JP4768646B2 - Radiation detection method - Google Patents

Radiation detection method Download PDF

Info

Publication number
JP4768646B2
JP4768646B2 JP2007040892A JP2007040892A JP4768646B2 JP 4768646 B2 JP4768646 B2 JP 4768646B2 JP 2007040892 A JP2007040892 A JP 2007040892A JP 2007040892 A JP2007040892 A JP 2007040892A JP 4768646 B2 JP4768646 B2 JP 4768646B2
Authority
JP
Japan
Prior art keywords
carrier
radiation
hole
irradiation
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007040892A
Other languages
Japanese (ja)
Other versions
JP2008203137A (en
Inventor
展男 塩見
憲太郎 野口
幸次 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
House Foods Corp
Original Assignee
House Foods Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by House Foods Corp filed Critical House Foods Corp
Priority to JP2007040892A priority Critical patent/JP4768646B2/en
Publication of JP2008203137A publication Critical patent/JP2008203137A/en
Application granted granted Critical
Publication of JP4768646B2 publication Critical patent/JP4768646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、殺菌や改質等のために放射線を照射した食品原料であるか否かを検知する熱ルミネッセンス(Thermoluminescence)法(以下、「TL法」という。)において、食品原料に付着している鉱物質に放射線を照射するのに用いる放射線照射検知方法に関する。 In the thermoluminescence method (hereinafter referred to as “TL method”) for detecting whether or not a food material is irradiated with radiation for sterilization or modification, the present invention adheres to the food material. have a radiation irradiation Iken known method used to irradiating the mineral.

食品原料を殺菌又は改質する等のために放射線を照射することが知られている。食品メーカ等は、入手した原料が放射線照射されたのか否かを確認する必要がある場合、従来は、専門機関等に、食品原料の一部を送って、その調査を依頼していた。専門機関等は、送られてきた食品原料に付着している微細な鉱物質を収集して、これをTL法により、放射線照射が実施された品物であるか否かを判定していた。   It is known to irradiate radiation for sterilizing or modifying food ingredients. When it is necessary for food manufacturers to check whether or not the obtained raw material has been irradiated, conventionally, a part of the food raw material has been sent to a specialized institution or the like to request an investigation. A specialized institution or the like collects fine mineral substances adhering to the food ingredients that have been sent, and determines whether or not this is a product that has been subjected to radiation irradiation by the TL method.

TL法は幾つかの工程からなる。第1工程は、収集した鉱物質を加熱して、当該鉱物質に蓄積された放射線エネルギを熱発光させて、この発光曲線を測定し、発光ピーク温度と、昇温範囲の発光量の積分値を求める(Glow−1測定)。次の第2工程では、この鉱物質に所定量の放射線(典型的には、1kGyの放射線)を再照射し、そして、次の第3工程で、当該鉱物質を再加熱して当該鉱物質に蓄積された放射線エネルギを熱発光させて、この発光曲線を測定し、発光ピーク温度と、昇温範囲の発光量の積分値を求める(Glow−2測定)。最後の第4工程は判定である。この判定は、Glow−1測定のデータとGlow−2測定のデータから、(1)150〜250℃の範囲に発光曲線のピークがあり、(2)TL比(Glow−1での発光量の積分値÷Glow−2での発光量の積分値)が例えば0.1よりも大きいときには、当該食品原料は放射線照射が実施されていると判定される。   The TL method consists of several steps. In the first step, the collected mineral is heated and the radiation energy accumulated in the mineral is thermally emitted, the emission curve is measured, and the integrated value of the emission peak temperature and the emission amount in the temperature rising range is measured. (Glow-1 measurement). In the next second step, the mineral is re-irradiated with a predetermined amount of radiation (typically 1 kGy radiation), and in the next third step, the mineral is reheated to re-heat the mineral. The radiation energy accumulated in the sample is thermally emitted, the emission curve is measured, and the integrated value of the emission peak temperature and the emission amount in the temperature rising range is obtained (Glow-2 measurement). The final fourth step is determination. This determination is based on the data of Glow-1 measurement and Glow-2 measurement, and (1) there is a peak of the emission curve in the range of 150 to 250 ° C., and (2) the TL ratio (the amount of light emission at Glow-1 When (integral value ÷ integral value of light emission amount at Glow−2) is greater than 0.1, for example, it is determined that the food material is irradiated with radiation.

食品メーカ等は、食品原料をロット毎に管理して、各ロットの食品原料の一部を専門機関等に送り、専門機関等に、Glow−1測定、放射線再照射、Glow−2測定の実施を依頼していた。他の態様として、放射線照射設備を備えていない、例えば食品メーカや判定業者等がTL法による検知を行うとした場合、収集した鉱物質からGlow−1測定のデータを収集した後に、放射線照射を行う施設を備えた専門機関等に送り、専門機関等から返却された放射線再照射後の鉱物質に対してGlow−2測定のデータを収集することによって、放射線照射が実施された食品原料であるか否かの判定を行う必要があった。   Food manufacturers manage food raw materials for each lot, send a part of food raw materials of each lot to specialized institutions, etc., and conduct Glow-1 measurement, radiation re-irradiation, and Glow-2 measurements to specialized institutions I was asking. As another aspect, when a radiation manufacturer is not provided, for example, when a food manufacturer or a determination trader performs detection by the TL method, after collecting Glow-1 measurement data from collected minerals, radiation irradiation is performed. It is a food material that has been irradiated by collecting Glow-2 measurement data for minerals after radiation re-irradiation sent to specialized institutions equipped with facilities to perform and returned from specialized institutions It was necessary to determine whether or not.

本発明の目的は、食品原料から収集した鉱物質にTL法を適用して、当該食品原料が放射線照射が実施された品物であるか否かを検知する場合に、食品メーカや判定業者、放射線を照射する専門機関等にとって好都合な放射線照射検知方法を提供することにある。 The object of the present invention is to apply a TL method to minerals collected from food materials and detect whether the food material is a product that has been subjected to radiation irradiation. It is to provide a convenient radiation irradiation Iken intellectual way for specialized agencies such as irradiation with.

本発明の更なる目的は、放射線照射機関等から離れた者が、Glow−1測定後の鉱物質を放射線照射機関等に送り、放射線照射機関等から受け取った鉱物質をGlow−2測定する場合に、放射線照射機関との間で鉱物質の搬送が容易な放射線照射検知方法を提供することにある。 A further object of the present invention is that a person away from a radiation irradiation engine or the like sends a mineral after Glow-1 measurement to the radiation irradiation engine or the like, and performs a Glow-2 measurement of the mineral received from the radiation irradiation engine or the like. Another object of the present invention is to provide a radiation irradiation detection method that makes it easy to transport minerals to and from a radiation irradiation engine.

上記の技術的課題は、本発明によれば、
食品原料から収集した鉱物質を介して、当該食品原料が放射線照射した品物であるか否かをTL法によって判定するために、該鉱物質を加熱して発光量を測定する熱ルミネッセンス測定装置を設置した判定場所と、前記鉱物質に放射線を照射する放射線再照射場所とが地理的に離れて、前記判定場所と前記放射線再照射場所との間で前記鉱物質を搬送することにより、放射線照射を実施した食品原料であるか否かを判定する放射線照射検知方法であって、
周囲壁を備えた試料皿と、
互いに平行な平らな上面及び下面と、該上面と下面のうち少なくとも上面に開放した複数の穴とを備えたキャリアであって、各穴は、その高さが前記試料皿の高さと実質的同じで且つ前記試料皿の周囲壁と相補的な形状を備え、各穴に前記試料皿を収容することができるキャリアと、
前記キャリアの前記穴を覆うために、該穴が前記キャリアの上面だけに開放しているときには該キャリアの上面に設置され、該穴が前記キャリアの上面と下面に開放しているときには該キャリアの上面と下面に設置される硬質のプレートと、
該プレートを前記キャリアに固定するための固定部材と、を用意し、
前記判定場所において、前記食品原料から収集した鉱物質を前記試料皿に入れて、前記判定場所で前記鉱物質の発光量を測定するGlow−1工程と、
前記判定場所において、該Glow−1工程が終わった鉱物質を入れた前記試料皿を前記キャリアの穴に収容した後に前記プレートで覆って前記固定手段で該プレートを前記キャリアに固定する第2工程と、
前記試料皿を収容し且つ前記プレートで覆った前記キャリアを、前記判定場所から前記放射線再照射場所まで搬送する第3工程と、
前記放射線再照射場所において、前記キャリアに前記試料皿を入れたままで放射線を照射する第4工程と、
前記放射線再照射場所において、前記第4工程が終わった後に、前記放射線再照射場所から前記判定場所まで、前記試料皿を収容し且つ前記プレートで覆った前記キャリアを搬送する第5工程と、
前記判定場所において、前記プレートを外して前記キャリアの穴から試料皿を取り出して、前記鉱物質の発光量を測定するGlow−2工程と、
前記判定場所において、Glow−1工程で得られた測定結果とGlow−2工程で得られた測定結果とを比較することにより前記食品原料が放射線照射された品物であるか否かを判定する第6工程とを有する放射線照射検知方法を提供することにより達成される。
The above-mentioned technical problem, according to the onset Akira,
A thermoluminescence measuring device that measures the amount of luminescence by heating the mineral substance to determine whether the food ingredient is a product irradiated with radiation through the mineral substance collected from the food ingredient. Radiation irradiation is carried out by transporting the mineral matter between the determination location and the radiation re-irradiation location, where the installed determination location and the radiation re-irradiation location for irradiating the mineral with radiation are geographically separated. It is a radiation irradiation detection method for determining whether or not it is a food material that has been implemented,
A sample dish with a surrounding wall;
A carrier comprising flat upper and lower surfaces parallel to each other and a plurality of holes opened on at least one of the upper and lower surfaces, each hole having a height substantially the same as the height of the sample pan And a carrier having a shape complementary to the peripheral wall of the sample dish, and capable of accommodating the sample dish in each hole;
In order to cover the hole of the carrier, when the hole opens only on the upper surface of the carrier, it is installed on the upper surface of the carrier, and when the hole opens on the upper surface and lower surface of the carrier, Hard plates installed on the top and bottom surfaces;
A fixing member for fixing the plate to the carrier;
In the determination place, the mineral substance collected from the food raw material is put in the sample pan, and the light emission amount of the mineral substance is measured at the determination place, Glow-1 step,
In the determination place, the second step of fixing the plate to the carrier by the fixing means after covering the sample dish containing the mineral after completion of the Glow-1 step in the hole of the carrier and covering with the plate. When,
A third step of transporting the carrier containing the sample dish and covered with the plate from the determination location to the radiation re-irradiation location;
A fourth step of irradiating with radiation while leaving the sample dish in the carrier at the radiation re-irradiation place;
In the radiation re-irradiation place, after the fourth step is finished, from the radiation re-irradiation place to the determination place, a fifth step of transporting the carrier containing the sample dish and covered with the plate;
In the determination place, remove the plate and take out the sample dish from the hole of the carrier, Glow-2 step of measuring the amount of light emission of the mineral,
In the determination place, the measurement result obtained in the Glow-1 process and the measurement result obtained in the Glow-2 process are compared to determine whether or not the food material is an irradiated item. This is achieved by providing a radiation irradiation detection method having six steps .

すなわち、本発明によれば、熱ルミネッセンス測定装置を設置した判定場所と、放射線を照射する設備を備えた放射線再照射場所との間を、放射線照射用器具を使って試料(食品原料から収集した鉱物質)を搬送することで、放射線再照射場所で放射線を照射する際に放射線照射用器具のままで、該放射線照射用器具内の鉱物質に放射線の照射を実施することができと共に、判定場所では、TL法を円滑に実施することができる。   That is, according to the present invention, between the determination place where the thermoluminescence measuring device is installed and the radiation re-irradiation place equipped with the facility for irradiating radiation, the sample (collected from the food raw material) is used. By transporting (mineral substances), it is possible to irradiate the minerals in the radiation irradiating equipment while irradiating the radiation at the radiation re-irradiation site, and determine the radiation. In place, the TL method can be carried out smoothly.

以下に、添付の図面に基づいて本発明の好ましい実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、納品された食品原料(例えば、香辛料や乾燥野菜)が放射線照射された品物であるか否かを、納品を受けた食品メーカ又は判定業者が自社内で判定するためのフロー図である。食品メーカ又は判定業者Aは、自社内に図2に示す熱ルミネッセンス測定装置(TL測定装置)1を備え、このTL測定装置1を使ってGlow-1、Glow-2の測定が実施され、その測定データから、検査対象の食品原料が放射線照射された品物であるか否かの判定が行われる。   FIG. 1 is a flow chart for a food maker or a determination trader who receives a delivery to determine whether the delivered food material (for example, spices or dried vegetables) is a product irradiated with radiation. is there. A food manufacturer or a judgment company A has a thermoluminescence measuring device (TL measuring device) 1 shown in FIG. 2 in the company, and the TL measuring device 1 is used to measure Glow-1 and Glow-2. From the measurement data, it is determined whether or not the food material to be inspected is a product irradiated with radiation.

図2のTL測定装置1は、従来から既知の装置であり、検査対象の食品原料から収集した鉱物質を入れた試料皿2をヒータ3で加熱して、鉱物質に蓄積されている放射線のエネルギを熱発光させて、その発光量を計測するものである。   The TL measuring device 1 in FIG. 2 is a conventionally known device, and the sample dish 2 containing the mineral collected from the food raw material to be inspected is heated by the heater 3 so that the radiation accumulated in the mineral is collected. Energy is emitted by heat and the amount of light emitted is measured.

食品メーカ又は判定業者Aは、TL測定装置1を使ってGlow-1測定を実施した後、これに使用した試料皿2に鉱物質を入れたまま、放射線照射用器具10(図3、図4)を使って、放射線を照射する設備を備えた専門機関等に送り、専門機関等は、放射線照射用器具10のまま放射線を照射し、その後、放射線照射装置10を食品メーカ又は判定業者Aに返却する(図1)。   After the food manufacturer or the determination trader A performs the Glow-1 measurement using the TL measuring device 1, the radiation irradiation instrument 10 (FIGS. 3 and 4) is kept while the mineral substance is put in the sample pan 2 used for the measurement. ) To a specialized institution equipped with a facility for irradiating radiation, and the specialized institution irradiates the radiation as it is with the radiation irradiating device 10, and then sends the radiation irradiating apparatus 10 to the food manufacturer or the judgment supplier A Return (Figure 1).

図3、図4を参照して放射線照射用器具10を説明する。分解斜視図である図3を参照して、放射線照射用器具10は、平面視矩形のキャリア11と、このキャリア11を覆う平らな硬質のプレート13とを有する。キャリア11は、横55mm×縦50mm×厚み10mmのアルミニウム製やステンレス製のブロックから構成されて、この一方の平らな表面に合計12個の穴12が横3列、縦4列に整列した状態で形成されている。この合計12個の穴12は、同じ直径の円形穴であり、この穴12に試料皿2が収容される。試料皿2は、アルミニウム製であり、平面視円形の周囲壁2aと平らな円形底2bを有する。穴12の直径は、試料皿2の直径よりも若干大きな寸法を有するのが、穴12から試料皿2をピンセットを使って出し入れするのに好ましい。また、穴12の高さ寸法は、試料皿2の周囲壁2aの高さ寸法と実質的に同じであるのがよい。   The radiation irradiation instrument 10 will be described with reference to FIGS. 3 and 4. Referring to FIG. 3 that is an exploded perspective view, the radiation irradiating device 10 includes a carrier 11 having a rectangular shape in plan view, and a flat hard plate 13 that covers the carrier 11. The carrier 11 is composed of an aluminum or stainless steel block having a width of 55 mm, a length of 50 mm, and a thickness of 10 mm. A total of 12 holes 12 are arranged in three rows and four rows on one flat surface. It is formed with. The total twelve holes 12 are circular holes having the same diameter, and the sample dish 2 is accommodated in the holes 12. The sample dish 2 is made of aluminum and has a peripheral wall 2a that is circular in plan view and a flat circular bottom 2b. It is preferable that the diameter of the hole 12 is slightly larger than the diameter of the sample dish 2 in order to remove the sample dish 2 from the hole 12 using tweezers. Further, the height dimension of the hole 12 is preferably substantially the same as the height dimension of the peripheral wall 2 a of the sample dish 2.

上記の説明から分かるように、キャリア11の穴12は、試料皿2を収容するのに用いられることから、例えば試料皿2の形状が平面視で多角形であれば、この試料皿2の形状と相補的な形状に作られるのがよい。   As can be seen from the above description, since the hole 12 of the carrier 11 is used to accommodate the sample dish 2, for example, if the shape of the sample dish 2 is a polygon in plan view, the shape of the sample dish 2 It should be made in a complementary shape.

放射線照射用器具10に含まれる硬質のプレート13は、放射線を通過させることのできる材料、例えばプラスチック(例えばポリスチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリ塩化ビニル)やガラスなどから作られる。キャリア11の穴12に、測定対象の鉱物質を入れた試料皿2を収容した後に、図4に示すように、キャリア11の上にプレート13を載せ、次いで、適当な固定手段、例えば2本のゴムリング14を使って硬質のプレート13がキャリア11に対して固定される。ゴムリング14の代わりに、金属製クリップや剥離が容易な接着テープであってもよい。硬質のプレート13が固定された状態では、キャリア11の姿勢を変化させる、例えば逆さまにしたとしても、キャリア11の穴12に試料皿2が収容されている状態を維持することができ、更に、試料皿2から鉱物質が溢れだしてしまうのを防止することができる。つまり、硬質のプレート13は、キャリア11の各穴12に収容された試料皿2の蓋の機能を有している。   The hard plate 13 included in the radiation irradiating device 10 is made of a material that can transmit radiation, such as plastic (for example, polystyrene, polyethylene terephthalate, polycarbonate, polyvinyl chloride) or glass. After the sample pan 2 containing the mineral to be measured is accommodated in the hole 12 of the carrier 11, the plate 13 is placed on the carrier 11 as shown in FIG. The hard plate 13 is fixed to the carrier 11 using the rubber ring 14. Instead of the rubber ring 14, a metal clip or an easily peelable adhesive tape may be used. In a state in which the hard plate 13 is fixed, even if the posture of the carrier 11 is changed, for example, even if it is turned upside down, the state in which the sample dish 2 is accommodated in the hole 12 of the carrier 11 can be maintained. It is possible to prevent the mineral substance from overflowing from the sample dish 2. That is, the hard plate 13 has a function of a lid of the sample tray 2 accommodated in each hole 12 of the carrier 11.

硬質のプレート13は、好ましくは、透明であるのがよく、透明のプレート13を採用することにより、プレート13をキャリア11に固定した状態で、外部から試料皿2の有無を目で確認することができる。   The hard plate 13 is preferably transparent. By adopting the transparent plate 13, the presence or absence of the sample dish 2 can be visually confirmed from the outside while the plate 13 is fixed to the carrier 11. Can do.

具体例として、食品メーカ又は判定業者Aに入荷した黒胡椒からロット毎に分離精製した鉱物質を約1mg精秤して各試料皿2に入れて、各試料皿2の鉱物質をTL測定装置1でGlow-1の測定を行った。次いで、各試料皿2をキャリア11の穴12に収容して硬質のプレート13で蓋をして、硬質のプレート13をゴムリング14でキャリア11に固定した状態の放射線照射用器具10を、例えば宅配便を使って放射線照射の専門機関等に送った。専門機関等は、ゴムリング14で硬質のプレート13をキャリア11に固定した状態の放射線照射用器具10を、そのまま放射線照射装置のベルトコンベアに載せて所定量の放射線を照射し、この作業が終わった後に、放射線照射用器具10をそのまま食品メーカ又は判定業者Aに返却した。   As a specific example, about 1 mg of the mineral substance separated and purified for each lot from the black pepper received at the food manufacturer or judgment company A is precisely weighed and placed in each sample dish 2, and the mineral substance in each sample dish 2 is measured with a TL measuring device. 1 measured Glow-1. Next, each sample dish 2 is accommodated in the hole 12 of the carrier 11, covered with a hard plate 13, and the radiation irradiation instrument 10 in a state where the hard plate 13 is fixed to the carrier 11 with a rubber ring 14, for example, I sent it to a specialized institution of radiation irradiation using a courier. A specialized institution or the like places the radiation irradiation device 10 in which the hard plate 13 is fixed to the carrier 11 with the rubber ring 14 on the belt conveyor of the radiation irradiation apparatus and irradiates a predetermined amount of radiation, and this work is finished. After that, the instrument 10 for radiation irradiation was returned to the food maker or the judgment supplier A as it was.

返却を受けた食品メーカ又は判定業者Aは、ゴムリング14を外してプレート13を取り除いた後に、キャリア11の穴12から試料皿2をピンセットを使って取り出して、各試料皿2の鉱物質をTL測定装置1でGlow-2の測定を行った。図5は、Glow−1、Glow−2の発光量の測定データを示し、Glow−1(照射)は、放射線照射を実施した食品原料から収集した鉱物質のデータを意味し、Glow−1(未照射)は、放射線照射を実施していない食品原料から収集した鉱物質のデータを意味する。   The returned food manufacturer or judgment company A removes the rubber ring 14 and removes the plate 13, and then removes the sample dish 2 from the hole 12 of the carrier 11 using tweezers, and removes the mineral substances in each sample dish 2. Glow-2 was measured with the TL measuring device 1. FIG. 5 shows measurement data of the amount of luminescence of Glow-1 and Glow-2. Glow-1 (irradiation) means data on minerals collected from the food material subjected to radiation irradiation. Unirradiated means mineral data collected from food ingredients that have not been irradiated.

放射線照射を実施したか否かの判定は、(1)Glow−1において150〜250℃の範囲にピークが認められ、(2)TL比>0.1であるときに、放射線照射を実施した食品原料であると判定される。ここに、TL比は、(Glow−1の発光量の積分値)/(Glow−2の発光量の積分値)で定義される。   The determination as to whether or not the irradiation was carried out was as follows: (1) A peak was observed in the range of 150 to 250 ° C. in Glow-1, and (2) the food material that was irradiated when the TL ratio> 0.1. It is determined that Here, the TL ratio is defined by (integrated value of Glow-1 emission amount) / (integrated value of Glow-2 emission amount).

キャリア11の12個の穴12の一部又は前部の穴12に収容した試料皿2を識別するために、図3に示すように1〜3、A〜Dの数字又は文字をキャリア11の表面の12個の穴12の横列及び縦列にマジックで書き込んだりキャリア11に塗料で書き込んだり、キャリア11に刻設けることにより、試料皿2と、これを入れた穴12との対応を例えばA1=第1ロット、A2=第2ロットというようにメモに残しておくことで、試料皿2の中に入れた鉱物質と、これを収集した食品原料のロットとの関係を明らかにすることができる。   In order to identify the sample pan 2 accommodated in a part of the twelve holes 12 of the carrier 11 or in the front hole 12, the numbers or letters 1 to 3 and A to D as shown in FIG. By writing magic in the rows and columns of the twelve holes 12 on the surface, writing them on the carrier 11 with paint, or engraving them on the carrier 11, the correspondence between the sample dish 2 and the holes 12 in which it is placed, for example, A1 = By leaving a note such as the first lot, A2 = second lot, it is possible to clarify the relationship between the mineral substance placed in the sample dish 2 and the lot of the food material collected from this. .

如上のように、実施例の放射線照射用器具10を使うことで、放射線照射の有無をTL法によって検知するのに、食品原料から収集した鉱物質を放射線照射するのに都合が良いだけでなく、食品メーカ又は判定業者Aと専門機関等との間の搬送にも好都合である。   As described above, by using the radiation irradiation instrument 10 of the embodiment, it is not only convenient for irradiating minerals collected from food raw materials to detect the presence or absence of radiation irradiation by the TL method. Moreover, it is convenient for the conveyance between the food manufacturer or judgment company A and the specialized organization.

上述したキャリア11は、合計12個の穴12を備えていたが、この穴12の数は任意であり、1個の穴12であってもよい。また、横列又は縦列の穴12を図6、図7に示すように連続した長穴15で構成してもよい。また、図3、図4、図6、図7で例示したキャリア11の各穴12、15は有底であるが、図8に示すように、貫通穴16で構成し、この貫通穴16を上下一対の硬質のプレート17、18で覆うようにしてもよい。   Although the carrier 11 described above includes a total of 12 holes 12, the number of the holes 12 is arbitrary and may be one hole 12. Moreover, you may comprise the hole 12 of a row or a column with the continuous long hole 15 as shown in FIG. 6, FIG. Moreover, although each hole 12 and 15 of the carrier 11 illustrated in FIG. 3, FIG. 4, FIG. 6, and FIG. 7 is bottomed, as shown in FIG. A pair of upper and lower hard plates 17 and 18 may be covered.

上述した硬質の材料からなるプレート13、17及び/又は18に関し、変形例として、これをクッション性を備えた軟質材料から作ってもよい。プレート13、17及び/又は18をクッション性を備えた材料から作ることにより、キャリア11の穴12の深さが、試料皿2の周囲壁2aの高さ寸法よりも若干大きい又は小さくてもクッション性を備えた軟質のプレートによって試料皿2から内容物(鉱物質)が溢れ落ちるのを防止することができる。勿論のことであるが、硬質のプレート13、17及び/又は18でキャリア11の穴12を覆ったときに、この穴12に対応するプレート13、17及び/又は18の部分にクッション性の材料を積層してもよい。   Regarding the plates 13, 17 and / or 18 made of the hard material described above, as a variant, it may be made of a soft material with cushioning properties. By making the plates 13, 17 and / or 18 from a material having cushioning properties, even if the depth of the hole 12 of the carrier 11 is slightly larger or smaller than the height of the peripheral wall 2 a of the sample dish 2, the cushion is used. It is possible to prevent the contents (mineral substances) from overflowing from the sample dish 2 by the soft plate having the property. Of course, when the hole 12 of the carrier 11 is covered with the hard plate 13, 17 and / or 18, a cushioning material is formed on the portion of the plate 13, 17 and / or 18 corresponding to the hole 12. May be laminated.

実施例の放射線照射用器具を用いて食品メーカ等と、放射線を照射する専門機関等との間の鉱物質の搬送及びTL法による放射線照射の実施の有無を判定するための各工程のフロー図である。Flow chart of each process for judging the presence or absence of carrying out of mineral matter between food manufacturers etc. and specialized institutions etc. that irradiate radiation using the radiation irradiating device of the embodiment and the implementation of radiation irradiation by the TL method It is. TL測定装置の概要を説明するための図である。It is a figure for demonstrating the outline | summary of a TL measuring apparatus. 第1実施例の実施例の放射線照射用器具の分解斜視図である。It is a disassembled perspective view of the instrument for radiation irradiation of the Example of 1st Example. 幾つかの試料皿を収容した状態の放射線照射用器具の斜視図である。It is a perspective view of the instrument for radiation irradiation of the state which accommodated several sample dishes. TL法による放射線照射の実施の有無の判定方法を説明するための図である。It is a figure for demonstrating the determination method of the presence or absence of implementation of the radiation irradiation by TL method. 放射線照射用器具の変形例を説明するための平面図である。It is a top view for demonstrating the modification of the instrument for radiation irradiation. 図6のVII−VII線に沿った断面図である。It is sectional drawing along the VII-VII line of FIG. 放射線照射用器具の更なる変形例を説明するための断面図である。It is sectional drawing for demonstrating the further modification of the instrument for radiation irradiation.

符号の説明Explanation of symbols

1 熱ルミネッセンス測定装置(TL測定装置)
2 試料皿
2a 試料皿の周囲壁
2b 試料皿の円形底
10 放射線照射用器具
11 キャリア
12 キャリアの穴
13(17、18) プレート
14 ゴムリング
1 Thermoluminescence measuring device (TL measuring device)
2 Sample pan 2a Peripheral wall of sample pan 2b Circular bottom of sample pan 10 Radiation irradiation instrument 11 Carrier 12 Carrier hole 13 (17, 18) Plate 14 Rubber ring

Claims (6)

食品原料から収集した鉱物質を介して、当該食品原料が放射線照射した品物であるか否かをTL法によって判定するために、該鉱物質を加熱して発光量を測定する熱ルミネッセンス測定装置を設置した判定場所と、前記鉱物質に放射線を照射する放射線再照射場所とが地理的に離れて、前記判定場所と前記放射線再照射場所との間で前記鉱物質を搬送することにより、放射線照射を実施した食品原料であるか否かを判定する放射線照射検知方法であって、
周囲壁を備えた試料皿と、
互いに平行な平らな上面及び下面と、該上面と下面のうち少なくとも上面に開放した複数の穴とを備えたキャリアであって、各穴は、その高さが前記試料皿の高さと実質的同じで且つ前記試料皿の周囲壁と相補的な形状を備え、各穴に前記試料皿を収容することができるキャリアと、
前記キャリアの前記穴を覆うために、該穴が前記キャリアの上面だけに開放しているときには該キャリアの上面に設置され、該穴が前記キャリアの上面と下面に開放しているときには該キャリアの上面と下面に設置される硬質のプレートと、
該プレートを前記キャリアに固定するための固定部材と、を用意し、
前記判定場所において、前記食品原料から収集した鉱物質を前記試料皿に入れて、前記判定場所で前記鉱物質の発光量を測定するGlow−1工程と、
前記判定場所において、該Glow−1工程が終わった鉱物質を入れた前記試料皿を前記キャリアの穴に収容した後に前記プレートで覆って前記固定手段で該プレートを前記キャリアに固定する第2工程と、
前記試料皿を収容し且つ前記プレートで覆った前記キャリアを、前記判定場所から前記放射線再照射場所まで搬送する第3工程と、
前記放射線再照射場所において、前記キャリアに前記試料皿を入れたままで放射線を照射する第4工程と、
前記放射線再照射場所において、前記第4工程が終わった後に、前記放射線再照射場所から前記判定場所まで、前記試料皿を収容し且つ前記プレートで覆った前記キャリアを搬送する第5工程と、
前記判定場所において、前記プレートを外して前記キャリアの穴から試料皿を取り出して、前記鉱物質の発光量を測定するGlow−2工程と、
前記判定場所において、Glow−1工程で得られた測定結果とGlow−2工程で得られた測定結果とを比較することにより前記食品原料が放射線照射された品物であるか否かを判定する第6工程とを有する放射線照射検知方法。
Through the mineral collected from food material, whether the article which the food material is irradiated in order to determine the TL method, thermoluminescence measuring device for measuring the light emission quantity by heating the mineral material Radiation irradiation is carried out by transporting the mineral matter between the determination location and the radiation re-irradiation location, where the installed determination location and the radiation re-irradiation location for irradiating the mineral with radiation are geographically separated. It is a radiation irradiation detection method for determining whether or not it is a food material that has been implemented,
A sample dish with a surrounding wall;
A carrier comprising flat upper and lower surfaces parallel to each other and a plurality of holes opened on at least one of the upper and lower surfaces, each hole having a height substantially the same as the height of the sample pan And a carrier having a shape complementary to the peripheral wall of the sample dish, and capable of accommodating the sample dish in each hole;
In order to cover the hole of the carrier, when the hole opens only on the upper surface of the carrier, it is installed on the upper surface of the carrier, and when the hole opens on the upper surface and lower surface of the carrier, Hard plates installed on the top and bottom surfaces;
A fixing member for fixing the plate to the carrier;
In the determination place, put the mineral collected from the food material in the sample pan, and Glow-1 measuring the light emission amount of the mineral in the judgment place,
In the determination place, a second step of fixing said plate to said carrier by said fixing means covered by said plate after said sample dishes in mineral said Glow-1 process is finished accommodated in the hole of the carrier When,
A third step of transporting the carrier containing the sample dish and covered with the plate from the determination location to the radiation re-irradiation location;
A fourth step of irradiating with radiation while leaving the sample dish in the carrier at the radiation re-irradiation place;
In the radiation re-irradiation place, after the fourth step is finished, from the radiation re-irradiation place to the determination place, a fifth step of transporting the carrier containing the sample dish and covered with the plate ;
In the determination place, remove the sample pan from the hole of the carrier by removing the front Symbol plate, and Glow-2 measuring the light emission amount of the mineral,
In the determination place, the measurement result obtained in the Glow-1 process and the measurement result obtained in the Glow-2 process are compared to determine whether or not the food material is an irradiated item. A radiation irradiation detection method comprising 6 steps.
前記試料皿を収容する穴が前記キャリアの上面に開放した有底の穴で構成されている、請求項1に記載の放射線照射検知方法。The radiation irradiation detection method according to claim 1, wherein the hole for accommodating the sample dish is a bottomed hole opened on an upper surface of the carrier. 前記試料皿を収容する穴が前記キャリアの上面と下面とに開放した貫通穴で構成されている、請求項1に記載の放射線照射検知方法。The radiation irradiation detection method according to claim 1, wherein the hole for accommodating the sample dish is configured by a through hole opened on an upper surface and a lower surface of the carrier. 前記キャリアの表面に、試料皿を特定することができる文字及び/又は符号が設けられている、請求項1〜3のいずれか一項に記載の放射線照射検知方法。The radiation irradiation detection method as described in any one of Claims 1-3 with which the character and / or code | symbol which can specify a sample pan are provided in the surface of the said carrier. 前記プレートが透明である、請求項1〜4のいずれか一項に記載の放射線照射検知方法。The radiation irradiation detection method according to claim 1, wherein the plate is transparent. 前記プレートで前記キャリアの穴を覆ったときに、少なくとも前記穴を覆う前記プレートの部分がクッション性を備えた材料で作られている、請求項1〜5のいずれか一項に記載の放射線照射検知方法。The radiation irradiation according to any one of claims 1 to 5, wherein when the hole of the carrier is covered with the plate, at least a portion of the plate that covers the hole is made of a cushioning material. Detection method.
JP2007040892A 2007-02-21 2007-02-21 Radiation detection method Expired - Fee Related JP4768646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040892A JP4768646B2 (en) 2007-02-21 2007-02-21 Radiation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040892A JP4768646B2 (en) 2007-02-21 2007-02-21 Radiation detection method

Publications (2)

Publication Number Publication Date
JP2008203137A JP2008203137A (en) 2008-09-04
JP4768646B2 true JP4768646B2 (en) 2011-09-07

Family

ID=39780807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040892A Expired - Fee Related JP4768646B2 (en) 2007-02-21 2007-02-21 Radiation detection method

Country Status (1)

Country Link
JP (1) JP4768646B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726928B2 (en) * 2008-06-19 2011-07-20 財団法人放射線利用振興協会 Irradiated food detection container
CN103994822B (en) * 2013-02-16 2016-05-11 北京瑞辐特辐射测量仪器有限公司 A kind of heater of electrical heating card thermoluminescence dosimetry
CN103424764B (en) * 2013-07-29 2015-06-17 中国原子能科学研究院 Measuring device for dose distribution of ray radiation field
JP5995021B1 (en) * 2015-04-10 2016-09-21 地熱エンジニアリング株式会社 Thermoluminescence measuring device and thermoluminescence measuring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687077B2 (en) * 1988-10-21 1994-11-02 化成オプトニクス株式会社 Thermofluorescence dosimetry method and apparatus
JP3505472B2 (en) * 2000-05-17 2004-03-08 アロカ株式会社 Radiation measurement device
US7211808B2 (en) * 2001-11-27 2007-05-01 Eastman Kodak Company Method and element for measuring radiation
JP3997186B2 (en) * 2003-08-19 2007-10-24 ハウス食品株式会社 Method for inspecting heat history of mixed foreign matter and method for determining mixing time
JP4599529B2 (en) * 2005-08-12 2010-12-15 独立行政法人農業・食品産業技術総合研究機構 Radiation irradiation discrimination method and radiation irradiation discrimination system

Also Published As

Publication number Publication date
JP2008203137A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4768646B2 (en) Radiation detection method
CA2651728C (en) Tray for use in assessing the threat status of an article at a security check point
Biscardi et al. Evaluation of the migration of mutagens/carcinogens from PET bottles into mineral water by Tradescantia/micronuclei test, Comet assay on leukocytes and GC/MS
RU2009115832A (en) ASSEMBLING AND USING RFID SENSORS IN CONTAINERS
US20130325727A1 (en) Systems and methods for disposing narcotic and other regulated waste
ZA200606126B (en) Device and method for detecting contamination in a container
DE69910550D1 (en) METHOD AND DEVICE FOR MONITORING ARTICLES
EP2686670B1 (en) Method of security screening and security tray for use therewith
Han et al. Occurrence, potential release and health risks of heavy metals in popular take-out food containers from China
Funk et al. Migration Characteristics under Long‐term Storage and a Combination of UV and Heat Exposure of Poly (Amide)/Poly (Ethylene) Composite Films for Food Packaging
D’Oca et al. Qualitative and quantitative thermoluminescence analysis on irradiated oregano
US10034660B2 (en) Specimen collection kit
ATE491530T1 (en) APPARATUS AND METHOD FOR PROVIDING CONTAINER IDENTIFICATION INFORMATION WHEN SORTING MAIL
EP2514830A1 (en) Analytical instrument and method for evaluating microbial contamination of an object
JP5685591B2 (en) Apparatus and method for setting visual residue limit criteria
US20080293157A1 (en) Apparatus and method of performing high-throughput cell-culture studies on biomaterials
Marcazzó et al. Thermoluminescence study of polyminerals extracted from clove and marjoram for detection purposes
JP4726928B2 (en) Irradiated food detection container
TWM521707U (en) Microwave device with prompting function
JP5480976B2 (en) Sensor element in which mosaic type zipper pattern is uniformly formed and method for manufacturing the same
Marchesani et al. Identifying irradiated oysters by luminescence techniques (TL & PSL)
KR100840196B1 (en) A beaker
JP2009216459A5 (en)
Baican et al. AgCl-detectors in space biophysics
Bhat et al. Evaluation of an indigenously manufactured Garfilm-EM—250 μm thick polyester film as a dosimeter for high-dose applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees