ) (B)
u x = a 1 x + a 2 y + a 3 (C)
u y = a 4 x + a 5 y + a 6 (D)
u ′ x = a 1 x + a 2 y + a 3 + k 1 {x d (x d 2 + y d 2 ) −x u (x u 2 + yu 2 )} (E)
u ′ y = a 4 x + a 5 y + a 6 + k 1 {y d (x d 2 + y d 2 ) −y u (x u 2 + yu 2 )} (F)
Where u ′ x is the amount of movement in the x direction including aberration, u ′ y is the amount of movement in the y direction including aberration, x u is the x coordinate before movement (excluding aberration), and yu is before movement. Y coordinate (not including aberration), x d is the x coordinate after movement (not including aberration), y d is the y coordinate after movement (not including aberration), and u x is the amount of movement in the x direction (aberration). And u y is the amount of movement in the y direction (excluding aberrations).
JP2005148850A 2005-05-23 2005-05-23 Distortion correction method for captured images Expired - Fee Related JP4775541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148850A JP4775541B2 (en) 2005-05-23 2005-05-23 Distortion correction method for captured images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148850A JP4775541B2 (en) 2005-05-23 2005-05-23 Distortion correction method for captured images

Publications (2)

Publication Number Publication Date
JP2006330772A JP2006330772A (en) 2006-12-07
JP4775541B2 true JP4775541B2 (en) 2011-09-21

Family

ID=37552434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148850A Expired - Fee Related JP4775541B2 (en) 2005-05-23 2005-05-23 Distortion correction method for captured images

Country Status (1)

Country Link
JP (1) JP4775541B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948660B2 (en) * 2010-05-14 2012-06-06 西日本旅客鉄道株式会社 Structure displacement measurement method
JP5909890B2 (en) * 2011-06-23 2016-04-27 株式会社大林組 Displacement observation method and displacement observation system
CN115760595B (en) * 2022-10-26 2023-07-21 中国电子科技集团公司第五十四研究所 Super-wide-angle lens photo distortion correction method based on line segment characteristics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557168B2 (en) * 2000-11-27 2004-08-25 三洋電機株式会社 Lens distortion coefficient calculation device and calculation method, computer-readable recording medium storing lens distortion coefficient calculation program
JP3626448B2 (en) * 2001-11-28 2005-03-09 株式会社東芝 Exposure method

Also Published As

Publication number Publication date
JP2006330772A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4836067B2 (en) Deformation measurement method for structures
JP5140761B2 (en) Method for calibrating a measurement system, computer program, electronic control unit, and measurement system
JP6079333B2 (en) Calibration apparatus, method and program
CN105096329B (en) Method for accurately correcting image distortion of ultra-wide-angle camera
JP3728900B2 (en) Calibration method and apparatus, and calibration data generation method
CN111263142B (en) Method, device, equipment and medium for testing optical anti-shake of camera module
JP2004037270A (en) Data measuring device, method and program for calibration, computer readable recording medium and image data processing device
CN106815866B (en) Calibration method of fisheye camera, calibration system and target thereof
CN108489423B (en) Method and system for measuring horizontal inclination angle of product surface
US7349580B2 (en) Apparatus and method for calibrating zoom lens
CN109544643A (en) A kind of camera review bearing calibration and device
JP4775540B2 (en) Distortion correction method for captured images
JP6641729B2 (en) Line sensor camera calibration apparatus and method
WO2011118476A1 (en) Three dimensional distance measuring device and method
CN113255643A (en) Machine vision recognition algorithm applied to displacement monitoring
JP2011155412A (en) Projection system and distortion correction method in the same
JP4775541B2 (en) Distortion correction method for captured images
JP5446285B2 (en) Image processing apparatus and image processing method
JP2008224323A (en) Stereoscopic photograph measuring instrument, stereoscopic photograph measuring method, and stereoscopic photograph measuring program
JP7067479B2 (en) Displacement measuring device, displacement measuring system, displacement measuring method and program
JP2012013592A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
CN111145268B (en) Video registration method and device
CN113962853A (en) Automatic precise resolving method for rotary linear array scanning image pose
CN110232715B (en) Method, device and system for self calibration of multi-depth camera
JP2013170829A (en) Strain measuring device and strain measuring method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Ref document number: 4775541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees