JP4768881B2 - Dehydrated methane fermentation - Google Patents

Dehydrated methane fermentation Download PDF

Info

Publication number
JP4768881B2
JP4768881B2 JP2010537190A JP2010537190A JP4768881B2 JP 4768881 B2 JP4768881 B2 JP 4768881B2 JP 2010537190 A JP2010537190 A JP 2010537190A JP 2010537190 A JP2010537190 A JP 2010537190A JP 4768881 B2 JP4768881 B2 JP 4768881B2
Authority
JP
Japan
Prior art keywords
fermenter
methane fermentation
sludge
digested sludge
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010537190A
Other languages
Japanese (ja)
Other versions
JPWO2011013655A1 (en
Inventor
義雄 小林
Original Assignee
義雄 小林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009178993A external-priority patent/JP2010051955A/en
Application filed by 義雄 小林 filed Critical 義雄 小林
Priority to JP2010537190A priority Critical patent/JP4768881B2/en
Application granted granted Critical
Publication of JP4768881B2 publication Critical patent/JP4768881B2/en
Publication of JPWO2011013655A1 publication Critical patent/JPWO2011013655A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明のメタン発酵では発酵槽内に収容されている消化汚泥の水分を抜き取る事によって発酵槽内の消化汚泥濃度(菌体濃度)が上がり、水分が減った分だけ消化汚泥の体積が減り滞留時間が長くなる。その結果として消化率を理論値(90%以上)近くにまで高め、発酵槽の小型化も達成することを目的とするメタン発酵方法に関する。   In the methane fermentation of the present invention, by extracting the moisture of the digested sludge contained in the fermenter, the digested sludge concentration (bacterial cell concentration) in the fermenter is increased, and the volume of the digested sludge decreases and stays by the amount of water reduced. The time will be longer. As a result, the present invention relates to a methane fermentation method aiming to increase the digestibility to a theoretical value (90% or more) and to achieve downsizing of the fermenter.

地球温暖化が叫ばれる折から、カ−ボンニュ−トラルなバイオマス系廃棄物からエネルギ−を回収する事はCO2削減策として大変重要である。下水汚泥・厨芥・畜産廃棄物・農産廃棄物・食品加工廃棄物・製紙廃棄物などの水っぽいバイオマスからのエネルギ−回収にはメタン発酵が最適と思われるが、従来のメタン発酵技術では固形分濃度5%以下のバイオマスを約4週間かけて発酵を行うために大容量の発酵槽を必要とし、しかも40〜60%の低い消化率(バイオマス炭素分の消化ガスへの転換率)しか得られなかった。From the time when global warming is called out, it is very important as a CO 2 reduction measure to collect energy from carbonaceous biomass waste. Methane fermentation seems to be optimal for energy recovery from watery biomass such as sewage sludge, drought, livestock waste, agricultural waste, food processing waste, papermaking waste, etc. A large-capacity fermenter is required to ferment 5% or less of biomass over about 4 weeks, and only a low digestion rate (conversion rate of biomass carbon to digestion gas) of 40-60% can be obtained. It was.

下水処理場では古くからメタン発酵が汚泥減量対策の一環として行われて来たが、あらゆる廃棄物が流れ込む下水は資源の宝庫と見なされる様になるにつれ、低炭素社会・資源循環社会を見据えた下水処理場へと将来像が変わりつつある。その将来像を支える基盤技術が高い消化率のメタン発酵である。下水に含まれている資源の主なものはエネルギ−・アンモニア・燐・希少金属であるが、エネルギ−とアンモニア・燐は有機質のバイオマス部分に、希少金属は無機質部分に含まれている。エネルギ−とアンモニア・燐の高効率回収には高消化率のメタン発酵技術が不可欠である。高消化率メタン発酵技術で処理するとアンモニア・燐は有機物から離れて脱離液中に、希少金属は有機物が除去された残渣の無機質部分に含まれる。   Methane fermentation has long been carried out as part of sludge reduction measures at sewage treatment plants, but as sewage into which all waste flows is regarded as a treasure trove of resources, we looked at a low-carbon society and a resource recycling society. The future image is changing to a sewage treatment plant. The basic technology that supports the future is methane fermentation with high digestibility. The main resources contained in sewage are energy, ammonia, phosphorus, and rare metals. Energy, ammonia, and phosphorus are contained in the organic biomass portion, and rare metals are contained in the inorganic portion. High digestibility methane fermentation technology is indispensable for high efficiency recovery of energy and ammonia / phosphorus. When treated with the high digestibility methane fermentation technology, ammonia and phosphorus are separated from the organic matter and contained in the desorbed liquid, and the rare metal is contained in the inorganic portion of the residue from which the organic matter has been removed.

また廃棄消化汚泥を焼却処分する際にCO2の310倍の温暖化係数を持つN2Oが生成するの
で温室効果ガス削減の観点からしても汚泥の焼却量を少なくする高消化率メタン発酵技術が不可欠である。即ち高消化率メタン発酵技術は将来の下水処理場を支える基盤技術である。
Also, when incinerating waste digested sludge, N 2 O with a warming coefficient 310 times that of CO 2 is generated, so high digestibility methane fermentation reduces the amount of sludge incinerated from the viewpoint of reducing greenhouse gases. Technology is essential. In other words, high digestibility methane fermentation technology is a fundamental technology that will support future sewage treatment plants.

本発明者らはメタン発酵の技術革新を目指して脱水汚泥(高濃度バイオマス)メタン発酵の研究を通して、滞留時間の短縮・発酵槽の小形化と90%近い消化率を得ているが、投入バイオマス濃度が高過ぎるとNH3濃度障害が起こるのでその解決策が問題になっていた。また汚泥濃度が上がるほど固体有機物の可溶化が促進される現象も発見していた。(非特許文献1と図9 を参照)Through research on dehydrated sludge (high-concentration biomass) methane fermentation with the aim of technological innovation in methane fermentation, the present inventors have shortened the residence time, reduced the size of the fermenter, and obtained digestibility of nearly 90%. If the concentration was too high, NH 3 concentration disturbance occurred, so the solution was a problem. They also discovered a phenomenon in which solubilization of solid organic matter was promoted as the sludge concentration increased. (See Non-Patent Document 1 and Fig. 9)

この現象にメタン発酵の律速段階が可溶化工程(一般によく知られている)であることを盛り込むと下記の図式から汚泥濃度とメタン発酵速度・消化率・滞留時間の関係が明らかになる。
[汚泥濃度]∝[槽内の汚泥濃度]∝[槽内の菌体濃度]∝[槽内の可溶化酵素濃度] ∝[固体有機物の可溶化速度] ∝[メタン発酵速度]
上記の図式で明らかなように原料汚泥を脱水するのと発酵槽内の消化汚泥から水分を抜き取って消化汚泥濃度を上げるのとは発酵槽内の可溶化酵素濃度を上げる点では同じ効果である事から脱水汚泥の代わりに発酵槽内の消化汚泥から水分を抜き取ることによって高消化率メタン発酵技術が開発できる事が分かる。
([0039] を参照)
If this phenomenon includes that the rate-limiting step of methane fermentation is a solubilization process (generally well known), the relationship between sludge concentration, methane fermentation rate, digestibility, and residence time becomes clear from the following diagram.
[Sludge Concentration] ∝ [Sludge Concentration in Tank] 菌 [Bacterial Cell Concentration in Tank] ∝ [Solubilized Enzyme Concentration in Tank] ∝ [Solubilization Rate of Solid Organic Matter] ∝ [Methane Fermentation Rate]
As is clear from the above diagram, dewatering the raw sludge and extracting the moisture from the digested sludge in the fermentor to increase the digested sludge concentration are the same effect in increasing the solubilized enzyme concentration in the fermenter From this, it can be seen that high digestibility methane fermentation technology can be developed by extracting water from digested sludge in the fermenter instead of dewatered sludge.
(See [0039])

特許番号第2138131号Patent No. 2138131 特許番号第2997833号Patent No. 2997833

小林義雄“脱水汚泥のメタン発酵について”PPM 25 34〜41(1994)Yoshio Kobayashi "Methane fermentation of dehydrated sludge" PPM 25 34-41 (1994)

発酵槽の小型化と消化率90%の達成は脱水汚泥のメタン発酵で一応の目途は立っていた([0034][消化率の算出]を参照 )が、(1)投入汚泥の含水率を下げすぎると発酵槽内のNH3高濃度障害のためにメタン発酵が進まなくなる。(2)原料汚泥(バイオマス)を脱水するよりもメタン発酵によって有機物が少なくなった消化汚泥の水分を抜き取る方が費用が安価である。(3)下水処理場のメタン発酵設備では発酵槽の小型化と消化率約45%から約90%への改善策が重要テ−マである。
(1)(2)(3)の理由から本発明では[0003]で説明した発酵槽からの水分抜き取り方式による小型発酵槽・高消化率メタン発酵技術を基盤とする下水処理システムを構築した。
The miniaturization of the fermenter and the achievement of a digestibility of 90% were conspicuous in the methane fermentation of dehydrated sludge (see [0034] [Calculation of digestibility]), but (1) the water content of the input sludge was reduced. If it is too low, methane fermentation will not proceed due to high concentration of NH 3 in the fermenter. (2) It is less expensive to extract the moisture from the digested sludge whose organic matter has been reduced by methane fermentation than to dehydrate the raw material sludge (biomass). (3) In the methane fermentation facility at the sewage treatment plant, downsizing the fermenter and improving the digestibility from about 45% to about 90% are important themes.
(1) For the reasons of (2) and (3), in the present invention, a sewage treatment system based on a small fermenter and high digestibility methane fermentation technology based on the method of removing water from the fermentor described in [0003] was constructed.

この水分抜き取り式メタン発酵技術の実現の課題はメタン発酵工程の反応工学的解析によって目途が立った。本発明者は脱水汚泥メタン発酵法のメカニズムを研究する中で発酵槽に供給する基質バイオマス濃度が高くなるとメタン発酵の律速段階である固体の基質汚泥(バイオマス)の可溶化が促進されることを発見した。発酵槽内での基質汚泥(バイオマス)濃度が高くなると汚泥(バイオマス)に繁殖する菌体濃度も高くなり、可溶化菌が分泌する可溶化酵素の濃度も高くなる。一方可溶化反応速度は可溶化酵素濃度に比例するので、可溶化酵素濃度が高くなると可溶化反応が促進されると言うわけである。   The problem of realizing this moisture-removal methane fermentation technology was conspicuous by the reaction engineering analysis of the methane fermentation process. The present inventors have studied that the solubilization of solid substrate sludge (biomass), which is the rate-limiting step of methane fermentation, is promoted when the substrate biomass concentration supplied to the fermenter increases while studying the mechanism of dehydrated sludge methane fermentation method. discovered. When the substrate sludge (biomass) concentration in the fermenter is increased, the concentration of cells that propagate in the sludge (biomass) is also increased, and the concentration of the solubilizing enzyme secreted by the solubilizing bacteria is also increased. On the other hand, since the solubilization reaction rate is proportional to the solubilizing enzyme concentration, the solubilization reaction is promoted when the solubilizing enzyme concentration increases.

多くの研究者の努力にも拘わらず現在実用化されているメタン発酵技術の消化率は40〜60%を超える事が難しく、消化率の上限がどの辺にあるのかも定かではないなかで。水分抜き取り式メタン発酵技術の実現に向けて本発明者は可溶化酵素濃度と消化率の関係を反応工学的に導き、上記の消化率の問題点を明らかにした。即ち高い消化率を得るには発酵槽内の消化汚泥(菌体)濃度を高くするか、または発酵槽容積を大きくして滞留時間を大きくすればよいことが分かった(詳しくは[本発明の実験的裏付け][0033]〜[0038]を参照)。   Despite the efforts of many researchers, the digestibility of methane fermentation technology that is currently in practical use is difficult to exceed 40-60%, and it is not clear where the upper limit of digestibility is. The present inventor derived the relationship between the solubilized enzyme concentration and the digestibility in terms of reaction engineering, and clarified the problems of the digestibility described above, for the realization of a moisture-removal methane fermentation technique. That is, in order to obtain a high digestibility, it was found that the digested sludge (bacteria) concentration in the fermenter should be increased, or the residence time should be increased by increasing the fermenter volume (details [ Experimental support] [See 0033]-[0038]).

メタン発酵の消化率(基質バイオマスの炭素分の消化ガスへの転化率)については基質バイオマスの炭素分の5〜10%が菌体として固定されると考えると消化ガスに転化される割合は究極的には約90%である。つまりは消化率の上限は約90%と考えられる。この結論は私どもが開発した脱水汚泥のメタン発酵で約90%の消化率が得られている実験事実([0035]〜[0038][消化率の算出]を参照
)とも一致する。
Regarding the digestibility of methane fermentation (conversion rate of carbon content of substrate biomass to digestion gas), the rate of conversion to digestion gas is the ultimate when 5-10% of carbon content of substrate biomass is fixed as cells That is about 90%. In other words, the upper limit of digestibility is considered to be about 90%. This conclusion is consistent with the experimental fact (see [0035] to [0038] [Calculation of digestibility]) that a digestibility of about 90% was obtained by methane fermentation of dewatered sludge that we developed.

水分抜き取り式メタン発酵の消化率の上限は基質バイオマスの炭素分の5〜10%がメタン発酵にかかり難い菌体として固定されることに基づく。菌体の細胞は可溶化酵素を受け付けない細胞壁によって保護されているためにメタン発酵での処理が困難であるが、熱処理することによって細胞壁が破壊されてメタン発酵での処理が可能になる事はよく知られている。この現象は好気性微生物群からなる下水余剰汚泥のメタン発酵処理にも当てはまる。例えば図7 において菌体を多く含んだ廃棄消化汚泥を熱処理して高温状態のままで「投入基質バイオマス」と混合すると基質バイオマスの加温操作が省略で、消化率を90%以上に上げることが出来る。[0035]〜[0038][消化率約90%の算出根拠]は下水の初沈汚泥の連続実験データに基づいたものであり、余剰汚泥40%・初沈汚泥60%のメタン発酵では消化率約80%を得ていた。この約80%と初沈汚泥の消化率約90%の差は余剰汚泥の細胞壁によるものである。この余剰汚泥をメタン発酵の廃棄消化汚泥と一緒に熱処理することによって消化率90%が確保出来る。   The upper limit of the digestibility of water-removal methane fermentation is based on the fact that 5-10% of the carbon content of the substrate biomass is fixed as microbial cells that are difficult to undergo methane fermentation. The cells of the microbial cells are protected by cell walls that do not accept solubilizing enzymes, so it is difficult to process in methane fermentation. However, the heat treatment can destroy the cell walls and enable processing in methane fermentation. well known. This phenomenon also applies to methane fermentation treatment of sewage surplus sludge consisting of aerobic microorganisms. For example, in Fig. 7, waste digested sludge containing a large amount of bacterial cells is heat-treated and mixed with `` input substrate biomass '' in a high temperature state, so that the heating operation of the substrate biomass is omitted and the digestibility is increased to 90% or more. I can do it. [0035] ~ [0038] [Calculation basis of digestion rate of about 90%] is based on continuous experimental data of sewage primary sludge, digestion rate in methane fermentation of 40% excess sludge and 60% primary sludge We got about 80%. The difference between about 80% and the digestibility of primary sludge is about 90% is due to the cell wall of excess sludge. A digestibility of 90% can be secured by heat-treating this excess sludge together with the waste digested sludge from methane fermentation.

通常法メタン発酵システムでは固形分濃度5%以下のバイオマスを約4週間かけて発酵を行うために大容量の発酵槽を必要とし、しかも40〜50%の低い消化率(尤も最近は40〜60%に進歩している)しか得られなかった。このメタン発酵システムで滞留時間を2ヶ月にすれば消化率は80%近い値に上がったかも知れないが2ヶ月の滞留時間を確保するには現状の発酵槽の他に更に1〜2倍容量の発酵槽が必要となる事を意味しているが、その様な巨大発酵槽は非現実的であり、自然の成り行きとして現実的な消化率の上限が40〜60%になっていたと思われる。   The conventional methane fermentation system requires a large-capacity fermentor to ferment biomass with a solid content of 5% or less over about 4 weeks, and has a low digestibility of 40-50% (most recently 40-60) % Progress). If the residence time was set to 2 months in this methane fermentation system, the digestibility might have increased to nearly 80%, but in order to secure a residence time of 2 months, in addition to the current fermentor, 1 to 2 times the capacity However, such a giant fermenter is unrealistic, and it seems that the upper limit of the actual digestibility is 40-60% as a natural process. .

通常法メタン発酵システムでは発酵中に増殖した菌体を未消化バイオマスと共に消化汚泥として発酵槽外に排出している。つまり通常法メタン発酵システムでは発酵の進行と共に発酵槽内の固形分濃度は下がるがそのまま消化汚泥として発酵槽外に排出しているが、ここで重力沈降槽とか汚泥濃縮機を使って消化汚泥の水分を発酵槽外に排出すれば発酵槽内の消化汚泥(菌体を含む)濃度を高め、且つ水分が減った分だけ滞留時間を長くすることが出来る。   In the normal method methane fermentation system, the cells grown during fermentation are discharged out of the fermenter as digested sludge together with undigested biomass. In other words, in the conventional methane fermentation system, the solids concentration in the fermenter decreases with the progress of fermentation, but it is directly discharged out of the fermenter as digested sludge, but here the digested sludge is removed using a gravity sedimentation tank or sludge concentrator. If moisture is discharged outside the fermenter, the concentration of digested sludge (including bacterial cells) in the fermenter can be increased, and the residence time can be increased by the amount of reduced water.

本発明システム方法ではこの様に発酵槽内の消化汚泥から水分を抜き取る事によって発酵槽内の消化汚泥(菌体)濃度が上がり、水分が減った分だけ滞留時間が長くなる。その結果として発酵速度が上がり、90%消化率と発酵槽の小型化を可能にした。   In the system method of the present invention, by extracting water from the digested sludge in the fermenter in this way, the concentration of digested sludge (bacteria) in the fermenter is increased, and the residence time is increased by the amount of reduced water. As a result, the fermentation rate was increased, enabling 90% digestibility and downsizing of the fermenter.

本発明システムの発酵槽から水分を抜き取る具体的な手段は先に述べた消化汚泥濃縮機、重力沈降槽による方法、廃棄処分用の消化汚泥脱水ケ−キの一部を発酵槽に戻す方法、発酵槽の内表面にフィルタ−を設ける方法([0028][0029]を参照 )等が考えられる。要は発酵槽内の消化汚泥(菌体)濃度・可溶化酵素濃度を高めればよい。消化汚泥から水分
を抜き取る操作の助剤として凝集剤を発酵槽に添加することも有効である。
Specific means for extracting water from the fermenter of the system of the present invention are the digested sludge concentrator described above, a method using a gravity sedimentation tank, a method of returning a part of the digested sludge dewatered cake for disposal to the fermenter, A method of providing a filter on the inner surface of the fermenter (see [0028] and [0029]) can be considered. In short, digested sludge (bacteria) concentration and solubilizing enzyme concentration in the fermenter should be increased. It is also effective to add a flocculant to the fermenter as an aid for the operation of extracting moisture from the digested sludge.

発酵槽内の水分を抜き取ると発酵槽内の固形分濃度が高くなって流動性がなくなり基質バイオマスの植菌がスム−スに行われない弊害が心配されるが、発酵槽内の菌体濃度・可溶化酵素濃度が上がると発酵速度が上がり基質バイオマスが可溶化・ガス化を経て消滅して行くので発酵槽内の粘度(固形分濃度)が異常に上がることはない。むしろ運転管理は発酵槽内の粘度(固形分濃度)を一定に保ちながら供給汚泥量と排出消化汚泥量を決めることになる。   If the moisture in the fermenter is extracted, the solids concentration in the fermenter will increase and the fluidity will be lost, and there is a concern that the substrate biomass will not be inoculated smoothly.・ If the solubilizing enzyme concentration increases, the fermentation rate increases and the substrate biomass disappears through solubilization and gasification, so the viscosity (solid content concentration) in the fermenter does not rise abnormally. Rather, the operation management determines the supply sludge amount and the discharged digested sludge amount while keeping the viscosity (solid content concentration) in the fermenter constant.

以上の説明は定常状態での事であるが、定常状態に至るまでの過程では未消化の基質バイオマスが消化ガスに転化して消化率が従来の45%から90%に向けて連続的に変化する。長時間連続運転の過程で消化汚泥中の未消化の基質バイオマス量が減少し、その減少分が菌体の増加量で置き換わるので発酵槽内の固形分濃度(粘度)が異常に増加して基質バイオマスの植菌が阻害されることはない。   The above explanation is in the steady state, but in the process up to the steady state, the undigested substrate biomass is converted into digestion gas and the digestibility continuously changes from 45% to 90%. To do. During the long-term continuous operation, the amount of undigested substrate biomass in the digested sludge decreases, and the decrease is replaced by the increased amount of bacterial cells, so the solid content concentration (viscosity) in the fermenter increases abnormally and the substrate Biomass inoculation is not inhibited.

[本発明方法の適用例その1.(高消化率化と温室効果ガス削減効果)]
下水処理場の既設メタン発酵設備に発酵槽内の水分を抜き取る設備を設ける以外に大きな改造を行うことなくメタン発酵槽の消化率を約45%から約90%にまで高め、且つ汚泥の処理能力も高められる。その結果メタンガス回収量が倍増になり、廃棄消化汚泥の焼却処分に伴う補助燃料が減り、且つ地球温暖化係数310のN2O発生量も減る。
[Application example 1 of the method of the present invention] (High digestibility and greenhouse gas reduction effect)]
The existing methane fermentation facility at the sewage treatment plant is equipped with a facility for extracting moisture from the fermenter, and the digestibility of the methane fermenter is increased from about 45% to about 90% without any major modifications, and the sludge treatment capacity. Can also be enhanced. As a result, the amount of methane gas recovered doubles, the amount of auxiliary fuel associated with incineration of waste digested sludge decreases, and the amount of N 2 O with a global warming potential of 310 decreases.

下水汚泥1t(DS)を通常法(消化率45%)メタン発酵技術と水分抜き取り式(消化率90%)メタン発酵技術で処理した場合の温室効果ガス排出量の比較を下記の表に示す。

Figure 0004768881
既設のメタン発酵設備に僅かな設備投資をするだけで消化率90%の水分抜き取り式メタン発酵が実現する。表1は水分抜き取り式メタン発酵では通常法メタン発酵の約2倍量のCH4ガス回収が得られる事と、消化汚泥の焼却処分量が少ないために温室効果ガスの排出量が通常法メタン発酵よりも圧倒的に少ないことを示している。The table below shows a comparison of greenhouse gas emissions when 1t (DS) of sewage sludge is treated by the conventional method (digestion rate 45%) methane fermentation technology and the water removal type (digestion rate 90%) methane fermentation technology.
Figure 0004768881
Moisture extraction methane fermentation with a digestibility of 90% can be achieved with a small investment in existing methane fermentation facilities. Table 1 shows that the CH 4 gas recovery of about twice the amount of conventional methane fermentation can be obtained with water extraction methane fermentation, and that the amount of greenhouse gas emissions is less than conventional method methane fermentation due to the incineration disposal of digested sludge. It is overwhelmingly less than that.

[本発明方法の適用例その2.(資源回収対策)]
消化率が90%になることによって乾燥下水汚泥の約2%含まれていると言われている燐の90%が消化液中に溶け出すが、発酵槽からフィルターを通して抜き取られた固形分を含まない液体を以後脱離水と呼ぶが、この脱離水にMg2+(MgCl2、MgSO4など)を加えると枯渇が叫ばれ目下市場価格の高騰が進みつつある燐資源が難溶性NH4MgPO4・6H2Oの結晶として容易に回収出来る。
[Application example of the method of the present invention No. 2. (Resource recovery measures)]
90% of phosphorus, which is said to contain about 2% of dry sewage sludge when the digestibility reaches 90%, dissolves in the digestive fluid, but contains solids extracted from the fermenter through a filter This liquid is referred to as desorbed water, but when Mg 2+ (MgCl 2 , MgSO 4, etc.) is added to the desorbed water, depletion is called out and the phosphorus resources that are currently rising in market price are hardly soluble NH 4 MgPO 4 -Easily recovered as 6H 2 O crystals.

消化率が90%になることによって下水汚泥に含まれる窒素の90%もNH3として消化液中に溶け出す。そのNH3の溶出量は汚泥の有機成分1(DS)t当たり約70kgに相当する。通常のNH3処理方法ではNH3は曝気槽でNO、NO2、N2Oに転化し、続く嫌気槽でNO、NO2は下水中のBOD成分で還元されてN2になるが化学的に安定なN2Oはそのまま大気中に放散される。この方式だと曝気時のN2O発生量、曝気電力の消費量、BOD成分の必要量が消化率90%では45%の約2倍になる事から本発明ではイオン交換樹脂(膜)でNH3を資源として回収して肥料などに活用する。When the digestibility reaches 90%, 90% of the nitrogen contained in the sewage sludge is also dissolved in the digestive fluid as NH 3 . The NH 3 elution amount corresponds to about 70 kg per sludge organic component 1 (DS) t. In the usual NH 3 treatment method, NH 3 is converted into NO, NO 2 and N 2 O in the aeration tank, and NO and NO 2 are reduced to N 2 by the BOD component in the sewage in the following anaerobic tank, but chemically. Stable N 2 O is directly released into the atmosphere. With this method, the amount of N 2 O generated during aeration, the consumption of aeration power, and the required amount of BOD components are approximately double that of 45% at a digestibility of 90%. Therefore, in the present invention, an ion exchange resin (membrane) is used. Collect NH 3 as a resource and use it as fertilizer.

また将来的には希少金属の回収も可能になるだろう。このように消化率90%をもたらす水分抜き取り式メタン発酵は低炭素社会・資源循環社会における下水処理場を支える基盤技術となる。低コストで消化率を90%に進化させることによって下水処理場におけるメタン発酵の位置づけが汚泥の減量対策と言う脇役から、下水処理場を支える主役の基盤技術に躍進する。   In the future, it will be possible to recover rare metals. In this way, moisture-removing methane fermentation that provides a digestibility of 90% is a fundamental technology that supports sewage treatment plants in a low-carbon society and a resource recycling society. By elevating the digestibility to 90% at low cost, the position of methane fermentation in the sewage treatment plant will advance from the supporting role of sludge reduction measures to the leading technology that supports the sewage treatment plant.

[本発明方法の適用例その3.(NH3濃度障害対策)]
窒素分が多く且つ含水率の低い畜産廃棄物をメタン発酵処理すると発酵槽内のNH3濃度が高くなり過ぎてNH3濃度障害のために発酵がスム−スに進まない欠点があるが、畜産廃棄物を水で希釈してNH3濃度障害を回避しながら発酵槽の内表面に設けたフィルターを通して水分を除去する本発明方式を採用すれば大きなコストを掛けることなく発酵槽容積を大きくせずにNH3濃度障害を回避する事は出来るが、しかしNH3濃度障害を回避するために水分の少ないバイオマスに水を加えて、次いで発酵槽から水分を抜き取ってNH3を除去する方式はNH3濃度の高い脱離水を水で希釈してからNH3を回収する様なものであまり賢明な方法とは言えない。
NH3高濃度障害のためにメタン化が進まずTOC濃度が上がった脱離水から先ずNH3を回収し、次いでグラニュール化した嫌気性微生物群を用いた発酵槽(例えばUASB槽)に導いてメタン回収をはかる事も一つの解決方法である。
[Example of application of the method of the present invention 3. (Measures against NH 3 concentration disorder)
When livestock waste with a high nitrogen content and low moisture content is treated with methane fermentation, the NH 3 concentration in the fermenter becomes too high and the fermentation does not proceed smoothly due to NH 3 concentration failure. Diluting waste with water to avoid NH 3 concentration obstacles and adopting the method of the present invention that removes moisture through a filter provided on the inner surface of the fermenter will not increase the fermenter volume without incurring significant costs. NH 3 is possible to avoid concentration disorder can, however NH 3 concentration disorders by adding water to low moisture biomass to avoid, then method to remove the NH 3 that extracts moisture from the fermentor NH 3 in It is not a wise method because it recovers NH 3 after diluting high-concentration desorption water with water.
NH 3 recovered first NH 3 from eliminated water which methanation is the TOC concentration rises not proceed due to the high concentration disorders, then led to the fermentor (eg UASB tank) using granulated anaerobic microorganisms One solution is to recover methane.

メタン発酵では消化液中のNH3濃度は1000ppm以下が好ましいが、畜産廃棄物ではNH3含有量が多いために消化液中のNH3濃度が1000ppmを超えることは屡々であり、下水汚泥処理でも発酵槽に投入する汚泥の固形分濃度が高くなると消化液中のNH3濃度が1000ppmを超えてNH3濃度障害を発生し、NH3濃度の増加に伴ってCH4生成速度が低下し、消化液中のTOC(全有機性炭素)濃度が上がる。そこで本発明では発酵槽から抜き取った脱離水の中からNH3を回収した後にグラニュール化した嫌気性微生物群を用いた発酵槽に脱離水を導いてTOC成分のCH4化を行わせる。Although NH 3 concentration is preferably 1000ppm or less in the digestive juice in the methane fermentation, NH 3 concentration in the digestion solution for NH 3 content is high in livestock waste that is more than 1000ppm is often also a sewage sludge treatment When the solid content concentration of the sludge put into the fermenter increases, the NH 3 concentration in the digestive fluid exceeds 1000 ppm, causing an NH 3 concentration disturbance, and the CH 3 production rate decreases as the NH 3 concentration increases. The TOC (total organic carbon) concentration in the liquid increases. Therefore, in the present invention, the TOC component is converted to CH 4 by introducing the desorbed water into the fermentor using the anaerobic microorganism group granulated after NH 3 is recovered from the desorbed water extracted from the fermenter.

この様に本発明システムはいろいろなバイオマスのメタン発酵の既設設備、新設設備に適用されて発酵槽の小型化と約90%の高消化率化で大きな経済効果をもたらし、地球規模の温室効果ガス削減に大いに貢献する。   In this way, the system of the present invention is applied to existing and new facilities for methane fermentation of various biomass, and brings about a large economic effect by downsizing the fermenter and increasing the digestibility by about 90%. Contributes greatly to reduction.

図1 は通常法メタン発酵の発酵槽内の物質流れを、図2、図3、図4 は水分抜き取り式メタン発酵の物質流れを示す。通常法では投入された基質バイオマス(汚泥・畜産廃棄物・農産廃棄物等)は滞留時間内に増殖した菌体はそのまま消化汚泥として系外に排出される(図1を参照)が、本発明方法(水分抜き取り式メタン発酵)では発酵槽内の消化汚泥の水分を抜き取る事によって消化汚泥の体積が減った分、発酵槽内での滞留時間が長くなる。長くなった滞留時間に応じて菌体の増殖量が増し、発酵槽内の菌体濃度が高くなる。菌体濃度が高くなると固体有機物の可溶化が促進され、メタン発酵速度が速くなる。その結果これまでは不可能と思われていた消化率の45%から90%への進化と発酵槽の小型化が可能となった。(定量的な説明は物質収支を表した図6、図7、図8の解析の項[0047][004
8]を参照)
Fig. 1 shows the material flow in the fermenter for conventional methane fermentation, and Figs. 2, 3, and 4 show the material flow for methane fermentation with water removal. In the usual method, the substrate biomass (sludge, livestock waste, agricultural waste, etc.) input is discharged outside the system as digested sludge as it grows within the residence time (see Fig. 1). In the method (moisture-removal type methane fermentation), the residence time in the fermenter is increased because the volume of the digested sludge is reduced by extracting the water from the digested sludge in the fermenter. The proliferation amount of the bacterial cells increases according to the longer residence time, and the bacterial cell concentration in the fermenter increases. When the bacterial cell concentration is increased, solubilization of the solid organic matter is promoted, and the methane fermentation rate is increased. As a result, the digestion rate has been improved from 45% to 90% and the fermenter can be downsized. (Quantitative explanation shows the mass balance of the analysis section of FIG. 6, FIG. 7, FIG. 8 [0047] [004
8])

[水分抜き取り方法]
発酵槽内の水分抜き取りの手段としては機械濃縮(図2)、重力沈降(図3)がよく知られているが、それらより遙かに低コスト方式として発酵槽や発酵槽の外に設けられた導管などの内表面にフィルタ−を設け、フィルタ−に掛かる水圧を利用してフィルタ−を介して水分を抜き取る(図4、5)方式を新たなる発明としてここに提案する。フィルタ−とは固体を通さず液体のみを通す装置であり、図4、5によるとフィルタ−の主要部分は発酵槽や導管など(発酵槽に外付けされる)の壁面に開けられた穴と発酵槽や導管などの内壁面に貼り付けられた濾布から構成される。図4、5ではフィルターを通して抜き取られた脱離水は発酵槽や導管などの外壁と発酵槽や導管の外套の間に設けられた空間を通って、発酵槽や導管などの底部に設けられた排出口から排出される。
[How to remove moisture]
Mechanical concentration (Fig. 2) and gravity sedimentation (Fig. 3) are well known as means for draining water in the fermenter, but they are installed outside the fermenter and fermenter as a much lower cost system. We propose here a new invention in which a filter is provided on the inner surface of a pipe and the like, and water is extracted through the filter using the water pressure applied to the filter (FIGS. 4 and 5). A filter is a device that allows only liquid to pass through without passing through a solid, and according to FIGS. 4 and 5, the main part of the filter is a hole formed in the wall of a fermenter or conduit (attached to the fermenter). It consists of a filter cloth affixed to the inner wall of a fermenter or conduit. In FIGS. 4 and 5, the desorbed water extracted through the filter passes through the space provided between the outer wall of the fermenter or conduit and the jacket of the fermenter or conduit, and is discharged at the bottom of the fermenter or conduit. It is discharged from the exit.

[発酵槽や導管の内表面に設けたフィルタ−による方法]
この方式は発酵槽や導管などの内表面に設けたフィルタ−に掛かる水圧を利用して発酵槽内から水分を抜き取って含水率約95%(固形分濃度約5%)のスラリー状汚泥にするものであり、含水率約80%(固形分濃度約20%)の固体状汚泥にすることを目的にしたフィルタ−プレス脱水機とは機能を全く異にしており、その分エネルギ−消費量が少なくて済む。本発明システムに組み込む水分抜き取り装置の中では発酵槽や導管などの内表面に設けたフィルタ−方式が設備費・エネルギ−消費量の両面で最も優れている。
[Method by filter provided on the inner surface of fermenter or conduit]
This method uses the water pressure applied to the filter provided on the inner surface of the fermenter, conduit, etc. to extract water from the fermenter to make slurry sludge with a moisture content of about 95% (solid content concentration about 5%). The function is completely different from that of the filter-press dehydrator, which is intended to produce a solid sludge with a moisture content of about 80% (solid content concentration of about 20%). Less is enough. Among the water extraction devices incorporated in the system of the present invention, the filter system provided on the inner surface of a fermenter, a conduit or the like is the most excellent in terms of both equipment cost and energy consumption.

フィルタ−上での消化汚泥堆積層の成長は水分抜き取りの障害要因であるが、堆積層の成長で汚泥濃度が上がると可溶化が促進されるために堆積層の成長が抑制される方向に働く。また消化率が90%になると消化汚泥中の無機成分(土砂成分)の比率が高くなるが、(土砂成分)の比率が高くなると水分が抜き取り易くなる事はよく知られた事実である。この可溶化効果・土砂効果と槽内の撹拌効果、その上凝集剤効果、逆洗効果の相乗効果で水分抜き取りが阻害されることはない。この方式はフィルタ−逆洗などのフィルタ−補修用の設備以外は大掛かりな設備を構えることなく、また水分抜き取りに必要な動力は発酵槽や導管などの内表面に設けたフィルタ−に掛かる水圧を利用するために特別な電力消費を伴わないが、外付けの導管式水分抜き取り装置の発酵槽との接続は導管式水分抜き取り装置の入り口、出口共に大きな水圧が掛かる発酵槽下部に接続して用いるのが特に有効である。発酵槽に凝集剤を添加することによって水分抜き取りが一層容易になる。   The growth of digested sludge deposits on the filter is an obstacle to draining water, but when the sludge concentration increases in the growth of the deposits, solubilization is promoted and the growth of the deposits is suppressed. . In addition, when the digestibility is 90%, the ratio of inorganic components (sediment components) in digested sludge increases, but it is a well-known fact that moisture can be easily extracted when the proportion of (sediment components) increases. The solubilization effect / sediment effect and the stirring effect in the tank, and the synergistic effect of the flocculant effect and the backwashing effect do not impede the removal of moisture. This method does not require a large-scale facility other than the filter-repairing equipment such as backwashing, and the power necessary for draining water is obtained by applying the water pressure applied to the filter provided on the inner surface of the fermenter or conduit. Although there is no special power consumption to use, the connection with the fermenter of the external conduit-type moisture extractor is connected to the lower part of the fermenter where large water pressure is applied at both the inlet and outlet of the conduit-type moisture extractor. Is particularly effective. By adding a flocculant to the fermenter, water removal becomes easier.

この方式は新設のみならず、既設設備に小さな改造を施すだけでCO2削減と経済性に大きな効果をもたらす。既設のメタン発酵槽で発酵槽の改造が困難な場合には発酵槽の内表面に設けたフィルターによる水分抜き取り機能を発酵槽の下部に外付けの導管式水分抜き取り装置を接続する方法で代替することが出来る。汚泥スラリーを発酵槽下部から取り込み、ポンプを介して発酵槽下部に戻すと、この導管には常に発酵槽下部と同じ水圧が掛かっており、且つ流れが速い分フィルターの目詰まりが起こり難く、小さな濾過面積・コンパクトな装置で対処でき、その上維持管理が容易と言う利点がある。This method is not only newly established, but also has a significant effect on CO 2 reduction and economic efficiency by making small modifications to existing facilities. If it is difficult to modify the fermenter with the existing methane fermenter, replace the function of removing water by the filter provided on the inner surface of the fermenter with a method of connecting an external conduit-type moisture extractor to the lower part of the fermenter. I can do it. When sludge slurry is taken in from the lower part of the fermenter and returned to the lower part of the fermenter via a pump, this conduit is always under the same water pressure as the lower part of the fermenter. It has the advantage that it can be handled with a filtration area and a compact device, and is easy to maintain.

[本発明の実験的裏付け]
[メタン発酵消化率の上限値]
これまでメタン発酵の消化率の上限がどの辺にあるのかさえ定かではなかったが、固形分濃度15%の脱水汚泥メタン発酵の連続実験デ−タ(図
9 : 特許番号第2997833号、[非特許文献1] PPM 25 34〜41(1994)を参照)に基づいて炭素収支・エネルギ−収支・下水処理場の運転デ−タから消化率を計算すると約90%が得られた([0035]〜[0038][消化率の算出]を参照 )。炭素分の5〜10%が菌体に転化されると考えると、脱水汚泥のメタン発酵の実験では理論値に近い消化率が得られたことになる。
[Experimental support of the present invention]
[Upper limit of methane fermentation digestibility]
Until now, it was uncertain where the upper limit of the digestibility of methane fermentation was, but continuous experimental data for dehydrated sludge methane fermentation with a solid content of 15% (Fig. 9: Patent No. 2997833, [Non- Patent Document 1] (See PPM 25 34-41 (1994)), calculating the digestibility from the operating data of the carbon balance, energy balance and sewage treatment plant yielded about 90% ([0035] To [0038] [Calculation of digestibility]. Assuming that 5 to 10% of the carbon content is converted into cells, a digestion rate close to the theoretical value was obtained in the methane fermentation experiment of dehydrated sludge.

[図9 の基礎実験デ−タから消化率を算出するためのデ−タの整理]
図9 から28日間の積算量を読み取ると
投入有機質汚泥量:2.733kg
消化ガス発生量:2.00m3N
投入有機質汚泥量当たりの消化ガス発生量:0.732m3N/kg
[Arrangement of data for calculating digestibility from basic experimental data in FIG. 9]
If we read the cumulative amount for 28 days from Fig. 9,
Input organic sludge amount: 2.733 kg
Digestion gas generation amount: 2.00m 3 N
Digestion gas generation rate per input organic sludge: 0.732m 3 N / kg

[消化率の算出(その1)物質収支に基づく方法]
下水汚泥(有機質)の分析値(重量%): H 6.33%, C
42.11%, N 6.55%
投入基質汚泥の炭素量:421.1g/kg(汚泥)=35.09mol/kg(汚泥)
消化ガス(CH4+CO2)の炭素量:0.732 m3N/kg(汚泥)=30.97mol/kg(汚泥)
消化率:30.97mol/kg(汚泥)÷35.09mol/kg(汚泥)= 0.88
[Calculation of digestibility (1) Method based on material balance]
Analytical value of sewage sludge (organic) (wt%): H 6.33%, C
42.11%, N 6.55%
Carbon content of input substrate sludge: 421.1g / kg (sludge) = 35.09mol / kg (sludge)
Carbon content of digestion gas (CH 4 + CO 2 ): 0.732 m 3 N / kg (sludge) = 30.97 mol / kg (sludge)
Digestibility: 30.97mol / kg (sludge) ÷ 35.09mol / kg (sludge) = 0.88

[消化率の算出(その2)熱収支に基づく方法]
消化ガス組成:CH4 60%、CO2
40%
CH4の熱量:9500kcal/m3N
下水汚泥の発熱量:4500kcal/kg
消化ガスの発熱量:9500kcal/m3N×0.60 = 5700kcal/ m3N
消化率:5700kcal/m3N×0.732
m3N/kg÷4500kcal/kg =
0.93
[Calculation of digestibility (part 2) Method based on heat balance]
Digestion gas composition: CH 4 60%, CO 2
40%
Calorific value of CH 4 : 9500kcal / m 3 N
Calorific value of sewage sludge: 4500kcal / kg
Calorific value of digestion gas: 9500kcal / m 3 N × 0.60 = 5700kcal / m 3 N
Digestibility: 5700kcal / m 3 N × 0.732
m 3 N / kg ÷ 4500kcal / kg =
0.93

[消化率の算出(その3)下水処理場の運転デ−タに基づく方法]
下水処理場の運転デ−タ図6 から
消化された有機質汚泥=11.00t/d−6.05t/d=4.95t/d
発生消化ガス量=4322.3m3N/d
汚泥1kgより発生する消化ガス量(理論値):4322m3N/d÷4950kg/d=0.87m3N/kg
投入有機質汚泥量に対応する消化ガス量:2.733kg×0.87m3N/kg=2.377m3N 消化率:2.0m3N÷2.37m3N=0.84
[Calculation of digestibility (part 3) Method based on operation data of sewage treatment plant]
Operating data of sewage treatment plant Organic sludge digested from Fig. 6 = 11.00t / d-6.05t / d = 4.95t / d
Generated digestion gas = 4322.3m 3 N / d
Digestion gas generated from 1kg of sludge (theoretical value): 4322m 3 N / d ÷ 4950kg / d = 0.87m 3 N / kg
Digestion gas amount corresponding to the charged organic sludge amount: 2.733kg × 0.87m 3 N / kg = 2.377m 3 N digestibility: 2.0m 3 N ÷ 2.37m 3 N = 0.84

[消化率の算出のまとめ]
脱水汚泥メタン発酵(図9)の消化率の計算結果をまとめると
[0035] 物質収支基準:88%、
[0036] 熱収支基準:93%、
[0037] 下水処理場の運転デ−タ基準:84%
消化率の平均値:88%
つまり15(DS)%濃度の脱水汚泥メタン発酵の連続実験デ−タの解析から約90%の消化率が得られることが明らかになった。
[Summary of digestibility calculation]
Summarizing the calculation results of digestibility of dehydrated sludge methane fermentation (Figure 9)
[0035] Mass balance standard: 88%,
[0036] Heat balance standard: 93%,
[0037] Sewage treatment plant operating data criteria: 84%
Average digestibility: 88%
In other words, the analysis of continuous experimental data of 15 (DS)% concentration dehydrated sludge methane fermentation revealed that a digestibility of about 90% was obtained.

[15(DS)%濃度の脱水汚泥メタン発酵の消化汚泥濃度]
15(DS)%濃度の脱水汚泥を消化率90%でメタン発酵を行うと発酵槽内の消化汚泥濃度は4(DS)% となるが、これは将に[0047][図8]で示された水分抜き取り式メタン発酵の消化汚泥濃度と同じものである。つまり投入下水汚泥を予め脱水する方式と発酵槽内の消化汚泥の水分を抜き取る方式はNH3の阻害要因以外は発酵速度・消化率に関しては全く同じであり、15(DS)%濃度の脱水汚泥で得た消化率90%は[0047][図8]の水分抜き取り式メタン発酵にも適用される。
[Digested sludge concentration of dehydrated sludge methane fermentation with 15 (DS)% concentration]
When dehydrated sludge with a concentration of 15 (DS)% is subjected to methane fermentation at a digestibility of 90%, the digested sludge concentration in the fermenter becomes 4 (DS)%, which is generally indicated by [0047] [Fig. 8]. It is the same as the digested sludge concentration of the extracted water methane fermentation. In other words, the method of dehydrating the input sewage sludge in advance and the method of extracting the water from the digested sludge in the fermenter are exactly the same in terms of fermentation rate and digestibility except for the NH 3 inhibition factor, and the dehydrated sludge with a concentration of 15 (DS)%. The digestibility of 90% obtained in the above is also applied to the water extraction type methane fermentation of [0047] [Fig. 8].

[何故消化率90%が得られるのか]
通常法メタン発酵では消化率は45〜60%と考えられていた事からすると、90%は大変な進歩である。この原因は基質汚泥濃度が上がることによって菌体濃度も上がり、可溶化菌が体外に分泌する可溶化酵素の濃度が上がる。その結果基質汚泥の可溶化反応が促進されるためであると考え、汚泥濃度とTOC総量( =水溶性のTOC量+消化ガス量をTOCに換算した値)の関係を測定した。
[Why is 90% digestibility achieved?]
In conventional methane fermentation, the digestibility is thought to be 45-60%, so 90% is a great improvement. The cause of this is that the concentration of the solubilizing enzyme secreted outside the body by the solubilized bacteria increases as the concentration of the substrate sludge increases and the concentration of the bacterial cells also increases. As a result, the solubilization reaction of the substrate sludge was promoted, and the relationship between the sludge concentration and the total amount of TOC (= water-soluble TOC amount + digested gas amount converted to TOC) was measured.

[汚泥濃度vsTOC総量の測定]
下水処理場から提供を受けた液状の生汚泥(基質汚泥)と液状の消化汚泥を混合して遠心管(500cm3)に均等に精秤し、遠心分離した後に上澄み液を除去すると共に蒸留水を添加して2〜15(DS)%濃度に調整した。次にこの遠心管に栓を装着して55℃の恒温槽でメタン発酵を行い、毎日遠心管中のTOCと発生した消化ガス量を測定した。経過日数4日、7日、10日、13日の測定値をプロットしたものが図10である。図10 から経過日に係わらずTOC総量に対する汚泥濃度効果はほぼ一定であることが分かる。
図9 の縦軸(TOC総量)(=水溶性のTOC量+消化ガス量をTOCに換算した値 )は遠心管(500cm3)に均等に精秤した汚泥から溶出した炭素量を(mg)で表した。
[Measurement of sludge concentration vs TOC total amount]
Liquid raw sludge (substrate sludge) provided by the sewage treatment plant and liquid digested sludge are mixed and precisely weighed in a centrifuge tube (500 cm 3 ). After centrifugation, the supernatant is removed and distilled water is added. Was added to adjust the concentration to 2 to 15 (DS)%. Next, a stopper was attached to this centrifuge tube, and methane fermentation was performed in a constant temperature bath at 55 ° C., and the TOC in the centrifuge tube and the amount of digestion gas generated were measured every day. FIG. 10 is a plot of the measured values of the elapsed days of 4, 7, 10, and 13. Fig. 10 shows that the sludge concentration effect on the total amount of TOC is almost constant regardless of the elapsed time.
The vertical axis (total amount of TOC) in Fig. 9 (= water-soluble TOC amount + digestion gas amount converted to TOC) is the amount of carbon eluted from sludge evenly weighed in a centrifuge tube (500 cm 3 ) (mg) Expressed in

[メタン発酵可溶化工程の反応速度解析]
基質汚泥濃度が上がることによって基質汚泥の可溶化反応が促進されることが図9 で実証された。これを基に可溶化工程の反応速度解析を行うと下記の様になる。つまりこの現象を整理すると下記の様な比例関係が浮上する。
[汚泥濃度]∝[菌体濃度] ∝[可溶化酵素濃度] ∝[可溶化反応速度]
この関係を化学反応式と反応速度式で表すと
化学反応式 : 基質汚泥 A + H2O → 可溶化有機物(有機酸など)a
可溶化酵素C
反応速度式 : da/dt = k・C
反応速度式の積分形: a = k・C・t
A:固体基質汚泥
a:可溶化有機物量(=メタンガス生成量)、
t:反応時間(滞留時間)、
C:酵素濃度、
k:反応速度定数(汚泥の組成物毎に異なった値になる)
反応工学的解析の結論を纏めると可溶化有機物量 a は可溶化酵素濃度 C と反応時間(滞留時間)tに比例するが、基質汚泥濃度には直接関係しないことである。つまり基質汚泥濃度が低くても高くても(4%でも15%でも)可溶化酵素濃度 と滞留時間さえ確保すれば90%消化率が得られ、発酵槽小型化は可溶化酵素濃度さえ上げれば実現可能と言うことである。
[Reaction rate analysis of methane fermentation solubilization process]
It was demonstrated in Fig. 9 that the solubilization reaction of substrate sludge is promoted by increasing the substrate sludge concentration. Based on this, the reaction rate analysis of the solubilization step is as follows. In other words, when this phenomenon is organized, the following proportional relationship emerges.
[Sludge concentration] ∝ [Bacteria concentration] ∝ [Solubilized enzyme concentration] ∝ [Solubilization reaction rate]
This relationship can be expressed by chemical reaction equation and reaction rate equation.
Chemical reaction formula: Substrate sludge A + H 2 O → Solubilized organic matter (organic acid, etc.) a
Solubilized enzyme C
Reaction rate formula: da / dt = k · C
Integral form of reaction rate equation: a = k · C · t
A: Solid substrate sludge
a: Solubilized organic matter amount (= methane gas production amount),
t: reaction time (residence time),
C: enzyme concentration,
k: Reaction rate constant (different values for each sludge composition)
The conclusion of the reaction engineering analysis is that the amount of solubilized organic matter a is proportional to the solubilized enzyme concentration C and the reaction time (residence time) t, but is not directly related to the substrate sludge concentration. In other words, whether the substrate sludge concentration is low or high (4% or 15%), 90% digestibility can be obtained as long as the solubilized enzyme concentration and residence time are secured. That is feasible.

この反応速度式によると脱水汚泥メタン発酵で得られた90%の消化率は汚泥の固形分濃度を15%にした結果、汚泥に繁殖する菌体濃度が上がり、菌体が分泌する可溶化酵素濃度が上がったことによるものと考えられる。つまり汚泥濃度15%は通常濃度4.5%の約3倍であり、可溶化酵素濃度も通常の約3倍になると考えれば通常法では消化率45%のものが90%(理論値に近い値)になることは妥当である。 According to this reaction rate equation, the digestibility of 90% obtained by dehydrated sludge methane fermentation has increased the concentration of cells that propagate in the sludge as a result of the solid content concentration of sludge being 15%, solubilizing enzymes secreted by the cells This is thought to be due to the increase in concentration. In other words, if the sludge concentration 15% is about 3 times the normal concentration 4.5% and the solubilizing enzyme concentration is also about 3 times the normal concentration, the normal method with a digestibility of 45% is 90% (value close to the theoretical value) It is reasonable to become.

この反応速度式によると基質汚泥濃度に関わらず菌体濃度さえ高めれば理論値に近い消化率を得ることも、発酵槽容積を小さくすることも出来る。本発明者はこの原理に基づいて発酵槽内の水分を抜き取って消化汚泥濃度を高く保ち、且つ取り扱う消化汚泥の体積を小さくする。その結果、発酵槽容積が同じであれば滞留時間が長くなる。この原理によって高性能のメタン発酵を行う方法を発明した。 According to this reaction rate equation, regardless of the substrate sludge concentration, if the bacterial cell concentration is increased, the digestibility close to the theoretical value can be obtained and the fermenter volume can be reduced. Based on this principle, the present inventor extracts moisture in the fermenter to keep the digested sludge concentration high and to reduce the volume of digested sludge to be handled. As a result, if the fermenter volume is the same, the residence time becomes longer. Based on this principle, a method of performing high-performance methane fermentation was invented.

滞留時間、菌体濃度、メタン発酵速度、消化率、発酵槽容積の関係を定量的な解析を通して明らかにするために図1 に現実に操業されている下水処理場の物質収支を記入して図6
とし、機械濃縮の図2 には消化率90%([0036][消化率の算出]を参照)と発酵槽内の汚泥濃度3(DS)%を想定した物質収支を記入して図7 とし、槽の内表面に設けたフィルタ−による水分抜き取り方式の図4 には消化率90%と発酵槽内の汚泥濃度4(DS)%を想定した物質収支を記入して図8
とした。
To clarify the relationship between residence time, bacterial cell concentration, methane fermentation rate, digestibility, and fermenter volume through quantitative analysis, Fig. 1 shows the material balance of the sewage treatment plant that is actually operated. 6
In Fig. 2 of mechanical concentration, enter the mass balance assuming a digestion rate of 90% (see [0036] [Calculation of digestibility]) and a sludge concentration in the fermenter of 3 (DS)%. Figure 4 shows the water removal method using a filter provided on the inner surface of the tank. Figure 8 shows the material balance assuming a digestibility of 90% and a sludge concentration in the fermenter of 4 (DS)%.
It was.

通常法の物質収支図(図6)と水分抜き取り方式の物質収支図(図7、図8)の3つの図は発酵槽の大きさ、投入汚泥の汚泥濃度・投入量は全て同じであるが、発酵槽内の水分を抜き取る量によって発酵槽内の菌体濃度、基質有機物の滞留時間が大幅に異なっていて、その結果として消化率が45%から90%に進化する事を示している。これが本発明の原理を分かり易く明示する図である。 The three figures, the mass balance diagram of the normal method (Fig. 6) and the mass balance diagram of the water extraction method (Figs. 7 and 8), have the same fermenter size, sludge concentration and amount of sludge. This shows that the concentration of bacterial cells in the fermenter and the residence time of the organic substances in the fermenter differ greatly depending on the amount of water extracted from the fermenter, and as a result, the digestibility has evolved from 45% to 90%. This is a diagram clearly illustrating the principle of the present invention.

図7と図8 は発酵槽内の水分を抜き取る方法の違いを示したものである。図7の機械濃縮は高いコストがかかるために水分の抜き取り量を少なめにして発酵槽内の消化汚泥濃度を3%と設定しているが、図8 は発酵槽の内表面にフィルタ−を設けて、そのフィルタ−に掛かる水圧を利用して水分の抜き取りを行う方式であるために水分抜き取りコストが割安である事を配慮して、水分抜き取り量を多めにして発酵槽内の消化汚泥濃度を4%と設定している。 FIG. 7 and FIG. 8 show the difference in the method of extracting moisture from the fermenter. Since the mechanical concentration in FIG. 7 is costly, the amount of water extracted is reduced and the digested sludge concentration in the fermenter is set to 3%. In FIG. 8, a filter is provided on the inner surface of the fermenter. In consideration of the fact that the water extraction cost is cheap because the water pressure is applied to the filter, the digestion sludge concentration in the fermenter is increased by increasing the water extraction amount. 4% is set.

図6、図7、図8の物質収支図から下記の計算方式に従って通常のメタン発酵に対する発酵槽内での菌体濃度増加率と滞留時間増加率を算出した。
発酵槽内の菌体量を計量する事は困難であるためメタン発酵の進行と共に質量変化を伴わない固体無機物を菌体量の指標とし、発酵槽内の水分抜き取りによって生じる菌体濃度の増加率(=固体無機物濃度の増加率)を次式によって算出した。
From the mass balance charts of FIGS. 6, 7, and 8, the cell concentration increase rate and residence time increase rate in the fermenter for normal methane fermentation were calculated according to the following calculation method.
Since it is difficult to measure the amount of cells in the fermenter, the rate of increase in the concentration of cells produced by removing moisture from the fermenter using solid inorganic substances that do not change in mass as the methane fermentation progresses as an indicator of the amount of cells. (= Increase rate of solid inorganic substance concentration) was calculated by the following equation.

通常法メタン発酵に対する[槽内の菌体濃度増加率]=
(水分抜き取り式の槽内固体無機物濃度)÷(通常法の槽内固体無機物濃度 )
図7の場合:[槽内の菌体濃度増加率]=1.94%÷0.47% =4.12
図8 の場合:[槽内の菌体濃度増加率]=2.57%÷0.47% =5.46
同様に通常法メタン発酵に対する[槽内の滞留時間増加率]=
(通常法の排出消化汚泥量)÷(水分抜き取り式の排出消化汚泥量 )
図7 の場合:[槽内の滞留時間増加率]=421.05t/d÷103.33t/d=4.07
図8 の場合:[槽内の滞留時間増加率]=421.05t/d÷77.5t/d=5.43
[Increase rate of bacterial cell concentration in the tank] for normal methane fermentation =
(Concentration of solid inorganic substance in the tank of the water removal type) ÷ (Concentration of solid inorganic substance in the tank of the normal method)
In the case of Fig. 7: [Increase rate of bacterial cell concentration in the tank] = 1.94% ÷ 0.47% = 4.12.
In the case of Figure 8: [Increase rate of bacterial cell concentration in the tank] = 2.57% ÷ 0.47% = 5.46
Similarly, [Increase rate of residence time in tank] for conventional methane fermentation =
(Exhaust digested sludge volume of normal method) ÷ (Exhaust digested sludge volume of water removal type)
In the case of Fig. 7: [Increase rate of residence time in the tank] = 421.05 t / d ÷ 103.33 t / d = 4.07
In the case of Fig. 8: [Increase rate of residence time in the tank] = 421.05 t / d ÷ 77.5 t / d = 5.43

以上の計算結果を下記 表2 に水分抜き取り式メタン発酵と通常法メタン発酵の比較表として示す。

Figure 0004768881
The above calculation results are shown in Table 2 below as a comparison table between the water extraction type methane fermentation and the conventional methane fermentation.
Figure 0004768881

表2 は発酵槽から水分を抜き取る方式のメタン発酵と通常法メタン発酵との比較を示したものであるが、発酵槽の中から水分を抜き取っても、投入汚泥(バイオマス)の段階で水分を除去しても滞留時間・菌体濃度と消化率の関係は同じ傾向が得られることから、脱
水汚泥メタン発酵と発酵槽内の水分抜き取り式メタン発酵は原理的には同じものであることを示している。([0039]を参照)
Table 2 shows a comparison between the methane fermentation method in which water is extracted from the fermenter and the normal method methane fermentation. Even if water is extracted from the fermenter, water is removed at the input sludge (biomass) stage. Even if it is removed, the relationship between residence time / bacterial cell concentration and digestibility has the same tendency, indicating that the dehydrated sludge methane fermentation and the water extraction type methane fermentation in the fermenter are the same in principle. ing. (See [0039])

[0042][メタン発酵可溶化工程の反応速度解析]では
[汚泥濃度]∝[菌体濃度] ∝[可溶化酵素濃度] ∝[可溶化反応速度]
の関係と[メタンガス生成量] =k[可溶化酵素濃度] ×[滞留時間]の関係について述べているが、表2 から分かるように滞留時間増加率と菌体濃度増加率は同数なのでメタンガス生成量に対する水分抜き取りの効果は水分抜き取り量の二乗に効く事になり、その結果少しの水分抜き取り量でも消化率への影響が大きい事が分かった。
[0042] [Reaction rate analysis of methane fermentation solubilization process]
[Sludge concentration] ∝ [Bacteria concentration] ∝ [Solubilized enzyme concentration] ∝ [Solubilization reaction rate]
And [methane gas production amount] = k [solubilized enzyme concentration] x [residence time] relationship, as can be seen from Table 2, the increase in residence time and cell concentration increase rate are the same, so methane gas production It was found that the effect of removing water on the amount was effective to the square of the amount of water removed, and as a result, even a small amount of removed water greatly affected the digestibility.

またこの事は発酵槽の小型化の可能性をも示唆している。
図7の例では[可溶化酵素濃度増加率] ×[滞留時間増加率]≒25 でこの内消化率を45%から90%に増加するためのポテンシャルとして5を振り当て、残りの5を発酵槽の小型化に振り当てると発酵槽容積は通常法メタン発酵の1/5で収まることになる。つまり新しく開発した計算方式によると発酵槽内の消化汚泥(DS)濃度を4%に設定するだけで消化率を45%から90%に、発酵槽容積を通常法メタン発酵の1/5に出来る可能性が見えてきた。
水分抜き取り式メタン発酵を実用化段階で検証するために 表2 に基づいて下水処理場での1/1000規模の実証試験の準備が行われている。
This also suggests the possibility of downsizing the fermenter.
In the example of Fig. 7, [Solubilized enzyme concentration increase rate] x [Residence time increase rate] ≒ 25, and 5 is assigned as the potential to increase this digestion rate from 45% to 90%, and the remaining 5 is fermented. If it is allocated to downsizing of the tank, the fermenter volume will fit in 1/5 of normal methane fermentation. In other words, according to the newly developed calculation method, simply by setting the digested sludge (DS) concentration in the fermenter to 4%, the digestibility can be reduced from 45% to 90%, and the fermenter volume can be reduced to 1/5 of the conventional methane fermentation. The possibility has been seen.
Based on Table 2, preparations for a 1/1000 scale demonstration test at a sewage treatment plant are underway to verify dehydrated methane fermentation at the practical application stage.

通常法メタン発酵の物質流れの概念図Conceptual diagram of material flow of conventional methane fermentation 機械濃縮による水分抜き取り式メタン発酵の物質流れの概念図Conceptual diagram of material flow in methane fermentation with water removal by mechanical concentration 重力濃縮による水分抜き取り式メタン発酵の物質流れの概念図Conceptual diagram of material flow in methane fermentation with water removal by gravity concentration 発酵槽内表面のフィルタ−による水分抜き取り式メタン発酵の概念図Conceptual diagram of methane fermentation with water removal by filter on inner surface of fermenter 発酵槽外付けの導管式水分抜き取り装置の概念図Conceptual diagram of a conduit-type moisture removal device attached to a fermenter 通常法メタン発酵の物質収支図Mass balance diagram of ordinary methane fermentation 機械濃縮による水分抜き取り式メタン発酵の物質収支図Material balance diagram of methane fermentation with water removal by mechanical concentration フィルタ−による水分抜き取り式メタン発酵の物質収支図Mass balance diagram of methane fermentation with water removal by filter 脱水汚泥メタン発酵のベンチスケール連続実験デ−タの図Bench scale continuous experimental data for dehydrated sludge methane fermentation 汚泥濃度(DS%)とTOC総量(mg)(=水溶性のTOC量+発生ガス量をTOCに換算した値)の関係を示す図Figure showing the relationship between sludge concentration (DS%) and total TOC (mg) (= water-soluble TOC amount + generated gas amount converted to TOC)

Claims (8)

循環使用される消化汚泥を菌体として用い、基質バイオマスを消化させるメタン発酵において、発酵槽内に消化汚泥を収容し、該発酵槽内の消化汚泥の水圧を利用して前記消化汚泥を濾過することにより、消化汚泥の中から水分を抜き取ることを特徴とするメタン発酵方法。In methane fermentation that digests substrate biomass using digested sludge that is circulated and used as cells, the digested sludge is stored in the fermenter and the digested sludge is filtered using the water pressure of the digested sludge in the fermenter. A methane fermentation method characterized by extracting moisture from digested sludge. 嫌気性微生物群および好気性微生物群の少なくとも何れか一からなる汚泥を熱処理して微生物の細胞を破壊して投入基質バイオマスに添加することを特徴とする請求項1記載のメタン発酵方法。The methane fermentation method according to claim 1, wherein sludge comprising at least one of anaerobic microorganism group and aerobic microorganism group is heat-treated to destroy microorganism cells and added to the input substrate biomass. 発酵槽に凝集剤を添加して消化汚泥をフロック状にする事を特徴とする請求項1記載のメタン発酵方法。The methane fermentation method according to claim 1, wherein a flocculant is added to the fermenter to make the digested sludge floc. 発酵槽内の消化汚泥の水圧を利用した濾過により発酵槽から抜き出した脱離水からアンモニア資源を回収することを特徴とする請求項1記載のメタン発酵方法。The methane fermentation method according to claim 1, wherein ammonia resources are recovered from the desorbed water extracted from the fermenter by filtration using the water pressure of the digested sludge in the fermenter. 発酵槽内の消化汚泥の水圧を利用した濾過により発酵槽から抜き出した脱離水にマグネシュウムイオン(Mg2+)を添加することによって燐資源を回収することを特徴とする請求項1記載のメタン発酵方法。2. The methane fermentation according to claim 1, wherein phosphorus resources are recovered by adding magnesium ions (Mg 2+ ) to desorbed water extracted from the fermenter by filtration using the water pressure of digested sludge in the fermenter. Method. アンモニア資源を回収したTOC成分を含む脱離水をグラニュール化した嫌気性微生物群を用いた発酵槽に導いてメタンを回収することを特徴とする請求項4記載のメタン発酵方法。The methane fermentation method according to claim 4, wherein the methane is recovered by introducing it into a fermentor using an anaerobic microorganism group obtained by granulating the desorbed water containing the TOC component from which the ammonia resources have been recovered. 循環使用される消化汚泥を菌体として用い、基質バイオマスを消化させるメタン発酵において、発酵槽と、発酵槽に設けられ、発酵槽内の消化汚泥の水圧を利用して前記消化汚泥を濾過するフィルターと、該発酵槽が収容された外套と、を備え、前記フィルターは、発酵槽の槽壁に形成された穴と、該穴を覆うように前記発酵槽の内壁面に貼り付けられた濾布とを備え、前記外套は、前記フィルターで濾過された脱離水を排出するための排出口を備えることを特徴とするメタン発酵装置。In methane fermentation that digests substrate biomass using digested sludge that is circulated as fungus body, a filter that is provided in the fermenter and the fermenter and filters the digested sludge using the water pressure of the digested sludge in the fermenter And a mantle containing the fermenter, wherein the filter has a hole formed in the tank wall of the fermenter and a filter cloth affixed to the inner wall surface of the fermenter so as to cover the hole And the mantle has a discharge port for discharging the desorbed water filtered by the filter. 循環使用される消化汚泥を菌体として用い、基質バイオマスを消化させるメタン発酵において、発酵槽と、前記発酵槽に連通して設けられた外付け導管と、前記導管に設けられ、発酵槽内の消化汚泥の水圧を利用して前記消化汚泥を濾過するフィルターと、該導管が挿入された外套と、を備え、前記フィルターは、前記導管の管壁に形成された穴と、該穴を覆うように前記導管の内壁面に貼り付けられた濾布とを備え、前記外套は、前記フィルターで濾過された脱離水を排出するための排出口を備えることを特徴とするメタン発酵装置。In methane fermentation that digests substrate biomass using digested sludge that is circulated and used as bacterial cells, a fermenter, an external conduit provided in communication with the fermenter, and a conduit provided in the fermenter A filter for filtering the digested sludge using the hydraulic pressure of the digested sludge; and a mantle with the conduit inserted therein, the filter covering a hole formed in a tube wall of the conduit and the hole And a filter cloth affixed to the inner wall surface of the conduit, and the mantle has a discharge port for discharging the desorbed water filtered by the filter.
JP2010537190A 2009-07-31 2010-07-27 Dehydrated methane fermentation Expired - Fee Related JP4768881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537190A JP4768881B2 (en) 2009-07-31 2010-07-27 Dehydrated methane fermentation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009178993A JP2010051955A (en) 2008-08-01 2009-07-31 Moisture extraction type methane fermentation
JP2009178993 2009-07-31
JP2010537190A JP4768881B2 (en) 2009-07-31 2010-07-27 Dehydrated methane fermentation
PCT/JP2010/062601 WO2011013655A1 (en) 2009-07-31 2010-07-27 Water-withdrawal type methane fermentation method

Publications (2)

Publication Number Publication Date
JP4768881B2 true JP4768881B2 (en) 2011-09-07
JPWO2011013655A1 JPWO2011013655A1 (en) 2013-01-07

Family

ID=43530012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010537190A Expired - Fee Related JP4768881B2 (en) 2009-07-31 2010-07-27 Dehydrated methane fermentation

Country Status (2)

Country Link
JP (1) JP4768881B2 (en)
WO (1) WO2011013655A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168598A (en) * 1986-01-17 1987-07-24 Hitachi Plant Eng & Constr Co Ltd Methane fermenting device
JPH04121183A (en) * 1990-09-10 1992-04-22 Hitachi Zosen Corp Support vessel for fluid bed reaction tank
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP2002263699A (en) * 2001-03-12 2002-09-17 Sumitomo Heavy Ind Ltd Digester
JP2003001299A (en) * 2001-06-18 2003-01-07 Kenji Kida Method for treating excess sludge
JP2005238103A (en) * 2004-02-26 2005-09-08 Jfe Engineering Kk Treatment method for organic waste
JP2007083217A (en) * 2005-09-22 2007-04-05 Terabondo:Kk Method for dehydrating and carbonizing wet organic substance, and apparatus therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168598A (en) * 1986-01-17 1987-07-24 Hitachi Plant Eng & Constr Co Ltd Methane fermenting device
JPH04121183A (en) * 1990-09-10 1992-04-22 Hitachi Zosen Corp Support vessel for fluid bed reaction tank
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP2002263699A (en) * 2001-03-12 2002-09-17 Sumitomo Heavy Ind Ltd Digester
JP2003001299A (en) * 2001-06-18 2003-01-07 Kenji Kida Method for treating excess sludge
JP2005238103A (en) * 2004-02-26 2005-09-08 Jfe Engineering Kk Treatment method for organic waste
JP2007083217A (en) * 2005-09-22 2007-04-05 Terabondo:Kk Method for dehydrating and carbonizing wet organic substance, and apparatus therefor

Also Published As

Publication number Publication date
WO2011013655A1 (en) 2011-02-03
JPWO2011013655A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
CN101337838B (en) Combined anaerobic fermentation process for organic solid wastes
EP2323954B1 (en) Methods for processing organic waste
Borja et al. A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures
CN101823806B (en) Piggery waste water treatment method based on strong-thin shunt
CN102225825B (en) Zero-energy-consumption enhanced AB (adsorption-biodegradation) treatment method for urban sewage
EA024049B1 (en) Sludge treatment method and apparatus and application of said method and apparatus for wastewater bio-treatment
Shi et al. Two-stage anaerobic digestion of food waste coupled with in situ ammonia recovery using gas membrane absorption: Performance and microbial community
CN102190400A (en) Method for applying integrated technology of combination of membrane biochemistry and nanofiltration membrane to high-density leachate advanced treatment and recycling
Leite et al. Feasibility of thermophilic anaerobic processes for treating waste activated sludge under low HRT and intermittent mixing
CN101333050A (en) Waste water treating process of salt-containing propenoic acid and/or salt-containing propylene ester
Ubay et al. Anaerobic treatment of olive mill effluents
CN102107989A (en) Treatment method of potato type non-grain starch fuel ethanol distiller solution
Hamdi et al. Anaerobic digestion of olive mill wastewaters in fully mixed reactors and in fixed film reactors
Alkaya et al. Anaerobic‐Fed and Sequencing‐Batch Treatment of Sugar‐Beet Processing Wastes: A Comparative Study
Ding et al. Simultaneous phosphorus recovery, sulfide removal, and biogas production improvement in electrochemically assisted anaerobic digestion of dairy manure
Huang et al. A high‐rate anaerobic biofilm reactor for biomethane recovery from source‐separated blackwater at ambient temperature
Wu et al. Enhanced sludge digestion using anaerobic dynamic membrane bioreactor: Effects of hydraulic retention time
CN202543012U (en) Fluid sludge treatment device for generating clean combustible gas
CN201512461U (en) Anaerobic-aerobic integrated water treatment bioreactor
CN204417278U (en) Culturing wastewater processing system
Ciftci et al. Nine years of full-scale anaerobic—Aerobic treatment experiences with fermentation industry effluents
Lohani et al. A septic tank‐UASB combined system for domestic wastewater treatment: a pilot test
Malakahmad et al. Production of energy from palm oil mill effluent during start-up of carrier anaerobic baffled reactor (CABR) equipped with polymeric media
JP4768881B2 (en) Dehydrated methane fermentation
CN105819626A (en) Combined customized sewage disposal system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees