JP4773545B2 - Method for producing porous carbon fiber - Google Patents
Method for producing porous carbon fiber Download PDFInfo
- Publication number
- JP4773545B2 JP4773545B2 JP2009104024A JP2009104024A JP4773545B2 JP 4773545 B2 JP4773545 B2 JP 4773545B2 JP 2009104024 A JP2009104024 A JP 2009104024A JP 2009104024 A JP2009104024 A JP 2009104024A JP 4773545 B2 JP4773545 B2 JP 4773545B2
- Authority
- JP
- Japan
- Prior art keywords
- porous carbon
- starch
- carbon fiber
- fiber
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inorganic Fibers (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Inert Electrodes (AREA)
Description
本発明は、環境親和的でかつ低コストの天然高分子である澱粉を利用して澱粉複合繊維を製造し、この澱粉複合繊維を酸化熱処理した後、炭化処理、真空熱処理によって多孔性炭素繊維を作製する方法に関する。本発明による多孔性炭素繊維は、電解質浸透の容易な細孔(pore)構造であるメソ細孔(Mesopore)を多量に含有するので、蓄電容量の大きい電極を製造することに適合である。 In the present invention, a starch composite fiber is produced using starch, which is an environmentally friendly and low-cost natural polymer, and after the starch composite fiber is subjected to an oxidation heat treatment, the porous carbon fiber is formed by carbonization treatment and vacuum heat treatment. It relates to a manufacturing method. Since the porous carbon fiber according to the present invention contains a large amount of mesopores (mesopores), which are pore structures that allow easy electrolyte penetration, it is suitable for manufacturing an electrode having a large storage capacity.
超高容量のスーパーキャパシターの電極材料に関する研究は、1980年代初から日本で活性炭素を利用する超高容量のキャパシターを常用化するまでに至っている。しかし、現段階においては、実質的に技術的限界に到り、金属酸化物の電極は、米国と日本を中心に研究開発が進行されているとともに、超高容量キャパシターの電極材料に使用する炭素ナノチューブの複合材料に関する研究も現在のところ、米国、日本など先進国を中心に活発に進行されている。前記の研究においては、炭素ナノチューブ自体を電極材料として使用するか、または、炭素ナノチューブの複合材料を製造することに集中されている。前記の炭素ナノチューブの複合材料は、炭素ナノチューブを従来の超高容量キャパシターの電極材料として広く使用されている活性炭素と混合して製造する方法、または、炭素ナノチューブにRuO2またはIrO2のような金属酸化物、またはポリアニリンのような伝導性高分子を蒸着させて製造することもできる。 Research on electrode materials for supercapacitor supercapacitors has led to regular use of supercapacitors using activated carbon in Japan since the early 1980s. However, at the present stage, the technical limit has been reached, and metal oxide electrodes are being researched and developed mainly in the United States and Japan, and carbon used for electrode materials for ultra-high capacity capacitors. At present, research on composite materials of nanotubes is being actively promoted mainly in developed countries such as the United States and Japan. In the above research, the focus has been on using carbon nanotubes themselves as electrode materials or producing composites of carbon nanotubes. The carbon nanotube composite material may be prepared by mixing carbon nanotubes with activated carbon, which is widely used as an electrode material for conventional ultrahigh-capacity capacitors, or carbon nanotubes such as RuO 2 or IrO 2 . It can also be produced by depositing a metal oxide or a conductive polymer such as polyaniline.
なお、低コストの活性炭素を利用する電気二重層スーパーキャパシター用電極材料の作製に対する研究が活発に進行されている。しかし、今なお活性炭素を利用する炭素ナノチューブ複合材料による電極の単位重量当りの容量は、既存の金属酸化物(700F/g)と導電性ポリマー(500F/g)の値に比べてかなり低いレベルである。したがって、活性炭素を利用する炭素ナノチューブ複合材料による電極の単位重量当りの容量を画期的に増大させることがこれからの解決すべき核心的な課題となっている。 In addition, research on production of electrode materials for electric double layer supercapacitors using low-cost activated carbon has been actively conducted. However, the capacity per unit weight of the carbon nanotube composite material that still uses activated carbon is considerably lower than the values of the existing metal oxide (700 F / g) and conductive polymer (500 F / g). It is. Therefore, it is a core issue to be solved in the future to dramatically increase the capacity per unit weight of the electrode by the carbon nanotube composite material using activated carbon.
本発明は、従来技術において解釈すべき前記の課題を鑑みて、電解質の浸透が容易なメソ細孔を多量に含有する多孔性炭素繊維の製造方法を提供することを目的とする。 In view of the above-mentioned problems to be interpreted in the prior art, an object of the present invention is to provide a method for producing a porous carbon fiber containing a large amount of mesopores through which an electrolyte can easily penetrate.
前記目的を達成するために、(a)澱粉を加工してゲル化された澱粉溶液を製造する段階と、(b)前記ゲル化された澱粉溶液に有機酸を添加して有機酸添加の澱粉溶液を製造する段階と、(c)炭素ナノチューブを溶媒にて溶解させた後、繊維成形性高分子を添加して、炭素ナノチューブ・繊維成形性高分子含有溶液を製造する段階と、(d)前記(b)段階の澱粉溶液と、前記(c)段階の炭素ナノチューブ・繊維成形性高分子含有溶液とをさらに混合して、炭素ナノチューブ・澱粉・繊維成形性高分子含有溶液を製造する段階と、(e)前記炭素ナノチューブ・澱粉・繊維成形性高分子含有溶液を電気紡糸法または湿式紡糸法によって澱粉複合繊維を製造する段階、及び(f)前記澱粉複合繊維を酸化熱処理した後、炭化処理と、真空熱処理によって多孔性炭素繊維を製造する段階とを含む多孔性炭素繊維を製造する方法を提供する。 To achieve the above object, (a) a step of processing starch to produce a gelled starch solution, and (b) adding an organic acid to the gelled starch solution to add an organic acid added starch (C) a step of producing a solution; and (c) a step of dissolving a carbon nanotube in a solvent and then adding a fiber moldable polymer to produce a carbon nanotube / fiber moldable polymer-containing solution; A step of producing a carbon nanotube / starch / fiber-formable polymer-containing solution by further mixing the starch solution of step (b) and the carbon nanotube / fiber-formable polymer-containing solution of step (c); (E) a step of producing a starch composite fiber from the carbon nanotube / starch / fiber-forming polymer-containing solution by an electrospinning method or a wet spinning method; and (f) a carbonization treatment after the starch composite fiber is subjected to an oxidation heat treatment. And vacuum To provide a method for producing a porous carbon fibers comprising the steps of producing a porous carbon fibers by the treatment.
また、本発明は、前記の多孔性炭素繊維を電気化学用電極の製造に使用する方法を提供する。 Moreover, this invention provides the method of using the said porous carbon fiber for manufacture of the electrode for electrochemical.
本発明の方法によって製造された多孔性炭素繊維は、比表面積が大きく、且つ蓄電容量が大きい優秀な電気化学的性質を有する。また、本発明の多孔性炭素繊維は、平均直径が5〜10nmであるメソ細孔を多量含有することによって、電解質の浸透が容易になるため、大容量スーパーキャパシターの電極材料として好適に使用することができる。 The porous carbon fiber produced by the method of the present invention has excellent electrochemical properties with a large specific surface area and a large storage capacity. Moreover, since the porous carbon fiber of the present invention contains a large amount of mesopores having an average diameter of 5 to 10 nm to facilitate electrolyte penetration, it is suitably used as an electrode material for a large-capacity supercapacitor. be able to.
本発明の多孔性炭素繊維の製造方法を詳細に説明する。
まず、前記の多孔性炭素繊維の製造工程は、(a)澱粉を加工してゲル化された澱粉溶液を製造する段階と、(b)前記ゲル化された澱粉溶液に有機酸を添加して有機酸添加の澱粉溶液を製造する段階と、(c)炭素ナノチューブを溶媒にて溶解させた後、繊維成形性高分子を添加して炭素ナノチューブ・繊維成形性高分子含有溶液を製造する段階と、(d)前記(b)段階の澱粉溶液と、前記(c)段階の炭素ナノチューブ・繊維成形性高分子含有溶液とをさらに混合して、炭素ナノチューブ・澱粉・繊維成形性高分子含有溶液を製造する段階と、(e)前記炭素ナノチューブ・澱粉・繊維成形性高分子含有溶液を電気紡糸法(エレクトロスピニング法)または湿式紡糸法によって澱粉複合繊維を製造する段階、及び(f)前記澱粉複合繊維を酸化熱処理した後、炭化処理と、真空熱処理によって多孔性炭素繊維を製造する段階とを含む。前記の方法によって製造された本発明の多孔性炭素繊維の基本概念図を図1に模式的に示す。
The manufacturing method of the porous carbon fiber of this invention is demonstrated in detail.
First, the manufacturing process of the porous carbon fiber includes (a) a step of processing starch to manufacture a gelled starch solution, and (b) adding an organic acid to the gelled starch solution. A step of producing an organic acid-added starch solution; and (c) a step of dissolving a carbon nanotube in a solvent and then adding a fiber-forming polymer to produce a carbon nanotube / fiber-forming polymer-containing solution. (D) The starch solution in the step (b) and the carbon nanotube / fiber moldable polymer-containing solution in the step (c) are further mixed to obtain a carbon nanotube / starch / fiber moldable polymer-containing solution. And (e) producing starch composite fibers by electrospinning (electrospinning) or wet spinning using the carbon nanotube / starch / fiber-forming polymer-containing solution, and (f) the starch composites. Fiber After oxidizing heat treated, comprising a carbonizing, and steps of manufacturing a porous carbon fiber by vacuum heat treatment. The basic conceptual diagram of the porous carbon fiber of the present invention produced by the above method is schematically shown in FIG.
前記(a)段階における澱粉の加工は、澱粉を100〜150℃で加熱した後、常温で冷却させる。このときの前記澱粉は、結晶質と非結晶質の構造がナノサイズで交代に積層されている。したがって、メソ細孔を多量含有する多孔性炭素繊維を製造するためには、澱粉をゲル化させる段階が必須である。 In the starch processing in the step (a), the starch is heated at 100 to 150 ° C. and then cooled at room temperature. At this time, the starch has a crystalline structure and an amorphous structure which are alternately laminated in a nano size. Therefore, in order to produce porous carbon fibers containing a large amount of mesopores, a step of gelling starch is essential.
前記(b)段階において添加する有機酸は、例えば、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、アルキルベンゼンスルホン酸及びp−アミノベンゼンスルホン酸で構成された群から選択することができる。前記の有機酸は、1種または2種以上の有機酸を混合して使用することができる。 The organic acid added in the step (b) can be selected from the group consisting of p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, alkylbenzenesulfonic acid and p-aminobenzenesulfonic acid, for example. . The said organic acid can be used 1 type or in mixture of 2 or more types.
前記(c)段階における溶媒は、例えば、水、エタノール、メタノール、ジクロロメタノール、イソプロパノール、アセトン、ヘキサフルオロ−イソプロパノール(HFIP)、イソプロパノール及びアセトンで構成された群から選択することができる。前記の溶媒は、1種または2種以上の溶媒を混合して使用することができる。 The solvent in the step (c) can be selected from the group consisting of water, ethanol, methanol, dichloromethanol, isopropanol, acetone, hexafluoro-isopropanol (HFIP), isopropanol and acetone, for example. The said solvent can be used 1 type or in mixture of 2 or more types.
また、前記(c)段階における繊維成形性高分子は、例えば、ポリビニルアルコール、ポリエチレンオキシド、ポリカーボネート、ポリ乳酸、ポリビニルカルバゾール、ポリメタクリレート、セルロースアセテート、コラーゲン、ポリカプロラクトン及びポリ(2−ヒドロキシエチルメタクリレート)で構成された群から選択することができる。 前記繊維成形性高分子は、1種または2種以上の繊維成形性高分子を混合して使用することができる。 Examples of the fiber-forming polymer in the step (c) include polyvinyl alcohol, polyethylene oxide, polycarbonate, polylactic acid, polyvinyl carbazole, polymethacrylate, cellulose acetate, collagen, polycaprolactone, and poly (2-hydroxyethyl methacrylate). Can be selected from the group consisting of The fiber formable polymer can be used by mixing one or more kinds of fiber formable polymers.
また、前記繊維成形性高分子は、前記澱粉に対して、澱粉:繊維成形性高分子=5:5〜8:2の質量比で添加することが好ましい。
次いで、前記(f)段階における酸化熱処理は、150〜300℃の温度条件下で実施することができ、また、前記炭化処理は、真空または不活性ガス雰囲気下、500〜1,400℃で実施することができる。また、前記(f)段階の真空熱処理は、1,400〜2,200℃の温度条件下で実施することができる。ここで、前記(b)段階において有機酸を添加する段階を経た澱粉複合繊維は、前記酸化熱処理及び真空熱処理耐熱性を有するとともに、炭化処理によって炭化の速度が促進される。
The fiber-forming polymer is preferably added to the starch at a mass ratio of starch: fiber-forming polymer = 5: 5 to 8: 2.
Next, the oxidation heat treatment in the step (f) can be performed at a temperature of 150 to 300 ° C., and the carbonization is performed at 500 to 1,400 ° C. in a vacuum or an inert gas atmosphere. can do. In addition, the vacuum heat treatment in the step (f) can be performed under a temperature condition of 1,400 to 2,200 ° C. Here, the starch composite fiber that has undergone the step of adding an organic acid in the step (b) has heat resistance of the oxidation heat treatment and vacuum heat treatment, and the speed of carbonization is accelerated by the carbonization treatment.
このようにして作製された前記多孔性炭素繊維は、平均直径が5〜10nmのメソ細孔を多量に含有することになる。 The porous carbon fiber thus produced contains a large amount of mesopores having an average diameter of 5 to 10 nm.
また、本発明は、前記の多孔性炭素繊維を含むフェルトを提供することができる。 Moreover, this invention can provide the felt containing the said porous carbon fiber.
また、前記の多孔性炭素繊維を含む超高容量のスーパーキャパシター用電極を提供する。 Moreover, the supercapacitor electrode containing the said porous carbon fiber is provided.
また、前記の多孔性炭素繊維を含む燃料電池用電極を提供する。 Moreover, the electrode for fuel cells containing the said porous carbon fiber is provided.
以下、本発明の内容を好適な実施例を通じてより具体的に説明する。ただ、これらの実施例は本発明をより詳細に説明するためのことであって、本発明の権利範囲がこれらによって限定されない。 Hereinafter, the contents of the present invention will be described more specifically through preferred embodiments. However, these examples are for explaining the present invention in more detail, and the scope of rights of the present invention is not limited thereby.
実施例1.澱粉複合繊維の作製
まず、水30mlに澱粉2gを溶解させた後、100〜150℃の温度範囲で煮た。前記のようにして煮上げた澱粉を常温で冷却させた後、インキュベーターで低温保管(5℃)することによってゲル化した澱粉溶液を得た。その後、ゲル化された澱粉溶液に有機酸であるp−トルエンスルホン酸を0.2mmol添加して、有機酸が添加された澱粉溶液を作製した。
Example 1. Preparation of starch composite fiber First, 2 g of starch was dissolved in 30 ml of water and then boiled in a temperature range of 100 to 150 ° C. The starch boiled as described above was cooled at room temperature, and then stored in a low temperature (5 ° C.) in an incubator to obtain a gelatinized starch solution. Then, 0.2 mmol of p-toluenesulfonic acid which is an organic acid was added to the gelatinized starch solution, and the starch solution to which the organic acid was added was produced.
次いで、水20mlに炭素ナノチューブ0.02gと分散剤としてのNaDDBS0.02gを添加した後、超音波処理によって均質に混合させた。ここで、前記の澱粉は難繊維成形性であるため、電気紡糸段階を経て澱粉複合繊維を作製するためには、NaDDBSのような分散剤を添加しなければならない。その後、繊維成形性高分子としてPVA(Polyvinyl alchol)2gを前記混合物に添加して、炭素ナノチューブ・PVA含有溶液を作製した。 Next, 0.02 g of carbon nanotubes and 0.02 g of NaDDBS as a dispersing agent were added to 20 ml of water, and then homogeneously mixed by ultrasonic treatment. Here, since the said starch is difficult fiber moldability, in order to produce a starch composite fiber through an electrospinning stage, you have to add a dispersing agent like NaDDBS. Thereafter, 2 g of PVA (Polyvinyl alcohol) as a fiber moldable polymer was added to the mixture to prepare a carbon nanotube / PVA-containing solution.
次いで、前記ゲル化された澱粉溶液に、前記炭素ナノチューブ・PVA含有溶液を混合して、炭素ナノチューブ・澱粉・PVA含有溶液を作製した。前記の炭素ナノチューブ・澱粉・PVA含有溶液の粘度は300〜1,500cPを示した。
次いで、前記炭素ナノチューブ・澱粉・PVA含有溶液を注射器内に収容して、高電圧(10〜30kV)を加えた後、紡糸ノズルを通じて紡糸させることによって澱粉複合繊維を作製した。前記紡糸ノズルと紡糸口との距離は15〜20cmであった。
Subsequently, the carbon nanotube / PVA-containing solution was mixed with the gelled starch solution to prepare a carbon nanotube / starch / PVA-containing solution. The viscosity of the carbon nanotube / starch / PVA-containing solution was 300 to 1,500 cP.
Next, the carbon nanotube / starch / PVA-containing solution was placed in a syringe, applied with a high voltage (10 to 30 kV), and then spun through a spinning nozzle to produce a starch composite fiber. The distance between the spinning nozzle and the spinning nozzle was 15 to 20 cm.
図2は、前記のようにして作製された澱粉複合繊維の走査電子顕微鏡(SEM)の写真図である。(a)は、前記の澱粉複合繊維の走査電子顕微鏡の写真であり、(b)は(a)を拡大した走査電子顕微鏡の写真である。 FIG. 2 is a scanning electron microscope (SEM) photograph of the starch conjugate fiber produced as described above. (A) is a photograph of a scanning electron microscope of the starch composite fiber, and (b) is a photograph of a scanning electron microscope obtained by enlarging (a).
実施例2.多孔性炭素繊維の作製
前記実施例1において作製された澱粉複合繊維を150〜300℃の温度範囲で酸化熱処理して安定化させた。その後、真空または不活性ガスの条件下500〜1,400℃の温度範囲で炭化させて、多孔性炭素繊維を作製した。
Example 2 Production of porous carbon fiber The starch composite fiber produced in Example 1 was stabilized by oxidative heat treatment in a temperature range of 150 to 300 ° C. Then, it carbonized in the temperature range of 500-1400 degreeC on the conditions of a vacuum or an inert gas, and produced the porous carbon fiber.
次いで、1,400〜2,200℃の温度範囲で真空熱処理して、最終的に平均10nmの気孔サイズを有する多孔性炭素繊維を作製した。前記の温度範囲で作製された多孔性炭素繊維の比表面積は、320m2/gで480m2/gの範囲を示した。 Next, vacuum heat treatment was performed in a temperature range of 1,400 to 2,200 ° C. to finally produce porous carbon fibers having a pore size of 10 nm on average. The specific surface area of porous carbon fibers made in the temperature range of the indicated range of 480m 2 / g at 320 m 2 / g.
図3は、10nmのメソ細孔を多量に含有する多孔性炭素繊維の走査電子顕微鏡の写真図である。 FIG. 3 is a scanning electron microscope photograph of a porous carbon fiber containing a large amount of 10 nm mesopores.
実施例3
前記実施例2において作製された多孔性炭素繊維を横、縦、それぞれ1cmずつ切断して電気二重層スーパーキャパシター比蓄電(specific capacitance)容量を測定した。前記多孔性炭素繊維自体を電極として使用し、1mol硫酸水溶液を電解質として使用した。充放電電圧は、0.0〜0.5V範囲であり、C=I(△V)/(△t)によって比蓄電容量を計算した結果、比蓄電容量は170F/gであった。
Example 3
The porous carbon fibers prepared in Example 2 were cut 1 cm each in the horizontal and vertical directions, and the specific capacity of the electric double layer supercapacitor was measured. The porous carbon fiber itself was used as an electrode, and a 1 mol sulfuric acid aqueous solution was used as an electrolyte. The charge / discharge voltage was in the range of 0.0 to 0.5 V, and the specific storage capacity was calculated by C = I (ΔV) / (Δt). As a result, the specific storage capacity was 170 F / g.
図4は、前記の多孔性炭素繊維の印加電圧による放電電流密度を示したグラフ図である。前記グラフの形態は理想的な長方形形状(角胴形:rectangular shape)と殆ど類似であった。 FIG. 4 is a graph showing the discharge current density according to the applied voltage of the porous carbon fiber. The shape of the graph was almost similar to an ideal rectangular shape (rectangular shape).
実施例4.白金ナノ粒子がコーティングされた多孔性炭素繊維の作製
実施例2において作製された多孔性炭素繊維フェルトを横、縦、それぞれ1cmずつ切断した後、白金ナノ粒子をスパッタリング(sputtering)した。その結果、白金ナノ粒子がコーティングされた多孔性炭素繊維を得た。
Example 4 Production of Porous Carbon Fiber Coated with Platinum Nanoparticles The porous carbon fiber felt produced in Example 2 was cut 1 cm each in the horizontal and vertical directions, and then the platinum nanoparticles were sputtered. As a result, a porous carbon fiber coated with platinum nanoparticles was obtained.
図5の(a)は、前記の白金ナノ粒子がコーティングされた多孔性炭素繊維を示した走査電子顕微鏡写真である。また、実施例4において作製された多孔性炭素繊維をEDAX分析(エネルギー分散型X線解析による元素分析)した結果を、図5の(b)に示した。前記(b)のEDAX分析結果から、炭素繊維の表面に白金ナノ粒子がコーティングされていることを確認することができる。 FIG. 5A is a scanning electron micrograph showing the porous carbon fiber coated with the platinum nanoparticles. Further, the result of EDAX analysis (elemental analysis by energy dispersive X-ray analysis) of the porous carbon fiber produced in Example 4 is shown in FIG. From the EDAX analysis result of (b), it can be confirmed that the surface of the carbon fiber is coated with platinum nanoparticles.
前記の各実施例においては、電気紡糸法によって実験したが、電気紡糸法の代りに湿式紡糸法も使用することができる。 In each of the above examples, the experiment was performed by the electrospinning method, but a wet spinning method can be used instead of the electrospinning method.
上述のように、本発明の好ましい実施形態を参照して説明したが、該当技術分野の当業者であれば、請求範囲記載の本発明の思想及び領域の範囲内で本発明を多様に修正または変更させることができる。 As described above, the preferred embodiments of the present invention have been described with reference to the preferred embodiments. However, those skilled in the art can modify or modify the present invention in various ways within the spirit and scope of the present invention described in the claims. It can be changed.
本発明は、難繊維成形性である澱粉を利用して多孔性炭素繊維を製造する。従来の繊維成形性であるPAN系高分子またはPitch系高分子を利用して炭素繊維を製造することと比較するとき、本発明の多孔性炭素繊維は高比表面積であり、高蓄電容量の優秀な電気化学的性質を有する。 In the present invention, porous carbon fibers are produced using starch which is difficult to mold. Compared with the production of carbon fiber using PAN-based polymer or Pitch-based polymer, which is a conventional fiber moldability, the porous carbon fiber of the present invention has a high specific surface area and excellent high storage capacity. Has excellent electrochemical properties.
さらに、本発明は、環境親和的でかつ低コストの難繊維成形性天然高分子である澱粉を電気紡糸法または湿式紡糸法を使用して炭素繊維を製造する方法を提供する。また、炭化工程を制御することによって、平均直径が10nmサイズのメソ細孔を多量に含有する多孔性炭素繊維を製造することができる。その結果、本発明の多孔性炭素繊維は、電解質の浸透が難しい構造のマイクロ細孔(直径が1nm以下)を多量含有する従来の活性炭素繊維の有する限界を克服することができる。 Furthermore, the present invention provides a method for producing carbon fiber by using an electrospinning method or a wet spinning method for starch, which is an environmentally friendly and low-cost difficult-to-form natural polymer. Further, by controlling the carbonization step, a porous carbon fiber containing a large amount of mesopores having an average diameter of 10 nm can be produced. As a result, the porous carbon fiber of the present invention can overcome the limitations of conventional activated carbon fibers containing a large amount of micropores (diameter of 1 nm or less) having a structure in which electrolyte penetration is difficult.
本発明による多孔性炭素繊維は、高い比表面積、高い電気伝導率の特性を有する素材が要求される超高容量のスーパーキャパシター用電極のみならず、燃料電池用電極にも応用されることができるため、産業上利用可能性が大きい。 The porous carbon fiber according to the present invention can be applied not only to a supercapacitor electrode for a supercapacitor that requires a material having a high specific surface area and a high electrical conductivity, but also to a fuel cell electrode. Therefore, industrial applicability is great.
Claims (14)
(b)前記ゲル化された澱粉溶液に有機酸を添加して有機酸添加の澱粉溶液を製造する段階と、
(c)炭素ナノチューブを溶媒にて溶解させた後、繊維成形性高分子を添加して炭素ナノチューブ・繊維成形性高分子含有溶液を製造する段階と、
(d)前記(b)段階の有機酸添加の澱粉溶液と、前記(c)段階の炭素ナノチューブ・繊維成形性高分子含有溶液をさらに混合して、炭素ナノチューブ・澱粉・繊維成形性高分子含有溶液を製造する段階と、
(e)前記炭素ナノチューブ・澱粉・繊維成形性高分子含有溶液を電気紡糸法または湿式紡糸法によって澱粉複合繊維を製造する段階、及び
(f)前記澱粉複合繊維を酸化熱処理した後、炭化処理と、真空熱処理によって多孔性炭素繊維を製造する段階とを含むことを特徴とする多孔性炭素繊維の製造方法。 (A) processing the starch to produce a gelatinized starch solution;
(B) adding an organic acid to the gelled starch solution to produce an organic acid-added starch solution;
(C) After dissolving the carbon nanotubes in a solvent, adding a fiber moldable polymer to produce a carbon nanotube / fiber moldable polymer-containing solution;
(D) The organic acid-added starch solution in the step (b) and the carbon nanotube / fiber moldable polymer-containing solution in the step (c) are further mixed to contain a carbon nanotube / starch / fiber moldable polymer. Producing a solution;
(E) producing a starch conjugate fiber by electrospinning or wet spinning using the carbon nanotube / starch / fiber-formable polymer-containing solution; and (f) after subjecting the starch conjugate fiber to an oxidative heat treatment, And producing a porous carbon fiber by vacuum heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009104024A JP4773545B2 (en) | 2009-04-22 | 2009-04-22 | Method for producing porous carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009104024A JP4773545B2 (en) | 2009-04-22 | 2009-04-22 | Method for producing porous carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010255127A JP2010255127A (en) | 2010-11-11 |
JP4773545B2 true JP4773545B2 (en) | 2011-09-14 |
Family
ID=43316357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009104024A Expired - Fee Related JP4773545B2 (en) | 2009-04-22 | 2009-04-22 | Method for producing porous carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4773545B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103714972A (en) * | 2013-11-25 | 2014-04-09 | 浙江大学 | Linear secure high-energy-density supercapacitor and preparation method thereof |
KR20220089302A (en) * | 2020-12-21 | 2022-06-28 | 현대자동차주식회사 | Porous multi-metal oxide nanotube and method for manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004356127A (en) * | 2003-05-27 | 2004-12-16 | Gun Ei Chem Ind Co Ltd | Electric double layer capacitor using fine phenol resin based active carbon fiber, and its manufacturing method |
JP2006063307A (en) * | 2004-07-27 | 2006-03-09 | Ezaki Glico Co Ltd | Carbon nanotube-containing solution, film, and fiber |
JP4523829B2 (en) * | 2004-10-20 | 2010-08-11 | リグナイト株式会社 | Carbon nanofiber / phenolic resin composite carbonized material, conductive resin composition, electrode for secondary battery, carbon material for electric double layer capacitor polarizable electrode, electric double layer capacitor polarizable electrode |
JP4963579B2 (en) * | 2006-08-28 | 2012-06-27 | リグナイト株式会社 | Polysaccharide-modified phenolic resin, production method of polysaccharide-modified phenolic resin, resin-coated sand, polysaccharide-modified phenolic resin carbonized material, conductive resin composition, carbon material for electrode, electrode for secondary battery, electric double layer capacitor polarizability electrode |
-
2009
- 2009-04-22 JP JP2009104024A patent/JP4773545B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010255127A (en) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101045001B1 (en) | Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode | |
Zhang et al. | Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor | |
Svinterikos et al. | Electrospun lignin-derived carbon micro-and nanofibers: A review on precursors, properties, and applications | |
Zhang et al. | Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage | |
KR101818817B1 (en) | Two-dimensional layred metal sulfide anchored to hollow carbon nanofibers as hydrogen evolution reaction catalysts and manufacturing method thereof | |
US11203003B2 (en) | Method of preparing carbon aerogel precursor, carbon aerogel precursor prepared thereby, and carbon aerogel | |
Sheng et al. | Synthesis of microporous carbon nanofibers with high specific surface using tetraethyl orthosilicate template for supercapacitors | |
KR101668391B1 (en) | High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode | |
Kim et al. | A new hybrid architecture consisting of highly mesoporous CNT/carbon nanofibers from starch | |
Hu et al. | Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method | |
Sasono et al. | Nanofiber-enrich dispersed activated carbon derived from coconut shell for supercapacitor material | |
KR20190004035A (en) | MnO2 deposited on lignin based carbon nanofiber mats for symmetric pseudocapacitors | |
KR101439896B1 (en) | Method for preparing controlled porous carbon nano sheet and porous carbon nano sheet made by the same | |
KR102180310B1 (en) | Sodium metal hybrid capasitor | |
KR20090055299A (en) | Carbonaceous material and method of preparing same | |
KR20140083070A (en) | Hybrid nano-complex, method for producing the same, and electrode for supercapacitor comprising the same | |
KR101794440B1 (en) | Method of manufacturing coated porous material, coated porous material and electrode comprising the coated porous material | |
Jiang et al. | Advances in biomass-based nanofibers prepared by electrospinning for energy storage devices | |
JP4773545B2 (en) | Method for producing porous carbon fiber | |
Li et al. | Fibrous carbon nanosheets from Kevlar nanofibrils: compromising one and two dimensions of carbon nanomaterials for optimal capacitive performance | |
US20130034804A1 (en) | Hybrid porous carbon fiber and method for fabricating the same | |
Huang et al. | Laser carbonization of lignin-based fiber membranes with heating treatment for flexible supercapacitors | |
EP2241658B1 (en) | Fabrication method for porous carbon fibers | |
KR20070118496A (en) | Super capacitor using graphite type material comprising nano sized activated carbon fiber | |
Tang et al. | Integrated electrospun carbon nanofibers with vanadium and single-walled carbon nanotubes through covalent bonds for high-performance supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110623 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4773545 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |