JP4771926B2 - Cavitation prevention circuit for construction machinery - Google Patents

Cavitation prevention circuit for construction machinery Download PDF

Info

Publication number
JP4771926B2
JP4771926B2 JP2006326223A JP2006326223A JP4771926B2 JP 4771926 B2 JP4771926 B2 JP 4771926B2 JP 2006326223 A JP2006326223 A JP 2006326223A JP 2006326223 A JP2006326223 A JP 2006326223A JP 4771926 B2 JP4771926 B2 JP 4771926B2
Authority
JP
Japan
Prior art keywords
valve
circuit
turning
pilot
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006326223A
Other languages
Japanese (ja)
Other versions
JP2008138788A (en
Inventor
基治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo SHI Construction Machinery Co Ltd
Priority to JP2006326223A priority Critical patent/JP4771926B2/en
Publication of JP2008138788A publication Critical patent/JP2008138788A/en
Application granted granted Critical
Publication of JP4771926B2 publication Critical patent/JP4771926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は建設機械のキャビテーション防止回路に関するものであり、特に、旋回又は走行モータへ圧油を給排する駆動用回路間にメイクアップ回路を備え、旋回又は走行モータを急停止させたときに吸込側が負圧となってキャビテーションが発生するのを防止する油圧回路に関するものである。   The present invention relates to a cavitation prevention circuit for a construction machine, and in particular, a makeup circuit is provided between driving circuits for supplying and discharging pressure oil to a turning or traveling motor, and suction is performed when the turning or traveling motor is suddenly stopped. The present invention relates to a hydraulic circuit that prevents cavitation from occurring due to negative pressure on the side.

油圧ショベルなどの建設機械では、旋回又は走行用リモコン弁の操作により旋回又は走行モータが駆動され、該旋回又は走行モータの回転によって旋回又は走行が可能となる。旋回又は走行を停止する場合は、旋回又は走行用リモコン弁を中立位置に戻して駆動用回路を遮断するが、旋回の場合は上部旋回体の慣性力で旋回モータが回転し続けようとし、また、走行の場合、特に、坂道を降坂する場合は降坂方向の慣性力により走行モータが慣性回転する。その結果、旋回又は走行モータの吸込側回路が負圧となってキャビテーションが発生し、気泡の発生および炸裂により旋回又は走行モータなどの油圧機器が損傷するという問題がある。   In a construction machine such as a hydraulic excavator, a turning or traveling motor is driven by operation of a turning or traveling remote control valve, and turning or traveling is enabled by rotation of the turning or traveling motor. When stopping turning or traveling, the turning or traveling remote control valve is returned to the neutral position and the drive circuit is shut off, but in the case of turning, the turning motor keeps rotating due to the inertial force of the upper turning body, and In the case of traveling, particularly when descending a hill, the traveling motor is rotated by inertia due to the inertia force in the downhill direction. As a result, there is a problem in that the suction side circuit of the turning or traveling motor becomes negative pressure and cavitation occurs, and hydraulic equipment such as the turning or traveling motor is damaged by the generation and burst of bubbles.

従来、旋回又は走行モータを急停止させたときのキャビテーション発生を防止する油圧回路としては、図5に示すような油圧回路が一般的である。油圧ポンプ50の吐出回路は旋回又は走行用の方向制御弁51に接続され、旋回又は走行用リモコン弁52の操作によってパイロット回路52aまたは52bに油圧源68からパイロット圧が導出され、方向制御弁51が中立位置(イ)から旋回又は走行位置(ロ)または(ハ)の何れかの位置に切り換わったときに、油圧ポンプ50から吐出された圧油が駆動用回路53または54へ供給されて、旋回又は走行モータ55が回転する。駆動用回路53,54には逆向きに配置されたチェック弁57,58とメイクアップ回路59が接続されている。メイクアップ回路59にはタンク60への逆流を防止するチェック弁61が設けられている。また、駆動用回路53,54間は、逆向きに配置されたチェック弁64,65とクロスリリーフ弁66,67とを介して接続されている。なお、図示してないが、旋回又は走行モータ55には、旋回又は走行用リモコン弁52の非操作時に旋回又は走行モータ55を制動し、旋回又は走行用リモコン弁52の操作時に制動を解除するブレーキが設けられている。   Conventionally, a hydraulic circuit as shown in FIG. 5 is generally used as a hydraulic circuit for preventing the occurrence of cavitation when a turning or traveling motor is suddenly stopped. The discharge circuit of the hydraulic pump 50 is connected to a directional control valve 51 for turning or traveling, and pilot pressure is derived from the hydraulic source 68 to the pilot circuit 52a or 52b by operation of the turning or traveling remote control valve 52. Is switched from the neutral position (A) to the turning or traveling position (B) or (C), the hydraulic oil discharged from the hydraulic pump 50 is supplied to the drive circuit 53 or 54. The turning or traveling motor 55 rotates. The drive circuits 53 and 54 are connected with check valves 57 and 58 and a make-up circuit 59 disposed in the opposite directions. The makeup circuit 59 is provided with a check valve 61 that prevents backflow to the tank 60. Further, the drive circuits 53 and 54 are connected via check valves 64 and 65 and cross relief valves 66 and 67 disposed in the opposite directions. Although not shown, the turning or traveling motor 55 brakes the turning or traveling motor 55 when the turning or traveling remote control valve 52 is not operated, and releases the braking when the turning or traveling remote control valve 52 is operated. A brake is provided.

いま、旋回又は走行用リモコン弁52を何れか一方へ操作した場合は、パイロット回路52a,52bの何れかにパイロット圧が発生し、方向制御弁51のパイロットポート51aまたは51bにパイロット圧がかかり、方向制御弁51が中立位置(イ)から旋回又は走行位置(ロ)または(ハ)に切り換わる。例えば、右旋回又は前進位置(ロ)に切り換わった場合、油圧ポンプ50から吐出された圧油が方向制御弁51の右旋回又は前進位置(ロ)を通って一方の駆動用回路53に導出され、該圧油が旋回又は走行モータ55に供給されて、旋回又は走行モータ55が何れか一方向へ回転する。旋回又は走行モータ55を通過した圧油は他方の駆動用回路54に排出され、方向制御弁51の右旋回又は前進位置(ロ)からタンク60へ戻る。   Now, when the turning or traveling remote control valve 52 is operated to either one, the pilot pressure is generated in either of the pilot circuits 52a and 52b, the pilot pressure is applied to the pilot port 51a or 51b of the direction control valve 51, The direction control valve 51 is switched from the neutral position (A) to the turning or traveling position (B) or (C). For example, when switching to the right turn or forward position (b), the pressure oil discharged from the hydraulic pump 50 passes through the right turn or forward position (b) of the directional control valve 51 and one drive circuit 53. The pressure oil is supplied to the turning or traveling motor 55, and the turning or traveling motor 55 rotates in any one direction. The pressure oil that has passed through the turning or traveling motor 55 is discharged to the other driving circuit 54, and returns to the tank 60 from the right turning or forward position (B) of the direction control valve 51.

ここで、回転している旋回又は走行モータ55を停止すべく、旋回又は走行用リモコン弁52を操作位置から中立位置に戻した場合は、方向制御弁51が右旋回又は前進位置(ロ)から中立位置(イ)に切り換わり、駆動用回路53,54への圧油の給排が遮断される。   Here, when the turning or traveling remote control valve 52 is returned from the operation position to the neutral position in order to stop the rotating turning or traveling motor 55, the direction control valve 51 is turned to the right or forward position (b). Is switched to the neutral position (A), and the supply and discharge of the pressure oil to the driving circuits 53 and 54 is cut off.

しかし、駆動用回路53,54への圧油の給排が遮断された後も、上部旋回体の慣性力又は走行の降坂方向の慣性力で旋回又は走行モータ55は回転し続けようとするため、吸込側の駆動用回路53が低圧となってキャビテーションを発生しようとするが、低圧になった吸込側の駆動用回路53へメイクアップ回路59から圧油が吸い込まれて補充される。さらに、ブロックされている排出側の駆動用回路54が設定圧よりも高圧になるとクロスリリーフ弁67が開き、駆動用回路54からの戻り油がクロスリリーフ弁67およびチェック弁64を介して吸込側の駆動用回路53へ流入する。このようにして、旋回又は走行モータ55のキャビテーションの発生が防止される。   However, even after the supply and discharge of pressure oil to and from the drive circuits 53 and 54 is interrupted, the turning or traveling motor 55 continues to rotate due to the inertial force of the upper swinging body or the inertial force in the downhill direction of traveling. For this reason, the suction side drive circuit 53 becomes low pressure and tries to generate cavitation. However, the pressure oil is sucked into the suction side drive circuit 53 from the makeup circuit 59 and is replenished. Further, when the blocked discharge side drive circuit 54 becomes higher than the set pressure, the cross relief valve 67 is opened, and the return oil from the drive circuit 54 is sucked in via the cross relief valve 67 and the check valve 64. Into the driving circuit 53. In this way, the occurrence of turning or cavitation of the traveling motor 55 is prevented.

また、特許文献1では、油圧ポンプの吐出油が旋回用方向制御弁を介して旋回モータの駆動用回路へ給排されるとともに、駆動回路間にそれぞれの駆動回路方向へ吸込可能な吸込弁を配置した吸込回路を接続し、油圧ポンプの吐出油を分岐してアンロード弁から吸込回路へ導出させ、吸込弁を介して旋回モータの駆動用回路へ流入させるとともに、アンロード弁で減圧された圧力でリフトチェック弁を一定に制御し、アンロード弁とリフトチェック弁との間で発生する圧力を駆動用回路へ背圧として加えるように構成したものが知られている。
特開平10−168948号公報
Further, in Patent Document 1, a discharge valve of a hydraulic pump is supplied to and discharged from a drive circuit for a swing motor via a swing direction control valve, and a suction valve capable of sucking in each drive circuit direction is provided between the drive circuits. Connected the suction circuit arranged, branch the oil discharged from the hydraulic pump and lead it from the unload valve to the suction circuit, let it flow into the drive circuit of the swing motor through the suction valve, and decompressed by the unload valve There is known a configuration in which a lift check valve is controlled to be constant with pressure, and a pressure generated between an unload valve and a lift check valve is applied as a back pressure to a drive circuit.
Japanese Patent Laid-Open No. 10-168948

図5に示す従来のキャビテーション防止回路は、旋回又は走行モータを急停止させたときに、メイクアップ回路から圧油を補充するとともに、排出側の戻り油が設定圧よりも高圧になるとクロスリリーフ弁を介して吸込側へ流入させることにより、キャビテーションの発生を防止する。しかし、これだけではキャビテーションの発生を防止できない場合がある。   The conventional cavitation prevention circuit shown in FIG. 5 replenishes the pressure oil from the make-up circuit when the turning or traveling motor is suddenly stopped, and the cross relief valve when the return oil on the discharge side becomes higher than the set pressure. The cavitation is prevented by flowing into the suction side through the. However, this alone may not prevent the occurrence of cavitation.

また、特許文献1記載の発明は、旋回モータの停止時に方向制御弁が中立位置になって駆動用回路が遮断されたときに、油圧ポンプからの吐出油を駆動用回路へ流入させるとともに、アンロード弁とリフトチェック弁との間で発生する圧力を駆動用回路へ背圧として加えるようしたので、駆動用回路が負圧とならないように制御される。   Further, the invention described in Patent Document 1 allows the oil discharged from the hydraulic pump to flow into the drive circuit when the direction control valve is in the neutral position and the drive circuit is shut off when the swing motor is stopped, Since the pressure generated between the load valve and the lift check valve is applied as a back pressure to the driving circuit, the driving circuit is controlled so as not to become negative pressure.

しかし、油圧ポンプの吐出油を駆動用回路へ供給するため、メイクアップ回路を大きくする必要があり、コストアップの要因となる。もし、駆動用回路の戻り油を有効利用することができれば、省エネを図りつつキャビテーション防止対策を効率的に行うことができる。   However, in order to supply the oil discharged from the hydraulic pump to the drive circuit, it is necessary to enlarge the make-up circuit, which increases the cost. If the return oil of the driving circuit can be used effectively, cavitation prevention measures can be efficiently performed while saving energy.

そこで、建設機械の旋回又は走行モータを急停止させたときに吸込側が負圧となった場合、駆動用回路の戻り油を有効利用してキャビテーションの発生を防止するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, technical problems to be solved in order to prevent the occurrence of cavitation by effectively using the return oil of the drive circuit when the suction side becomes negative pressure when the construction machine turns or the traveling motor suddenly stops The present invention aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、旋回又は走行モータへ方向制御弁を介して圧油を給排する駆動用回路間にメイクアップ回路を備えた建設機械の油圧回路において、
前記駆動用回路と前記方向制御弁との接続部と、前記駆動用回路と前記メイクアップ回路との接続部との間の位置で前記駆動用回路間を新たな連通回路にて接続して、該連通回路の途中に常閉形の開閉弁を介装し、該開閉弁のスプールの一端に該開閉弁を開放位置に切り換えるパイロットポートを設けるとともに、該開閉弁のスプールの他端にタンクへ連通する回路と該開閉弁を閉止方向へ押し戻すバネを設け、前記パイロットポートに切換弁の二次側ポートを接続するとともに前記タンクへ連通する回路に絞り弁を介装し、さらに、前記切換弁の一次側に油圧源とタンクを接続し、
前記切換弁は、旋回又は走行用リモコン弁の操作がないときは油圧源位置にあって、油圧源のパイロット圧を前記開閉弁のパイロットポートへ導出して該開閉弁を開放位置にし、旋回又は走行用リモコン弁の操作があったときは該切換弁をタンク位置に切り換えて、前記開閉弁のパイロット圧をタンクに逃がして該開閉弁を閉止位置にするように構成したことを特徴とする建設機械のキャビテーション防止回路を提供する。
The present invention has been proposed in order to achieve the above object, and the invention according to claim 1 is a makeup circuit between driving circuits for supplying and discharging pressure oil to a turning or traveling motor via a direction control valve. In the hydraulic circuit of construction machinery with
A connection between the driving circuit and the direction control valve, and a connection between the driving circuit and the makeup circuit at a position between the driving circuit and the make-up circuit are connected by a new communication circuit, A normally closed on-off valve is provided in the middle of the communication circuit, a pilot port for switching the on-off valve to an open position is provided at one end of the spool of the on-off valve, and a tank communicates with the other end of the spool of the on-off valve. And a spring that pushes back the opening / closing valve in the closing direction, a secondary port of the switching valve is connected to the pilot port, and a throttle valve is interposed in the circuit that communicates with the tank. Connect the hydraulic source and tank to the primary side,
The switching valve is in the hydraulic pressure source position when there is no operation of the turning or traveling remote control valve, and the pilot pressure of the hydraulic pressure source is led to the pilot port of the on-off valve to bring the on-off valve to the open position. A construction characterized in that when the traveling remote control valve is operated, the switching valve is switched to the tank position, and the pilot pressure of the on-off valve is released to the tank so that the on-off valve is in the closed position. An anti-cavitation circuit for a machine is provided.

この構成によれば、旋回又は走行モータへ圧油を給排する駆動用回路間に、新たな連通回路を接続して常閉形の開閉弁を介装してあり、機械の運転が停止して油圧ポンプが駆動されていない状態では、該開閉弁によって駆動用回路間の連通回路は遮断されている。機械の運転が開始されて油圧ポンプが駆動されると、旋回又は走行用リモコン弁が操作されていない状態では、切換弁が油圧源位置にあるため、油圧源のパイロット圧が切換弁の油圧源位置を通って前記開閉弁のスプールの一端に設けたパイロットポートに導出され、該開閉弁が開放位置に切り換わる。この切り換わりのタイミングは、タンクに連通する回路に介装された絞り弁によって予め調整される。   According to this configuration, a new communication circuit is connected between the driving circuits for supplying and discharging pressure oil to the turning or traveling motor, and the normally closed on-off valve is interposed, so that the operation of the machine is stopped. When the hydraulic pump is not driven, the communication circuit between the driving circuits is blocked by the on-off valve. When the operation of the machine is started and the hydraulic pump is driven, the switching valve is in the hydraulic source position when the turning or traveling remote control valve is not operated, so the pilot pressure of the hydraulic source is changed to the hydraulic source of the switching valve. The position is led to a pilot port provided at one end of the spool of the on-off valve, and the on-off valve is switched to the open position. This switching timing is adjusted in advance by a throttle valve provided in a circuit communicating with the tank.

旋回又は走行用リモコン弁の操作があったときは、油圧源のパイロット圧が旋回又は走行用の方向制御弁のパイロットポートへ導出され、該方向制御弁が旋回又は走行位置に切り換わる。これと同時に、油圧源のパイロット圧により前記切換弁がタンク位置に切り換わり、前記開閉弁のパイロット圧がタンクに戻されるため、前記開閉弁のスプールの他端に設けたばねの付勢により該開閉弁が閉止位置に復帰して、駆動用回路間の連通回路は遮断される。したがって、油圧ポンプから吐出された圧油が方向制御弁を通って一方の駆動用回路に導出され、この圧油が旋回又は走行モータに供給されて旋回又は走行モータが何れかの方向へ回転する。旋回又は走行モータを通過した圧油は他方の駆動用回路に排出され、この圧油は方向制御弁を通ってタンクへ戻る。   When the turning or traveling remote control valve is operated, the pilot pressure of the hydraulic pressure source is led to the pilot port of the turning or traveling direction control valve, and the direction control valve is switched to the turning or traveling position. At the same time, the switching valve is switched to the tank position by the pilot pressure of the hydraulic power source, and the pilot pressure of the on-off valve is returned to the tank, so that the opening and closing is performed by the bias of the spring provided at the other end of the spool of the on-off valve. The valve returns to the closed position, and the communication circuit between the driving circuits is shut off. Therefore, the pressure oil discharged from the hydraulic pump is led to one drive circuit through the direction control valve, and this pressure oil is supplied to the turning or traveling motor to rotate the turning or traveling motor in any direction. . The pressure oil that has passed through the turning or traveling motor is discharged to the other driving circuit, and this pressure oil returns to the tank through the direction control valve.

旋回又は走行用リモコン弁を旋回又は走行操作位置から中立位置に戻したときは、油圧源のパイロット圧が旋回又は走行用の方向制御弁のパイロットポートに導出されなくなり、該方向制御弁が中立位置に切り換わって油圧ポンプと駆動用回路が遮断され、旋回又は走行モータへ圧油が供給されなくなる。これと同時に、油圧源のパイロット圧が前記切換弁に作用しないので該切換弁が油圧源位置に戻り、油圧源のパイロット圧が切換弁の油圧源位置を通って前記開閉弁のパイロットポートに導出され、該開閉弁が開放位置に切り換わる。前述したように、この切り換わりのタイミングは絞り弁によって予め調整される。   When the turning or running remote control valve is returned from the turning or running operation position to the neutral position, the pilot pressure of the hydraulic power source is not derived to the pilot port of the turning or running direction control valve, and the direction control valve is in the neutral position. The hydraulic pump and the driving circuit are cut off, and pressure oil is not supplied to the turning or traveling motor. At the same time, since the pilot pressure of the hydraulic source does not act on the switching valve, the switching valve returns to the hydraulic source position, and the pilot pressure of the hydraulic source passes through the hydraulic source position of the switching valve to the pilot port of the on-off valve. Then, the on-off valve is switched to the open position. As described above, the switching timing is adjusted in advance by the throttle valve.

油圧ポンプから圧油が供給されなくなっても、機械の慣性によって旋回又は走行モータはしばらく回転を続けようとするため、吸込側の駆動用回路が低圧となってキャビテーションを発生させようとするが、従来のメイクアップ回路から吸込側の駆動用回路への圧油の補充だけではなく、前記開閉弁の開放により駆動用回路間が連通するため、吸込側と排出側の圧力差が瞬時に解消されて、キャビテーションの発生が確実に防止される。   Even if pressure oil is no longer supplied from the hydraulic pump, the rotation or traveling motor tries to continue to rotate for a while due to the inertia of the machine, so the drive circuit on the suction side becomes low pressure and tries to generate cavitation. Not only replenishment of pressure oil from the conventional make-up circuit to the drive circuit on the suction side, but also the drive circuit communicates by opening the on-off valve, so the pressure difference between the suction side and the discharge side is instantly eliminated. Thus, the occurrence of cavitation is reliably prevented.

請求項1記載の発明は、駆動用回路間に開閉弁を介装した連通回路を接続し、旋回又は走行用リモコン弁の操作に連動する切換弁により、前記開閉弁を開閉させて駆動用回路間を連通または遮断するように構成したので、旋回又は走行用リモコン弁を旋回又は走行操作位置から中立位置に戻したときは、前記開閉弁が開放されて駆動用回路間が連通し、吸込側と排出側の圧力差が瞬時に解消される。また、開閉弁が開放位置に切り換わるタイミングは、絞り弁によって予め調整することが出来る。したがって、従来のメイクアップ回路からの圧油の補充と相俟って、キャビテーションの発生が確実に防止される。   According to the first aspect of the present invention, a communication circuit having an opening / closing valve interposed between the driving circuits is connected, and the opening / closing valve is opened / closed by a switching valve interlocked with the operation of the turning or traveling remote control valve. Since the remote control valve for turning or traveling is returned from the turning or traveling operation position to the neutral position, the on-off valve is opened and the drive circuit is communicated with each other. And the pressure difference on the discharge side is eliminated instantly. The timing at which the on-off valve is switched to the open position can be adjusted in advance by the throttle valve. Therefore, combined with the replenishment of pressure oil from the conventional makeup circuit, the occurrence of cavitation is reliably prevented.

このように、駆動用回路の戻り油を有効利用することにより、省エネを図りつつキャビテーション防止対策を効率的に行うことができる。   In this way, by effectively using the return oil of the driving circuit, it is possible to efficiently take cavitation prevention measures while saving energy.

以下、本発明に係る建設機械のキャビテーション防止回路について、好適な実施例をあげて説明する。建設機械の旋回又は走行モータを急停止させたときに吸込側が負圧となった場合、駆動用回路の戻り油を有効利用してキャビテーションの発生を防止するという目的を達成するために、本発明は、旋回又は走行モータへ圧油を給排する駆動用回路間にメイクアップ回路を備えた建設機械の油圧回路において、前記駆動用回路間を新たな連通回路にて接続し、該連通回路の途中に常閉形の開閉弁を介装するとともに、該開閉弁を開放位置に切り換えるパイロットポートに切換弁の二次側ポートを接続し、さらに、該切換弁の一次側ポートに油圧源とタンクを接続し、前記切換弁は、旋回又は走行用リモコン弁の操作がないときは油圧源位置にあって、油圧源のパイロット圧を前記開閉弁のパイロットポートへ導出して該開閉弁を開放位置にし、旋回又は走行用リモコン弁の操作があったときは該切換弁をタンク位置に切り換えて、前記開閉弁のパイロット圧をタンクに逃がして該開閉弁を閉止位置にするように構成したことにより実現した。   Hereinafter, a cavitation prevention circuit for a construction machine according to the present invention will be described with reference to preferred embodiments. To achieve the object of preventing the occurrence of cavitation by effectively using the return oil of the drive circuit when the suction side becomes negative pressure when the construction machine turns or the traveling motor is suddenly stopped. Is a hydraulic circuit of a construction machine having a make-up circuit between driving circuits for supplying and discharging pressure oil to a turning or traveling motor, and the driving circuits are connected by a new communication circuit. A normally-closed on-off valve is installed on the way, the secondary port of the switching valve is connected to a pilot port that switches the on-off valve to the open position, and a hydraulic source and a tank are connected to the primary port of the switching valve. The switching valve is in the hydraulic pressure source position when there is no operation of the turning or traveling remote control valve, and the pilot pressure of the hydraulic pressure source is led to the pilot port of the on-off valve to bring the on-off valve to the open position. , This was realized by switching the switching valve to the tank position when the remote control valve for turning or traveling was operated, and releasing the pilot pressure of the on-off valve to the tank to bring the on-off valve to the closed position. .

図1は建設機械の一例として油圧ショベル10を示し、下部走行体11の上に旋回機構12を介して上部旋回体13が旋回自在に載置されている。上部旋回体13にはその前方一側部にキャブ14が設けられ、且つ、前方中央部にブーム15が俯仰可能に取り付けられている。更に、ブーム15の先端にアーム16が上下回動自在に取り付けられ、該アーム16の先端にバケット17が取り付けられている。   FIG. 1 shows a hydraulic excavator 10 as an example of a construction machine, and an upper swing body 13 is mounted on a lower traveling body 11 via a swing mechanism 12 so as to be rotatable. The upper swing body 13 is provided with a cab 14 on one front side thereof, and a boom 15 is attached to the front center portion so as to be able to be raised and lowered. Further, an arm 16 is attached to the tip of the boom 15 so as to be rotatable up and down, and a bucket 17 is attached to the tip of the arm 16.

図2はキャビテーション防止回路を示し、図5に示す従来の回路と同一構成部分には同一符号を使用し、重複説明は省略するものとする。図5に示す従来の回路と異なる箇所は、旋回又は走行モータ55の駆動用回路53,54間を新たな連通回路20にて接続し、該連通回路20の途中に常閉形の開閉弁30を介装してある。該開閉弁30のスプールの一端にパイロットポート31を設けるとともに、該開閉弁30のスプールの他端に該開閉弁30を閉止方向へ押し戻すバネ32とタンク60へ連通する回路33とを設ける。そして、前記パイロットポート31に切換弁40の二次側ポート41をパイロット回路45により接続するとともに、前記タンクへ連通する回路33に絞り弁34を介装する。また、前記パイロット回路45に分岐回路46を設け、該分岐回路46にスローリターンバルブ47を介して前記旋回又は走行モータ55を制動するブレーキ48が設けられている。尚、スローリターンバルブ47は、絞り弁47aと前記切換弁40からブレーキ48へのパイロット圧を遮断するチェック弁47bから構成される。   FIG. 2 shows a cavitation prevention circuit. The same components as those of the conventional circuit shown in FIG. 5 differs from the conventional circuit shown in FIG. 5 in that the driving circuits 53 and 54 of the turning or traveling motor 55 are connected by a new communication circuit 20, and a normally closed on-off valve 30 is provided in the middle of the communication circuit 20. It is intervening. A pilot port 31 is provided at one end of the spool of the on-off valve 30, and a spring 32 for pushing back the on-off valve 30 in the closing direction and a circuit 33 communicating with the tank 60 are provided at the other end of the spool of the on-off valve 30. A secondary port 41 of the switching valve 40 is connected to the pilot port 31 by a pilot circuit 45, and a throttle valve 34 is interposed in a circuit 33 communicating with the tank. The pilot circuit 45 is provided with a branch circuit 46, and the branch circuit 46 is provided with a brake 48 for braking the turning or traveling motor 55 via a slow return valve 47. The slow return valve 47 includes a throttle valve 47a and a check valve 47b that shuts off the pilot pressure from the switching valve 40 to the brake 48.

前記開閉弁30は閉止位置(ト)と開放位置(チ)を有し、閉止位置(ト)にはチェック弁が逆向きに配置されて、どちらの方向からも圧油が通過できないようにしてある。そして、ばね32の付勢により、通常時は閉止位置(ト)にあって連通回路20を遮断し、パイロットポート31に所定のパイロット圧がかかったときに、開放位置(チ)に切り換わって連通回路20を開放し、駆動用回路53,54を連通するように形成されている。なお、図示は省略するが、前記閉止位置(ト)はチェック弁を逆向きに配置する構成に限定されず、圧油が通過できないように単に遮断状態に形成してもよい。   The on-off valve 30 has a closed position (g) and an open position (h), and a check valve is arranged in the reverse direction at the closed position (g) so that pressure oil cannot pass from either direction. is there. Then, the bias of the spring 32 normally closes the communication circuit 20 in the closed position (g) and switches to the open position (h) when a predetermined pilot pressure is applied to the pilot port 31. The communication circuit 20 is opened, and the drive circuits 53 and 54 are communicated. In addition, although illustration is abbreviate | omitted, the said closing position (g) is not limited to the structure which arrange | positions a check valve in the reverse direction, You may form in the interruption | blocking state only so that pressurized oil cannot pass.

前記切換弁40は油圧源位置(リ)とタンク位置(ヌ)を有し、該切換弁40の二次側ポート41は前述した開閉弁30のパイロットポート31に常時接続されると共にスローリターンバルブ47を介してブレーキ48に常時接続され、一次側ポート42はタンク60と油圧源68が選択的に接続される。また、前記旋回又は走行用リモコン弁52のパイロット回路52a,52b間にシャトル弁49を介装し、該シャトル弁49の出口ポートを前記切換弁40のパイロットポート43に接続してある。   The switching valve 40 has a hydraulic pressure source position (re) and a tank position (nu), and the secondary port 41 of the switching valve 40 is always connected to the pilot port 31 of the on-off valve 30 and a slow return valve. 47 is always connected to the brake 48, and the tank 60 and the hydraulic source 68 are selectively connected to the primary side port 42. A shuttle valve 49 is interposed between the pilot circuits 52 a and 52 b of the turning or traveling remote control valve 52, and the outlet port of the shuttle valve 49 is connected to the pilot port 43 of the switching valve 40.

そして、前記切換弁40は、ばね44の付勢により、通常時は油圧源位置(リ)にあって一次側ポート42を油圧源68に接続し、該油圧源68からのパイロット圧をパイロット回路45を通じて前記開閉弁30のパイロットポート31に導出すると共にパイロット回路46に設けたスローリターンバルブ47を介してブレーキ48に導出する。一方、前記シャトル弁49が旋回又は走行用リモコン弁52のパイロット回路52a,52bの何れかのパイロット圧を高圧選択して、切換弁40のパイロットポート43に所定のパイロット圧がかかったときは、該切換弁40がタンク位置(ヌ)に切り換わって、一次側ポート42をタンク60に接続し、前記開閉弁30のパイロットポート31にかかるパイロット圧及び前記ブレーキ48にかかるパイロット圧をタンク60に戻すように形成されている。   The switching valve 40 is normally in a hydraulic pressure source position (re) due to the bias of the spring 44 and connects the primary port 42 to the hydraulic pressure source 68, and the pilot pressure from the hydraulic pressure source 68 is supplied to the pilot circuit. It is led to the pilot port 31 of the on-off valve 30 through 45 and to the brake 48 via a slow return valve 47 provided in the pilot circuit 46. On the other hand, when the shuttle valve 49 selects a pilot pressure in either of the pilot circuits 52a and 52b of the turning or traveling remote control valve 52 and a predetermined pilot pressure is applied to the pilot port 43 of the switching valve 40, When the switching valve 40 is switched to the tank position (n), the primary port 42 is connected to the tank 60, and the pilot pressure applied to the pilot port 31 of the on-off valve 30 and the pilot pressure applied to the brake 48 are applied to the tank 60. It is formed to return.

次に、本発明のキャビテーション防止回路の動作を説明する。油圧ショベル10の運転が停止して油圧ポンプ50及び油圧源68が駆動されていない状態では、図2に示すように、切換弁40のパイロットポート43にはパイロット回路52a,52bからのパイロット圧が導出されないので、該切換弁40は油圧源位置(リ)にある。この状態では、切換弁40の一次側ポート42は油圧源68に接続されているものの、油圧源68から圧油が供給されていないので、開閉弁30のパイロットポート31にはパイロット圧が導出されず、該開閉弁30は閉止位置(ト)を保持するため、駆動用回路53,54間の連通回路20は遮断されている。   Next, the operation of the cavitation prevention circuit of the present invention will be described. When the operation of the excavator 10 is stopped and the hydraulic pump 50 and the hydraulic source 68 are not driven, the pilot pressure from the pilot circuits 52a and 52b is applied to the pilot port 43 of the switching valve 40 as shown in FIG. Since it is not derived, the switching valve 40 is in the hydraulic pressure source position (re). In this state, although the primary port 42 of the switching valve 40 is connected to the hydraulic source 68, no pressure oil is supplied from the hydraulic source 68, so that pilot pressure is derived to the pilot port 31 of the on-off valve 30. Since the on-off valve 30 maintains the closed position (g), the communication circuit 20 between the drive circuits 53 and 54 is shut off.

なお、この運転停止状態では、駆動用回路53,54間の回路が何れも遮断されているので、駆動用回路53,54間で圧油が流出入することはなく、旋回又は走行モータ55が空転して上部旋回体13が不慮旋回動作をし、又は、油圧ショベル10が逸走することはない。   In this operation stop state, since the circuits between the drive circuits 53 and 54 are both cut off, no pressure oil flows in and out between the drive circuits 53 and 54, and the turning or traveling motor 55 is operated. The upper revolving unit 13 does not rotate and unexpectedly swivels, or the excavator 10 does not escape.

油圧ショベル10の運転が開始されて油圧ポンプ50及び油圧源68が駆動されると、図3に示すように、旋回又は走行用リモコン弁52が操作されていない状態では、切換弁40が油圧源位置(リ)にあるため、油圧源68のパイロット圧が切換弁40の油圧源位置(リ)を通って前記開閉弁30のパイロットポート31に導出され、該開閉弁30が開放位置(チ)に切り換わる。したがって、前記連通回路20が開放され、駆動用回路53,54間が連通状態となるが、同時に油圧源68のパイロット圧が切換弁40の油圧源位置(リ)を通って前記ブレーキ48に導出され、旋回又は走行モータ55を制動するので、該旋回又は走行モータ55が空転して上部旋回体13が不慮旋回動作をし、又は、油圧ショベル10が逸走することはない。尚、前記開閉弁30が開放位置(チ)に切り換わるタイミングは、タンクに連通する回路33に介装された絞り弁34によって予め調整される。   When the operation of the hydraulic excavator 10 is started and the hydraulic pump 50 and the hydraulic power source 68 are driven, the switching valve 40 is operated as the hydraulic power source when the turning or traveling remote control valve 52 is not operated as shown in FIG. Therefore, the pilot pressure of the hydraulic power source 68 is led to the pilot port 31 of the on-off valve 30 through the hydraulic power source position (re) of the switching valve 40, and the on-off valve 30 is in the open position (h). Switch to. Accordingly, the communication circuit 20 is opened and the drive circuits 53 and 54 are in communication with each other, but at the same time, the pilot pressure of the hydraulic source 68 passes through the hydraulic source position (re) of the switching valve 40 to the brake 48. Then, the turning or traveling motor 55 is braked, so that the turning or traveling motor 55 does not run idle and the upper turning body 13 performs an unexpected turning operation or the excavator 10 does not escape. The timing at which the on-off valve 30 switches to the open position (h) is adjusted in advance by a throttle valve 34 interposed in a circuit 33 communicating with the tank.

上部旋回体13を旋回させ、又は、油圧ショベル10を走行させるべく、旋回又は走行用リモコン弁52の操作があったときは、油圧源68からパイロット回路52a,52bの何れかにパイロット圧が発生し、該パイロット圧が旋回又は走行用の方向制御弁51のパイロットポート51a,51bの何れかへ導出され、該方向制御弁51が旋回又は走行位置(ロ)または(ハ)に切り換わる。   When the turning or traveling remote control valve 52 is operated to turn the upper swing body 13 or to drive the hydraulic excavator 10, a pilot pressure is generated from the hydraulic source 68 in either of the pilot circuits 52a and 52b. Then, the pilot pressure is led to one of the pilot ports 51a and 51b of the turning or traveling direction control valve 51, and the direction control valve 51 is switched to the turning or traveling position (b) or (c).

例えば、図4に示すように、旋回又は走行用リモコン弁52を右旋回又は前進操作した場合は、パイロット回路52bにパイロット圧が発生して方向制御弁51のパイロットポート51aに導出され、方向制御弁51が右旋回又は前進位置(ロ)に切り換わる。これと同時に、パイロット回路52bのパイロット圧をシャトル弁49が高圧選択し、切換弁40のパイロットポート43に所定のパイロット圧が導出されて、該切換弁40がタンク位置(ヌ)に切り換わり、前記開閉弁30のパイロットポート31にかかるパイロット圧がタンク60に戻るため、該開閉弁30はばね32の付勢で閉止位置(ト)に切り換わる。一方、前記ブレーキ48にかかるパイロット圧はスローリターンバルブ47のチェック弁47bを介してタンク60に戻り、前記旋回又は走行モータ55の制動が速やかに解除される。   For example, as shown in FIG. 4, when the turning or traveling remote control valve 52 is turned right or forward, a pilot pressure is generated in the pilot circuit 52b and is led to the pilot port 51a of the direction control valve 51. The control valve 51 switches to the right turn or forward position (B). At the same time, the shuttle valve 49 selects the high pilot pressure of the pilot circuit 52b, a predetermined pilot pressure is derived to the pilot port 43 of the switching valve 40, and the switching valve 40 is switched to the tank position (N). Since the pilot pressure applied to the pilot port 31 of the on-off valve 30 returns to the tank 60, the on-off valve 30 is switched to the closed position (g) by the bias of the spring 32. On the other hand, the pilot pressure applied to the brake 48 returns to the tank 60 via the check valve 47b of the slow return valve 47, and the turning or braking of the traveling motor 55 is quickly released.

そして、油圧ポンプ50から吐出された圧油が方向制御弁51の右旋回又は前進位置(ロ)を通って一方の駆動用回路53に導出され、該圧油が旋回又は走行モータ55に供給されて、旋回又は走行モータ55が右方向へ回転する。旋回又は走行モータ55を通過した圧油は他方の駆動用回路54に排出され、方向制御弁51の右旋回又は前進位置(ロ)からタンク60へ戻る。この状態では、開閉弁30が閉止位置(ト)で連通回路20を遮断しているので、駆動用回路53,54間で圧油が流出入することはない。   Then, the pressure oil discharged from the hydraulic pump 50 is led to one drive circuit 53 through the right turn or forward position (b) of the direction control valve 51, and the pressure oil is supplied to the turn or travel motor 55. Thus, the turning or traveling motor 55 rotates in the right direction. The pressure oil that has passed through the turning or traveling motor 55 is discharged to the other driving circuit 54, and returns to the tank 60 from the right turning or forward position (B) of the direction control valve 51. In this state, the on-off valve 30 blocks the communication circuit 20 at the closed position (g), so that no pressure oil flows in and out between the driving circuits 53 and 54.

ここで、回転している旋回又は走行モータ55を停止すべく、旋回又は走行用リモコン弁52を右旋回又は前進操作位置から中立位置に戻したときは、図3に示すように、油圧源68のパイロット圧が前記方向制御弁51のパイロットポート51aに導出されなくなり、該方向制御弁51が中立位置(イ)に切り換わり、油圧ポンプ50と駆動用回路53,54が遮断される。これと同時に、油圧源68のパイロット圧が切換弁40のパイロットポート43に作用しなくなるので、該切換弁40がばね44の付勢で油圧源位置(リ)に戻り、油圧源68のパイロット圧が切換弁40の油圧源位置(リ)を通って前記開閉弁30のパイロットポート31に導出され、該開閉弁30が開放位置(チ)に切り換わると共に油圧源68のパイロット圧が切換弁40の油圧源位置(リ)及びスローリターンバルブ47を通ってブレーキ48に導出される。前記開閉弁30の切り換わりのタイミングは絞り弁34とスローリターンバルブ47の絞り弁47aによって予め調整され、一方、旋回又は走行モータ55は旋回停止時又は走行停止時に急ブレーキにより衝撃が生じないようにスローリターンバルブ47の絞り弁47aにより徐々に制動される。   Here, when the turning or traveling remote control valve 52 is returned from the right turning or forward operation position to the neutral position in order to stop the turning or traveling motor 55 rotating, as shown in FIG. The pilot pressure 68 is not led to the pilot port 51a of the directional control valve 51, the directional control valve 51 is switched to the neutral position (A), and the hydraulic pump 50 and the driving circuits 53 and 54 are shut off. At the same time, since the pilot pressure of the hydraulic source 68 does not act on the pilot port 43 of the switching valve 40, the switching valve 40 returns to the hydraulic source position (re) by the bias of the spring 44, and the pilot pressure of the hydraulic source 68 Is led to the pilot port 31 of the on-off valve 30 through the hydraulic pressure source position (re) of the switching valve 40, the on-off valve 30 is switched to the open position (h) and the pilot pressure of the hydraulic source 68 is changed to the switching valve 40. The hydraulic pressure source position (re) and the slow return valve 47 lead to the brake 48. The switching timing of the on / off valve 30 is adjusted in advance by the throttle valve 34 and the throttle valve 47a of the slow return valve 47, while the turning or traveling motor 55 is prevented from being shocked by sudden braking when the turning is stopped or stopped. Then, the brake is gradually braked by the throttle valve 47a of the slow return valve 47.

油圧ポンプ50から圧油が供給されなくなっても、上部旋回体13の慣性力、又は、坂道を降坂する場合の降坂方向の慣性力によって旋回又は走行モータ55はしばらく回転を続けようとするため、吸込側の駆動用回路53が低圧となり、低圧となった吸込側の駆動用回路53にメイクアップ回路59から圧油が吸い込まれて補充される。   Even if pressure oil is not supplied from the hydraulic pump 50, the turning or traveling motor 55 tries to continue to rotate for a while due to the inertial force of the upper swing body 13 or the inertial force in the downhill direction when descending the slope. Therefore, the suction side driving circuit 53 becomes low pressure, and the pressure oil is sucked into the suction side driving circuit 53 from the makeup circuit 59 and replenished.

また、排出側の駆動用回路54は方向制御弁51で遮断されているので高圧となり、開放弁30が開放位置(チ)にあるので、高圧の戻り油は連通回路20を通って吸込側の駆動用回路53へ流入する。   Further, the discharge side drive circuit 54 is blocked by the direction control valve 51 so that the pressure becomes high, and the release valve 30 is in the open position (h), so that the high pressure return oil passes through the communication circuit 20 and is on the suction side. It flows into the driving circuit 53.

このように、メイクアップ回路59から吸込側の駆動用回路53への圧油の補充だけではなく、駆動用回路54の戻り油を有効利用することにより、吸込側と排出側の圧力差が瞬時に解消されて、省エネを図りつつキャビテーション防止対策を効率的に行うことができる。   Thus, not only replenishment of the pressure oil from the makeup circuit 59 to the drive circuit 53 on the suction side, but also the return oil of the drive circuit 54 is effectively used, so that the pressure difference between the suction side and the discharge side is instantaneous. Thus, cavitation prevention measures can be efficiently performed while saving energy.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明が適用された油圧ショベルの側面図。1 is a side view of a hydraulic excavator to which the present invention is applied. 本発明に係るキャビテーション防止回路を示す説明図。Explanatory drawing which shows the cavitation prevention circuit which concerns on this invention. 本発明に係るキャビテーション防止回路の動作を示す説明図。Explanatory drawing which shows operation | movement of the cavitation prevention circuit which concerns on this invention. 本発明に係るキャビテーション防止回路の動作を示す説明図。Explanatory drawing which shows operation | movement of the cavitation prevention circuit which concerns on this invention. 従来のキャビテーション防止回路を示す説明図。Explanatory drawing which shows the conventional cavitation prevention circuit.

符号の説明Explanation of symbols

10 油圧ショベル
13 上部旋回体
20 連通回路
30 開閉弁
31 パイロットポート
32 ばね
33 タンクへ連通する回路
34 絞り弁
40 切換弁
41 二次側ポート
42 一次側ポート
43 パイロットポート
44 ばね
47 スローリターンバルブ
47a 絞り弁
47b チェック弁
48 ブレーキ
49 シャトル弁
50 油圧ポンプ
51 方向制御弁
52 旋回リモコン弁
53,54 駆動用回路
55 旋回モータ
57,58 チェック弁
59 メイクアップ回路
60 タンク
61,62,63 チェック弁
64,65 チェック弁
66,67 クロスリリーフ弁
68 油圧源
DESCRIPTION OF SYMBOLS 10 Hydraulic excavator 13 Upper turning body 20 Communication circuit 30 On-off valve 31 Pilot port 32 Spring 33 Circuit connected to tank 34 Throttle valve 40 Switching valve 41 Secondary side port 42 Primary side port 43 Pilot port 44 Spring 47 Slow return valve 47a Throttle Valve 47b Check valve 48 Brake 49 Shuttle valve 50 Hydraulic pump 51 Direction control valve 52 Swing remote control valve 53, 54 Drive circuit 55 Swing motor 57, 58 Check valve 59 Make-up circuit 60 Tank 61, 62, 63 Check valve 64, 65 Check valve 66, 67 Cross relief valve 68 Hydraulic source

Claims (1)

旋回又は走行モータへ方向制御弁を介して圧油を給排する駆動用回路間にメイクアップ回路を備えた建設機械の油圧回路において、
前記駆動用回路と前記方向制御弁との接続部と、前記駆動用回路と前記メイクアップ回路との接続部との間の位置で前記駆動用回路間を新たな連通回路にて接続して、該連通回路の途中に常閉形の開閉弁を介装し、該開閉弁のスプールの一端に該開閉弁を開放位置に切り換えるパイロットポートを設けるとともに、該開閉弁のスプールの他端にタンクへ連通する回路と該開閉弁を閉止方向へ押し戻すバネを設け、前記パイロットポートに切換弁の二次側ポートを接続するとともに前記タンクへ連通する回路に絞り弁を介装し、さらに、前記切換弁の一次側に油圧源とタンクを接続し、
前記切換弁は、旋回又は走行用リモコン弁の操作がないときは油圧源位置にあって、油圧源のパイロット圧を前記開閉弁のパイロットポートへ導出して該開閉弁を開放位置にし、旋回又は走行用リモコン弁の操作があったときは該切換弁をタンク位置に切り換えて、前記開閉弁のパイロット圧をタンクに逃がして該開閉弁を閉止位置にするように構成したことを特徴とする建設機械のキャビテーション防止回路。
In a hydraulic circuit of a construction machine having a make-up circuit between drive circuits for supplying and discharging pressure oil to a turning or traveling motor via a direction control valve ,
A connection between the driving circuit and the direction control valve, and a connection between the driving circuit and the makeup circuit at a position between the driving circuit and the make-up circuit are connected by a new communication circuit, A normally closed on-off valve is provided in the middle of the communication circuit, a pilot port for switching the on-off valve to an open position is provided at one end of the spool of the on-off valve, and a tank communicates with the other end of the spool of the on-off valve. And a spring that pushes back the opening / closing valve in the closing direction, a secondary port of the switching valve is connected to the pilot port, and a throttle valve is interposed in the circuit that communicates with the tank. Connect the hydraulic source and tank to the primary side,
The switching valve is in the hydraulic pressure source position when there is no operation of the turning or traveling remote control valve, and the pilot pressure of the hydraulic pressure source is led to the pilot port of the on-off valve to bring the on-off valve to the open position. A construction characterized in that when the traveling remote control valve is operated, the switching valve is switched to the tank position, and the pilot pressure of the on-off valve is released to the tank so that the on-off valve is in the closed position. Machine cavitation prevention circuit.
JP2006326223A 2006-12-01 2006-12-01 Cavitation prevention circuit for construction machinery Expired - Fee Related JP4771926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326223A JP4771926B2 (en) 2006-12-01 2006-12-01 Cavitation prevention circuit for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326223A JP4771926B2 (en) 2006-12-01 2006-12-01 Cavitation prevention circuit for construction machinery

Publications (2)

Publication Number Publication Date
JP2008138788A JP2008138788A (en) 2008-06-19
JP4771926B2 true JP4771926B2 (en) 2011-09-14

Family

ID=39600474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326223A Expired - Fee Related JP4771926B2 (en) 2006-12-01 2006-12-01 Cavitation prevention circuit for construction machinery

Country Status (1)

Country Link
JP (1) JP4771926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032402B (en) * 2013-01-04 2015-04-15 中联重科股份有限公司 Automatic positioning valve of hydraulic rotary device, rotary hydraulic system and engineering machinery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960016822B1 (en) * 1992-07-14 1996-12-21 히다찌 겐찌 가부시기가이샤 Inertial body driving unit
JPH0771415A (en) * 1993-08-30 1995-03-17 Kawasaki Heavy Ind Ltd Control circuit for hydraulic motor
JPH09119404A (en) * 1995-10-25 1997-05-06 Hitachi Constr Mach Co Ltd Hydraulic drive device of cooling fan
JPH10168948A (en) * 1996-12-10 1998-06-23 Komatsu Ltd Hydraulic circuit for construction equipment

Also Published As

Publication number Publication date
JP2008138788A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US8752373B2 (en) Slewing type working machine
JP6302772B2 (en) Construction machine hydraulic system
WO2015012340A1 (en) Energy regeneration system for construction equipment
KR101928594B1 (en) Hydraulic drive of machinery
JP2005003183A (en) Hydraulic circuit of construction machinery
JP5304236B2 (en) Swivel brake device for construction machinery
WO2010128645A1 (en) Control device for hybrid construction machine
JP2010156136A (en) Swing braking device of construction machinery
JP6013503B2 (en) Construction machinery
WO2021039287A1 (en) Hydraulic system for construction machine
KR101763283B1 (en) Hydraulic pressure control device for construction machinery
JP4771926B2 (en) Cavitation prevention circuit for construction machinery
JP2007284170A (en) Turning locking device for working machine
JP2010053969A (en) Construction machine
JP4771914B2 (en) Cavitation prevention circuit for construction machinery
JP5481853B2 (en) Hydraulic circuit for construction machinery
JP7001554B2 (en) Hydraulic excavator with crane function
JP4279230B2 (en) Construction machinery travel hydraulic circuit
JP2005195131A (en) Construction machine
JP3503472B2 (en) Revolving body brake device for construction machinery
JP4260850B2 (en) Hydraulic circuit
JP3544810B2 (en) Locking / unlocking device for revolving superstructure of construction machinery
JPH01255702A (en) Brake circuit for hydraulic motor
JP4118893B2 (en) Hydraulic circuit
JP2535869Y2 (en) Brake circuit device for hydraulic equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees