JP4767303B2 - Method for manufacturing nitride-based semiconductor light-emitting device - Google Patents

Method for manufacturing nitride-based semiconductor light-emitting device Download PDF

Info

Publication number
JP4767303B2
JP4767303B2 JP2008278332A JP2008278332A JP4767303B2 JP 4767303 B2 JP4767303 B2 JP 4767303B2 JP 2008278332 A JP2008278332 A JP 2008278332A JP 2008278332 A JP2008278332 A JP 2008278332A JP 4767303 B2 JP4767303 B2 JP 4767303B2
Authority
JP
Japan
Prior art keywords
layer
type
nitride
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008278332A
Other languages
Japanese (ja)
Other versions
JP2009021642A (en
Inventor
典克 小出
俊雄 幡
麻祐子 筆田
大覚 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008278332A priority Critical patent/JP4767303B2/en
Publication of JP2009021642A publication Critical patent/JP2009021642A/en
Application granted granted Critical
Publication of JP4767303B2 publication Critical patent/JP4767303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は一般式InxAlyGa1-x-yN(x+y+z=1、0≦x≦1、0≦y≦1および0≦z≦1)で表わされる窒化物系半導体を用いた窒化物系半導体発光素子およびその製造方法に関する。 The present invention has the general formula In x Al y Ga 1-xy N (x + y + z = 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1 and 0 ≦ z ≦ 1) nitride using a nitride-based semiconductor represented by The present invention relates to a semiconductor light emitting device and a method for manufacturing the same.

従来の窒化物系半導体発光素子は、サファイア基板上に窒化物系半導体層を積層して作製されるものがほとんどであった。しかし、近年ではサファイア基板に比べ安価でかつ大面積のシリコン(Si)基板が発光素子の製造コスト低減の観点から用いられることも多くなってきている。   Most conventional nitride-based semiconductor light-emitting devices are manufactured by laminating a nitride-based semiconductor layer on a sapphire substrate. However, in recent years, silicon (Si) substrates that are cheaper and have a larger area than sapphire substrates are increasingly used from the viewpoint of reducing the manufacturing cost of light-emitting elements.

図12にSi基板を用いた従来の窒化物系半導体発光素子の模式的な斜視図を示す。この窒化物系半導体発光素子はSi基板100上にAlNバッファ層101、n型GaN層102、InGaN発光層103、p型AlGaNキャリアブロック層104およびp型GaNコンタクト層105が順次積層されており、p型GaNコンタクト層105上には透光性電極106が形成され、n型GaN層102上にはn型用の電極107が形成されている。さらに、透光性電極106上にはp型用パッド電極108が形成され、n型用の電極107上にはn型用パッド電極109が形成されている。   FIG. 12 shows a schematic perspective view of a conventional nitride-based semiconductor light-emitting element using a Si substrate. In this nitride semiconductor light emitting device, an AlN buffer layer 101, an n-type GaN layer 102, an InGaN light emitting layer 103, a p-type AlGaN carrier block layer 104, and a p-type GaN contact layer 105 are sequentially stacked on a Si substrate 100. A translucent electrode 106 is formed on the p-type GaN contact layer 105, and an n-type electrode 107 is formed on the n-type GaN layer 102. Further, a p-type pad electrode 108 is formed on the translucent electrode 106, and an n-type pad electrode 109 is formed on the n-type electrode 107.

しかし、この窒化物系半導体発光素子のInGaN発光層103から放射された光のうちSi基板100方向へ向かった光はSi基板100によって吸収されるため、InGaN発光層103から放射された光の外部取り出し効率が低下するという問題があった。   However, since the light emitted from the InGaN light emitting layer 103 of this nitride semiconductor light emitting element toward the Si substrate 100 is absorbed by the Si substrate 100, the light emitted from the InGaN light emitting layer 103 is external to the light. There was a problem that the extraction efficiency was lowered.

また、Si基板100上に金属等の反射膜を形成することによりSi基板100に光が入射するのを防止して、サファイア基板を用いた場合のように半導体発光素子側面から光を取り出す方法も考えられる。しかし、窒化物系半導体層間の熱膨張係数差から生じる窒化物系半導体層のクラックのため、窒化物系半導体層を厚く形成することができず、発光層から出た光が透過し取り出される部位としての窒化物系半導体層の側面から光を取り出すことによって光の外部取り出し効率を向上させることができないという問題があった。   Further, there is a method of preventing light from entering the Si substrate 100 by forming a reflective film such as a metal on the Si substrate 100 and extracting light from the side surface of the semiconductor light emitting element as in the case of using a sapphire substrate. Conceivable. However, the nitride semiconductor layer cannot be formed thick due to a crack in the nitride semiconductor layer caused by the difference in thermal expansion coefficient between the nitride semiconductor layers, and the portion from which light emitted from the light emitting layer is transmitted and extracted As a result, there is a problem that the light extraction efficiency cannot be improved by extracting light from the side surface of the nitride-based semiconductor layer.

これらの問題を解決するため、特開2000−196152公報にはp型GaN半導体層に凹凸を作製した発光素子およびp型GaN半導体層上に形成された透明電極を介して表面に凹凸を有する光取り出し層が設置された発光素子が開示されている。しかし、凹凸を設けるためp型GaN半導体層の膜厚を厚くした場合にはp型GaN半導体層に多くのクラックが生じ、素子の駆動電圧が増大してしまうという問題があった。これは、高温でp型GaN半導体層を成長させ、成長後に室温まで温度を戻した場合にはp型GaN半導体層に引っ張り応力が加わることでクラックが生じ、さらにp型GaN半導体層の膜厚が厚いことからクラックがより生じやすくなったものと推測される。また、p型GaN半導体層は本質的に低抵抗となりにくく、さらに膜厚も厚いためより低抵抗となりにくいことから素子の駆動電圧がさらに増大するという問題があった。また、p型GaN半導体層上に透明電極を形成した場合でも、p型GaN半導体層と透明電極との間のオーミック特性が悪く、接触抵抗が高くなることから素子の駆動電圧が増大してしまうという問題があった。   In order to solve these problems, Japanese Patent Application Laid-Open No. 2000-196152 discloses a light-emitting element having irregularities formed on a p-type GaN semiconductor layer and light having irregularities on the surface via a transparent electrode formed on the p-type GaN semiconductor layer. A light emitting device in which an extraction layer is provided is disclosed. However, when the thickness of the p-type GaN semiconductor layer is increased to provide unevenness, there is a problem that many cracks are generated in the p-type GaN semiconductor layer and the drive voltage of the element increases. This is because when a p-type GaN semiconductor layer is grown at a high temperature and the temperature is returned to room temperature after the growth, a tensile stress is applied to the p-type GaN semiconductor layer to cause a crack, and the film thickness of the p-type GaN semiconductor layer further increases. It is presumed that cracks were more likely to occur due to the thicker thickness. In addition, the p-type GaN semiconductor layer is inherently unlikely to have a low resistance, and has a problem that the driving voltage of the element is further increased because the p-type GaN semiconductor layer is not thick because of its thick film thickness. Further, even when a transparent electrode is formed on the p-type GaN semiconductor layer, the ohmic characteristics between the p-type GaN semiconductor layer and the transparent electrode are poor and the contact resistance is high, so that the drive voltage of the element increases. There was a problem.

上記事情に鑑みて本発明は、発光層から放射された光の外部取り出し効率を向上させることができ、かつ素子の駆動電圧を低減させることのできる窒化物系半導体発光素子およびその製造方法を提供することを目的とする。   In view of the above circumstances, the present invention provides a nitride-based semiconductor light-emitting device capable of improving the external extraction efficiency of light emitted from the light-emitting layer and reducing the drive voltage of the device, and a method for manufacturing the same. The purpose is to do.

上記目的を達成するため、本発明は、支持基板上に形成された反射層と反射層上方に順次積層されたp型窒化物系半導体層、発光層およびn型窒化物系半導体層とを含み、n型窒化物系半導体層上方に位置する光取り出し面に凹凸が形成された窒化物系半導体発光素子を製造する方法であって、Si基板を準備する工程と、Si基板に(111)ファセット面を有する溝を形成する工程と、(111)ファセット面の対向面にSiO 2 マスクを形成する工程と、対向面にSiO 2 マスクを形成した状態で、(111)ファセット面上に、n型窒化物系半導体層、発光層、およびp型窒化物系半導体層を順次積層する工程と、p型窒化物系半導体層上に反射層を形成する工程と、反射層上に支持基板を形成する工程と、Si基板を除去する工程と、Si基板を除去する工程によって形成されたn型窒化物系半導体層の凹凸上に高屈折率膜を形成する工程とを含み、高屈折率膜は上記n型窒化物系半導体層よりも屈折率が小さい膜であり、かつ高屈折率膜の上面が上記光取り出し面であることを特徴とする。 In order to achieve the above object, the present invention includes a reflective layer formed on a support substrate and a p-type nitride semiconductor layer, a light emitting layer, and an n-type nitride semiconductor layer sequentially stacked above the reflective layer. A method of manufacturing a nitride-based semiconductor light-emitting device having irregularities formed on a light extraction surface located above an n-type nitride-based semiconductor layer , comprising: preparing a Si substrate; A step of forming a groove having a facet surface, a step of forming a SiO 2 mask on the opposite surface of the (111) facet surface, and a state in which an SiO 2 mask is formed on the opposite surface , n on the (111) facet surface Sequentially laminating a nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer, forming a reflective layer on the p-type nitride semiconductor layer, and forming a support substrate on the reflective layer And removing the Si substrate , And forming a high refractive index film on the irregularities of the n-type nitride semiconductor layer formed by the step of removing the Si substrate, a high refractive index film has a refractive than the n-type nitride-based semiconductor layer It is a film having a low refractive index, and the upper surface of the high refractive index film is the light extraction surface.

ここで、本発明の窒化物系半導体発光素子の製造方法においては、高屈折率膜が、窒化シリコン(Si34)、酸化インジウム(In23)、酸化ネオジム(Nd22)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化セリウム(CeO2)および酸化ビスマス(BiO3)の群からなるいずれか1種からなることが好ましい。 Here, in the method for manufacturing a nitride-based semiconductor light-emitting device of the present invention, the high refractive index film is silicon nitride (Si 3 N 4 ), indium oxide (In 2 O 3 ), neodymium oxide (Nd 2 O 2 ). , zirconium oxide (ZrO 2), titanium oxide (TiO 2), cerium oxide (CeO 2) and any one Tona Rukoto made from the group of bismuth oxide (BiO 3) is preferable.

上述したように本発明によれば、加工性の高いSi基板上に、窒化物系半導体発光素子をエピタキシャル成長させ、p型窒化物系半導体層側に反射率の高い電極を設けた後、支持基板を用いてウエハを反転し、導電性の高いn型窒化物系半導体層側に凹凸を設けることによって、駆動電圧が低く、光の取り出し効率の高い高輝度の窒化物系半導体発光素子を作製することが可能となった。   As described above, according to the present invention, a nitride-based semiconductor light-emitting element is epitaxially grown on a highly workable Si substrate, and an electrode having a high reflectivity is provided on the p-type nitride-based semiconductor layer side. The wafer is turned upside down by using the substrate, and unevenness is provided on the highly conductive n-type nitride semiconductor layer side, thereby producing a high-brightness nitride-based semiconductor light-emitting device with low driving voltage and high light extraction efficiency. It became possible.

以下、本発明の実施の形態について説明する。
(光取り出し面)
本発明の窒化物系半導体発光素子は、表面に凹凸を有する光取り出し面をn型窒化物系半導体層上方に設置することを特徴とする。すなわち、光取り出し面が平面である場合には、発光層から放射された光のうちで光取り出し面に対して臨界屈折角よりも大きい法線角度で入射した光は光取り出し面において全反射されることとなるが、光取り出し面に凹凸を設けることによってこれらの光も外部に取り出し得るため、光の外部取り出し効率を向上させ得ることとなる。
Embodiments of the present invention will be described below.
(Light extraction surface)
The nitride-based semiconductor light-emitting device according to the present invention is characterized in that a light extraction surface having an uneven surface is provided above the n-type nitride-based semiconductor layer. That is, when the light extraction surface is a flat surface, light emitted from the light emitting layer and incident at a normal angle larger than the critical refraction angle with respect to the light extraction surface is totally reflected on the light extraction surface. However, since the light can be extracted to the outside by providing irregularities on the light extraction surface, the external extraction efficiency of the light can be improved.

また、従来技術のようにp型窒化物系半導体層上面に凹凸を設ける場合には高抵抗であるp型窒化物系半導体層の膜厚を厚く形成するため直列抵抗が高くなり駆動電圧が上がる結果が得られた。しかし、本発明のように上記光取り出し面を低抵抗であるn型窒化物系半導体層上面に設置した場合にはn型窒化物系半導体層の膜厚を厚く形成してもn型窒化物系半導体層の導電性から素子の駆動電圧を低くすることができる。また、n型窒化物系半導体層上に透明電極層を設けた場合でも電気抵抗はそれほど増大しないため素子の駆動電圧は透明電極層を設けなかった場合とほとんど変わらない。   In addition, when unevenness is provided on the upper surface of the p-type nitride semiconductor layer as in the prior art, the thickness of the p-type nitride semiconductor layer having high resistance is increased, so that the series resistance is increased and the drive voltage is increased. Results were obtained. However, when the light extraction surface is installed on the upper surface of the n-type nitride semiconductor layer having a low resistance as in the present invention, the n-type nitride is formed even if the n-type nitride semiconductor layer is formed thick. The driving voltage of the element can be lowered because of the conductivity of the semiconductor layer. Further, even when the transparent electrode layer is provided on the n-type nitride semiconductor layer, the electric resistance does not increase so much, so that the driving voltage of the element is almost the same as when the transparent electrode layer is not provided.

また、光取り出し面はn型窒化物系半導体層の上面でもあり得るが、窒化シリコン(Si 3 4 )、酸化インジウム(In 2 3 )、酸化ネオジム(Nd 2 2 )、酸化ジルコニウム(ZrO 2 )、酸化チタン(TiO 2 )、酸化セリウム(CeO 2 )および酸化ビスマス(BiO 3 の群からなるいずれか1種からなる高屈折率膜を上記n型窒化物系半導体層上に形成し、この高屈折率膜の上面を光取り出し面とすることもできる。高屈折率膜はn型窒化物系半導体層よりも屈折率が小さいことからより多くの光を外部に取り出すことができ得るため光の外部取り出し効率の向上を図り得る。また、n型窒化物系半導体層を直接加工する必要がないため、光取り出し面をn型窒化物系半導体層の上面とした場合と同等またはそれ以上の素子の駆動電圧の低減も図ることができ得る。 The light extraction surface can also be the upper surface of the n-type nitride-based semiconductor layer, but silicon nitride (Si 3 N 4 ), indium oxide (In 2 O 3 ), neodymium oxide (Nd 2 O 2 ), zirconium oxide ( ZrO 2 ), titanium oxide (TiO 2 ), cerium oxide (CeO 2 ), and bismuth oxide (BiO 3 ) are formed on the n-type nitride semiconductor layer. The upper surface of the high refractive index film can be used as a light extraction surface. Since the refractive index of the high refractive index film is smaller than that of the n-type nitride semiconductor layer, more light can be extracted to the outside, so that the light extraction efficiency can be improved. In addition, since it is not necessary to directly process the n-type nitride semiconductor layer, it is possible to reduce the driving voltage of the device equivalent to or higher than that when the light extraction surface is the upper surface of the n-type nitride semiconductor layer. It can be done.

また、InaGa1-aN(0<a≦1)で表わされる窒化物系半導体層を上記n型窒化物系半導体層上に形成し、この窒化物系半導体層の上面を光取り出し面とすることもできる。InaGa1-aN層はGaN層よりも屈折率が小さいことから光の外部取り出し効率をより向上させ得る。また、InaGa1-aN層はGaN層よりも結晶性が低いことから凹凸の作製がより容易となり得る。 Further, a nitride semiconductor layer represented by In a Ga 1-a N (0 <a ≦ 1) is formed on the n-type nitride semiconductor layer, and the upper surface of the nitride semiconductor layer is formed as a light extraction surface. It can also be. Since the In a Ga 1-a N layer has a refractive index smaller than that of the GaN layer, the external extraction efficiency of light can be further improved. In addition, since the In a Ga 1-a N layer has lower crystallinity than the GaN layer, it is possible to make unevenness easier.

ここで、上記InaGa1-aN(0<a≦1)で表わされる窒化物系半導体層の最大厚みが200〜800nmの範囲内にあることが好ましい。光の外部取り出し効率を向上させるためには発光層から放射される光の波長と同程度の膜厚が必要であり、上記窒化物系半導体層内部での屈折率で発光波長を割った程度の大きさ以上の凹凸が必要であることを考慮すると上記層の最大厚みが200〜800nmの範囲内にあることが好ましいからである。なお、上記層の最大厚みが200nmよりも薄いと光が全反射しやすくなるため光の外部取り出し効率が低減する傾向にあり、また800nmよりも厚いと上記層の再成長による歪みから、クラックの発生が生じ、n、p間でのリーク電流が生じ、発光効率の低下が見られる傾向にある。 Here, it is preferable that the maximum thickness of the nitride-based semiconductor layer represented by the above In a Ga 1-a N (0 <a ≦ 1) is in the range of 200 to 800 nm. In order to improve the light extraction efficiency, it is necessary to have a film thickness equivalent to the wavelength of light emitted from the light emitting layer, and the light emission wavelength divided by the refractive index inside the nitride semiconductor layer. This is because the maximum thickness of the layer is preferably in the range of 200 to 800 nm in consideration of the necessity of unevenness of a size or larger. Note that if the maximum thickness of the layer is less than 200 nm, light tends to be totally reflected, and thus the light extraction efficiency tends to be reduced. If the thickness is greater than 800 nm, cracks occur due to distortion due to regrowth of the layer. Occurrence occurs, a leak current occurs between n and p, and the light emission efficiency tends to decrease.

また、SiがドープされたInaGa1-aN(0<a≦1)で表わされる窒化物系半導体層が上記n型窒化物系半導体層上に形成されており、この窒化物系半導体層の上面が光取り出し面であって、この窒化物系半導体層中に含まれるSi濃度が5×1020〜5×1021cm-3の範囲内にあることが好ましい。この場合にも光の外部取り出し効率をより向上させ得る。また、上記Si濃度が5×1020〜5×1021cm-3の範囲内にある場合には、光取り出し面をピラミッド状に形成することがより容易となる。また、上記Si濃度が5×1020cm-3未満であるとピラミッド状の凹凸を形成しにくく、上記Si濃度が5×1021cm-3よりも大きいと結晶成長が起こりにくく、成膜することができなくなる場合がある。 In addition, a nitride-based semiconductor layer represented by In a Ga 1-a N (0 <a ≦ 1) doped with Si is formed on the n-type nitride-based semiconductor layer. The upper surface of the layer is a light extraction surface, and the Si concentration contained in the nitride-based semiconductor layer is preferably in the range of 5 × 10 20 to 5 × 10 21 cm −3 . In this case as well, the light extraction efficiency can be further improved. In addition, when the Si concentration is in the range of 5 × 10 20 to 5 × 10 21 cm −3 , it is easier to form the light extraction surface in a pyramid shape. Further, when the Si concentration is less than 5 × 10 20 cm −3, it is difficult to form pyramidal irregularities, and when the Si concentration is higher than 5 × 10 21 cm −3 , crystal growth hardly occurs and a film is formed. May not be possible.

また、凹凸が形成された光取り出し面上にはAl、Ti、Zr、Hf、V、NbおよびITOの群から選ばれるいずれか1種の金属からなる透光性電極を設置することができる。この場合には素子に注入される電流を素子内においてより広げることができる。   In addition, a translucent electrode made of any one metal selected from the group consisting of Al, Ti, Zr, Hf, V, Nb, and ITO can be provided on the light extraction surface on which the unevenness is formed. In this case, the current injected into the element can be further expanded in the element.

(凹凸)
光取り出し面に形成される凹凸の形状および個数は特に限定されないが、凹凸の形態としては、たとえば光取り出し面にクレータのような無数の穴が形成されている形態、光取り出し面がかまぼこ状に突起している形態、光取り出し面上に間隔を開けて三角柱が形成されたピラミッド状に突起している形態または光取り出し面上に間隔を開けずに連続して三角柱が形成されたプリズム状に突起している形態等がある。
(Unevenness)
The shape and number of irregularities formed on the light extraction surface are not particularly limited, but as the shape of the irregularities, for example, an innumerable hole such as a crater is formed on the light extraction surface, the light extraction surface is a semi-cylindrical shape Protruding form, projecting in a pyramid shape with a triangular prism formed at intervals on the light extraction surface, or prism shape with a triangular prism continuously formed without spacing on the light extraction surface There are protruding forms.

この凹凸の作製方法としては、たとえばn型窒化物系半導体層を成長させた後に成長温度、ガス導入量および成長速度を適宜調節してn型窒化物系半導体層を再成長させる方法、n型窒化物系半導体層上にSiO2、Si34等のマスクを形成して選択的にn型窒化物系半導体層を再成長させる方法、ダイヤモンド粒またはアルミナ粒を用いてn型窒化物系半導体層を研磨する方法等がある。 As a method for producing the unevenness, for example, after growing an n-type nitride semiconductor layer, the growth temperature, the amount of gas introduced, and the growth rate are adjusted as appropriate, and the n-type nitride semiconductor layer is regrown. A method of selectively regrowing an n-type nitride semiconductor layer by forming a mask such as SiO 2 or Si 3 N 4 on the nitride semiconductor layer, an n-type nitride system using diamond grains or alumina grains There is a method of polishing a semiconductor layer.

また他の作製方法としては、たとえばダイヤモンド粒またはアルミナ粒等の粒体を塗布してRIE法によってn型窒化物系半導体層を部分的にエッチングする方法、またはn型窒化物系半導体層上にマスクパターンを形成した後熱処理を行ない、このマスクをRIE法を用いて垂直にエッチングする方法等がある。また、マスクが形成されていない部分を1μm程度のストライプ状の幅とした場合には、エッチング条件をコントロールすることでテーパからなる凹凸構造を作製することも可能である。またこれらの熱処理およびエッチング条件のコントロールの双方を行なうことで、かまぼこ形状の光取り出し面とテーパからなる凹凸構造を作製することも可能となる。なお、テーパとはV字状の溝のことである。   As another manufacturing method, for example, a method of applying particles such as diamond grains or alumina grains and partially etching the n-type nitride semiconductor layer by RIE, or on the n-type nitride semiconductor layer There is a method in which after the mask pattern is formed, heat treatment is performed, and this mask is vertically etched using the RIE method. In addition, when the portion where the mask is not formed has a stripe width of about 1 μm, it is possible to produce a concavo-convex structure having a taper by controlling the etching conditions. Further, by performing both of the heat treatment and the control of the etching conditions, it is possible to produce a concave-convex structure including a kamaboko-shaped light extraction surface and a taper. The taper is a V-shaped groove.

(支持基板)
本発明に用いられる支持基板の材質は特に限定されないが、たとえばNiに代表される金属メッキ、Au、AuおよびSnからなる合金、導電性を有するSi、GaAs、GaP,InP等の半導体基板を支持基板としてPdおよびInからなる接着金属により融着することも可能である。なかでも、支持基板はNiメッキにより形成されていることが好ましい。この場合には支持基板を安価に作製することができる。
(Support substrate)
The material of the support substrate used in the present invention is not particularly limited. For example, it supports a metal substrate typified by Ni, an alloy made of Au, Au and Sn, and a semiconductor substrate such as Si, GaAs, GaP, and InP having conductivity. It is also possible to fuse the substrate with an adhesive metal made of Pd and In. Especially, it is preferable that the support substrate is formed by Ni plating. In this case, the support substrate can be manufactured at low cost.

(反射層)
本発明に用いられる反射層は、光の取り出し面から効率よく光を取り出す観点からは、反射層に最も反射率が高い材料であるAgを用いることが好ましい。
(Reflective layer)
The reflective layer used in the present invention preferably uses Ag, which is a material having the highest reflectivity, for the reflective layer from the viewpoint of efficiently extracting light from the light extraction surface.

また、素子の駆動電圧を低減させる観点からは、反射層はp型窒化物系半導体層とオーミック接触をとるp型用電極であることが好ましい。ここで、p型用電極となる反射層の材質としては、たとえばPd、Ni、Ag等を用いることができるが、なかでもPdを用いることが好ましい。これらの材質は通常用いる駆動電流20mAでの駆動電圧に関し大きな差はないが、Pdを用いた場合にはわずかではあるが素子の駆動電圧をより低減させることができる。   Further, from the viewpoint of reducing the drive voltage of the element, the reflective layer is preferably a p-type electrode that makes ohmic contact with the p-type nitride semiconductor layer. Here, for example, Pd, Ni, Ag, or the like can be used as the material of the reflective layer to be the p-type electrode, and among these, it is preferable to use Pd. These materials do not have a large difference with respect to the drive voltage at a drive current of 20 mA that is normally used. However, when Pd is used, the drive voltage of the element can be further reduced.

したがって、反射層はPdの上にAuを蒸着したp型用電極またはAgの上にAuを蒸着したp型用電極であることがさらに好ましく、Pd/Ag/Auからなる光の反射を兼ね備えたp型用電極であることが最も好ましい。   Therefore, the reflective layer is more preferably a p-type electrode in which Au is vapor-deposited on Pd or a p-type electrode in which Au is vapor-deposited on Ag, and also has a reflection of light composed of Pd / Ag / Au. Most preferred is a p-type electrode.

(p型窒化物系半導体層)
本発明に用いられるp型窒化物系半導体層の材質としては、一般式InxAlyGa1-x-yN(x+y+z=1、0≦x≦1、0≦y≦1および0≦z≦1)で表わされる窒化物系半導体にp型のドーパントが注入されたものが用いられる。ここで、p型のドーパントとしては、従来から公知の材料を用いることができ、たとえばMg、Zn、CdまたはBe等の1種類以上が用いられ得る。
(P-type nitride semiconductor layer)
As the material of the p-type nitride semiconductor layer used in the present invention, the general formula In x Al y Ga 1-xy N (x + y + z = 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1 and 0 ≦ z ≦ 1 In this case, a p-type dopant is implanted into a nitride-based semiconductor represented by (). Here, as the p-type dopant, a conventionally known material can be used, and for example, one or more kinds of Mg, Zn, Cd, Be, or the like can be used.

(発光層)
本発明に用いられる発光層の材質としては、たとえば一般式InxAlyGa1-x-yN(x+y+z=1、0≦x≦1、0≦y≦1および0≦z≦1)で表わされる窒化物系半導体が用いられ得る。また本発明に用いられる発光層は、MQW(多重量子井戸)発光層またはSQW(単一量子井戸)発光層のいずれであってもよい。なお、発光層をInGaAlN、GaAsN、GaInAsN、GaPN、GaInPN等のV族元素として主にNを含むIII−V族窒化物系半導体としても、本発明の効果が同様に得られる。
(Light emitting layer)
The material of the light-emitting layer used in the present invention, represented for example by the general formula In x Al y Ga 1-xy N (x + y + z = 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1 and 0 ≦ z ≦ 1) Nitride based semiconductors can be used. The light emitting layer used in the present invention may be either an MQW (multiple quantum well) light emitting layer or an SQW (single quantum well) light emitting layer. Note that the effect of the present invention can also be obtained when the light emitting layer is a III-V group nitride semiconductor mainly containing N as a group V element such as InGaAlN, GaAsN, GaInAsN, GaPN, and GaInPN.

(n型窒化物系半導体層)
本発明に用いられるn型窒化物系半導体層の材質としては、一般式InxAlyGa1-x-yN(x+y+z=1、0≦x≦1、0≦y≦1および0≦z≦1)で表わされる窒化物系半導体にn型のドーパントが注入されたものが用いられる。ここで、n型のドーパントには従来から公知の材料を用いることができ、たとえばSi、O、Cl、S、CまたはGe等の1種類以上が用いられ得る。
(N-type nitride semiconductor layer)
As the material of the n-type nitride semiconductor layer used in the present invention, the general formula In x Al y Ga 1-xy N (x + y + z = 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1 and 0 ≦ z ≦ 1 In which a nitride semiconductor is implanted with an n-type dopant. Here, conventionally known materials can be used for the n-type dopant, and for example, one or more of Si, O, Cl, S, C, Ge, or the like can be used.

(製造方法)
本発明の窒化物系半導体発光素子の製造方法は、Si基板を用意し、このSi基板上方にn型窒化物系半導体層、発光層およびp型窒化物系半導体層を順次積層する工程と、p型窒化物系半導体層上に反射層を形成し、この反射層上に支持基板を形成する工程と、上記支持基板を用いてウエハを反転させる工程と、上記Si基板を除去する工程と、上記n型窒化物系半導体層上方に表面に凹凸を有する光取り出し面を形成する工程とを含んでいる。
(Production method)
The method for producing a nitride-based semiconductor light-emitting device of the present invention includes a step of preparing a Si substrate and sequentially stacking an n-type nitride-based semiconductor layer, a light-emitting layer, and a p-type nitride-based semiconductor layer on the Si substrate forming a reflective layer on the p-type nitride semiconductor layer, forming a support substrate on the reflective layer, inverting the wafer using the support substrate, removing the Si substrate, Forming a light extraction surface having irregularities on the surface above the n-type nitride semiconductor layer.

従来技術においてはp型窒化物系半導体層上方に凹凸が設けられている。しかし、本発明においては、Si基板上にn型窒化物系半導体層、発光層およびp型窒化物系半導体層をこの順で積層した後にp型窒化物系半導体層に支持基板を設置してこれを用いてウエハを反転させ、その後Si基板を除去することによってn型窒化物系半導体層上方に凹凸を有する光取り出し面を形成することができるようにした点に特徴がある。   In the prior art, unevenness is provided above the p-type nitride semiconductor layer. However, in the present invention, an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer are stacked in this order on a Si substrate, and then a support substrate is placed on the p-type nitride semiconductor layer. This is characterized in that the wafer is inverted and the Si substrate is removed thereafter to form a light extraction surface having irregularities above the n-type nitride semiconductor layer.

したがって、本発明の製造方法を用いて窒化物系半導体発光素子を作製した場合には、上述したようにn型窒化物系半導体層を凹凸面の形成のため膜厚を厚く形成しても素子の駆動電圧を従来技術よりも大幅に低減することができ、また支持基板が電極の代わりも果たすため、発光素子の上下電極構造を容易に作製することができることから、発光素子のコンパクト化もより容易に図ることができることとなる。   Therefore, when a nitride-based semiconductor light-emitting device is manufactured using the manufacturing method of the present invention, the device can be formed even if the n-type nitride-based semiconductor layer is formed thick to form an uneven surface as described above. The driving voltage of the light emitting device can be greatly reduced as compared with the prior art, and the support substrate also serves as an electrode, so that the upper and lower electrode structures of the light emitting device can be easily manufactured. It can be easily achieved.

なお、上記窒化物系半導体層の積層は従来から公知の方法を用いることができ、たとえばLPE法(液相エピタキシー法)、VPE法(気相エピタキシー法)、MOCVD法(有機金属気相成長法)、MBE法(分子線エピタキシー法)、ガスソースMBE法またはこれらの方法を組み合わせた方法等を用いることができる。また、反射層、支持基板または電極の形成方法としては、たとえば真空蒸着法、スパッタリング法、電解メッキ法、無電解メッキ法またはこれらの方法を組み合わせた方法等を用いることができる。   The nitride semiconductor layer can be laminated by a conventionally known method. For example, the LPE method (liquid phase epitaxy method), the VPE method (vapor phase epitaxy method), the MOCVD method (organometallic vapor phase growth method). ), MBE method (molecular beam epitaxy method), gas source MBE method, or a combination of these methods. Moreover, as a formation method of a reflection layer, a support substrate, or an electrode, the vacuum evaporation method, sputtering method, the electroplating method, the electroless-plating method, or the method which combined these methods etc. can be used, for example.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to this.

(実施例1)
図1に本発明の実施例1の窒化物系半導体発光素子の模式的な斜視図を示す。本実施例の窒化物系半導体発光素子は、電極を兼ねたNiメッキからなる支持基板11上にp型用電極12が形成され、p型用電極12上にp型GaNクラッド層13、p型AlGaInNキャリアブロック層14、InxGa1-xNからなる発光層15、Siドープn型In0.03Ga0.97Nクラッド層16、Siドープn型In0.1Ga0.9N層17およびSiドープn型GaN層クラッド層18が順次積層されている。また、n型GaNクラッド層18の上面には、再成長を行なうことで作製した凹凸を有するn型GaN光取り出し層19が形成されており、n型GaN光取り出し層19の一部にn型用電極110、n型用ボンディング電極111が形成されている。
Example 1
FIG. 1 is a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 1 of the present invention. In the nitride semiconductor light emitting device of this example, a p-type electrode 12 is formed on a support substrate 11 made of Ni plating which also serves as an electrode, and a p-type GaN cladding layer 13 and a p-type are formed on the p-type electrode 12. AlGaInN carrier block layer 14, light-emitting layer 15 made of In x Ga 1-x N, Si-doped n-type In 0.03 Ga 0.97 N cladding layer 16, Si-doped n-type In 0.1 Ga 0.9 N layer 17 and Si-doped n-type GaN layer A clad layer 18 is sequentially laminated. Further, an n-type GaN light extraction layer 19 having irregularities produced by regrowth is formed on the upper surface of the n-type GaN cladding layer 18, and an n-type GaN light extraction layer 19 is partially formed on the n-type GaN light extraction layer 19. An electrode 110 and an n-type bonding electrode 111 are formed.

以下に、図2および図3を用いて、本実施例の窒化物系半導体発光素子の製造方法について説明する。まず、1°程度わずかにオフしたSi(111)基板10を、有機洗浄さらには5%HF水溶液で1分洗浄した後、MOCVD装置内に導入し、水素(H2)雰囲気の中で、約900℃の高温でクリーニングを行なう。 A method for manufacturing the nitride-based semiconductor light-emitting device of this example will be described below with reference to FIGS. First, the Si (111) substrate 10 slightly turned off by about 1 ° is washed with an organic cleaning and further with a 5% HF aqueous solution for 1 minute, and then introduced into the MOCVD apparatus. In a hydrogen (H 2 ) atmosphere, Cleaning is performed at a high temperature of 900 ° C.

次に、キャリアガスとしてH2を10L/minの割合で装置内に流しながら、1200℃でNH3を5L/minの割合で、トリメチルアルミニウム(TMA)を20μmol/minの割合で装置内に導入して、図2に示すようにSi基板10上に200nmの厚みのAlNバッファ層112を成長させる。 Next, while flowing H 2 as a carrier gas at a rate of 10 L / min, NH 3 is introduced at a rate of 5 L / min at 1200 ° C. and trimethylaluminum (TMA) is introduced into the device at a rate of 20 μmol / min. Then, an AlN buffer layer 112 having a thickness of 200 nm is grown on the Si substrate 10 as shown in FIG.

次に、キャリアガスとしてH2を10L/minの割合で装置内に流しながら、1150℃でNH3を5L/minの割合で、TMAを20μmol/minの割合で、トリメチルガリウム(TMG)を20μmol/minの割合でそれぞれ装置内に導入して150nmの厚みのSiドーピングを行なったAl0.5Ga0.5N層113を成長させる。 Next, while flowing H 2 into the apparatus at a rate of 10 L / min as a carrier gas, NH 3 at a rate of 5 L / min at 1150 ° C., TMA at a rate of 20 μmol / min, and trimethylgallium (TMG) at 20 μmol. An Al 0.5 Ga 0.5 N layer 113 having a thickness of 150 nm and Si doping is introduced into the device at a rate of / min.

次に、キャリアガスとしてH2を10L/minの割合で装置内に流しながら、1150℃でNH3を5L/minの流量で、TMGを20μmol/minの割合で装置内に導入し、さらにSiH4ガスを導入して、1μmの厚みのSiドーピングを行なったn型GaN層18を成長させる。 Then, while flowing of H 2 as a carrier gas into the apparatus at a rate of 10L / min, the NH 3 at 1150 ° C. at a flow rate of 5L / min, and introduced into the apparatus and TMG at a rate of 20 [mu] mol / min, further SiH 4 gas is introduced to grow the n-type GaN layer 18 doped with Si having a thickness of 1 μm.

次に、成長温度を910℃に降温し、TMGを20μmol/minの割合で、トリメチルインジウム(TMI)を20μmol/minの割合で装置内に導入し、300nmの厚さのSiドープIn0.1Ga0.9N層17を成長させる。 Next, the growth temperature was lowered to 910 ° C., TMG was introduced at a rate of 20 μmol / min, and trimethylindium (TMI) was introduced into the device at a rate of 20 μmol / min, and Si-doped In 0.1 Ga 0.9 having a thickness of 300 nm was introduced. N layer 17 is grown.

次に、TMIの装置内への導入量を約5μmol/minに減らすことで、20nmの厚さのSiドープIn0.03Ga0.97Nクラッド層16を成長させる。 Next, by reducing the amount of TMI introduced into the device to about 5 μmol / min, a Si-doped In 0.03 Ga 0.97 N cladding layer 16 having a thickness of 20 nm is grown.

次に、基板温度を760℃まで降温し、TMIを6.5μmol/min、TMGを2.8μmol/minの割合で装置内に導入し、In0.18Ga0.82Nよりなる3nm厚の井戸層を成長させる。その後再び、850℃まで昇温し、TMGを14μmol/min装置内に導入してGaNよりなる障壁層を成長させる。同様に井戸層、障壁層の成長を繰り返し、4ペアからなる多重量子井戸(MQW)のInGaNからなる発光層15を成長させる。ここでInxGa1-xN発光層はInxGa1-xNの組成xを変えることにより、バンド間発光の波長を紫外から赤色まで発光させることができるが、本実施例では青色で発光するものとした。 Next, the substrate temperature is lowered to 760 ° C., TMI is introduced into the apparatus at a rate of 6.5 μmol / min and TMG at a rate of 2.8 μmol / min, and a 3 nm-thick well layer made of In 0.18 Ga 0.82 N is grown. Let Thereafter, the temperature is raised again to 850 ° C., TMG is introduced into the 14 μmol / min apparatus, and a barrier layer made of GaN is grown. Similarly, the well layer and the barrier layer are repeatedly grown to grow the light emitting layer 15 made of four pairs of multiple quantum well (MQW) InGaN. Here, the In x Ga 1-x N light - emitting layer can emit light between bands from ultraviolet to red by changing the composition x of In x Ga 1-x N. It was supposed to emit light.

上記発光層15の成長が終了した後、最後の障壁層と同じ温度で、TMGを11μmol/min、TMAを1.1μmol/min、TMIを40μmol/min、p型ドーピング原料ガスであるビスシクロペンタジエニルマグネシウムを(Cp2Mg)を10nmol/minの割合で装置内に導入し、50nm厚のMgをドーピングしたAl0.20Ga0.75In0.05N層からなるp型キャリアブロック層14を成長させる。このp型キャリアブロック層14の成長が終了すると、1000℃に昇温した後、TMAの装置内への導入を停止し、100nm厚のMgをドーピングしたGaN層からなるp型クラッド層13の成長を行なう。 After the growth of the light emitting layer 15 is completed, at the same temperature as the last barrier layer, TMG is 11 μmol / min, TMA is 1.1 μmol / min, TMI is 40 μmol / min, and p-type doping source gas biscyclopenta. Dienylmagnesium (Cp 2 Mg) is introduced into the apparatus at a rate of 10 nmol / min, and a p-type carrier block layer 14 made of an Al 0.20 Ga 0.75 In 0.05 N layer doped with 50 nm thick Mg is grown. When the growth of the p-type carrier block layer 14 is completed, the temperature is raised to 1000 ° C., the introduction of TMA into the device is stopped, and the growth of the p-type cladding layer 13 made of a GaN layer doped with 100 nm thick Mg. To do.

上述のようにして窒化物系半導体層の成長が終了すると、TMG、及びCp2Mgの供給を停止した後、このウエハを室温まで冷却し、MOCVD装置より取り出す。 When the growth of the nitride-based semiconductor layer is completed as described above, the supply of TMG and Cp 2 Mg is stopped, and then the wafer is cooled to room temperature and taken out from the MOCVD apparatus.

次に、電子ビーム(EB)蒸着装置を用い、p型クラッド層13上にp型用電極12としてPdを5nmの膜厚で蒸着した後、Au金属を500nm蒸着する。その後、電解メッキ法によりp型用電極12上にNiメッキを100μm形成して支持基板11とする。   Next, using an electron beam (EB) deposition apparatus, Pd is deposited as a p-type electrode 12 on the p-type cladding layer 13 to a thickness of 5 nm, and then Au metal is deposited to 500 nm. Thereafter, Ni plating is formed to 100 μm on the p-type electrode 12 by an electrolytic plating method to form the support substrate 11.

次に、図3に示すように、支持基板11を用いてウエハを反転させ、Si基板10をHFおよびHNO3からなるエッチャントでエッチングをすることにより除去し、AlNバッファ層112およびAl0.5Ga0.5N層113をRIE法(反応性イオンエッチング法)により除去する。 Next, as shown in FIG. 3, the wafer is inverted using the support substrate 11, and the Si substrate 10 is removed by etching with an etchant made of HF and HNO 3 , and the AlN buffer layer 112 and the Al 0.5 Ga 0.5 are removed. The N layer 113 is removed by RIE (reactive ion etching).

そして、Si基板等を除去したウエハをMOCVD装置にセッティングした後、H2雰囲気下で、約1000℃の高温で一旦表面ダメージ層や酸化層の除去することで、ウエハ表面のクリーニングを行なう。 Then, after setting the wafer from which the Si substrate or the like has been removed to the MOCVD apparatus, the surface of the wafer is cleaned by removing the surface damage layer and the oxide layer once at a high temperature of about 1000 ° C. in an H 2 atmosphere.

その後、キャリアガスとしてH2を10L/minの割合で流しながら、900℃でNH3を5L/minの割合で、TMGを50μmol/minの割合で、さらにはn型用のSiのドーパントガスとしてSiH4をそれぞれ装置内に導入し、最大厚みが400nmのn型GaNからなる凹凸構造を有した光取り出し層19を成長させる。900℃においては、光取り出し層19の成長速度を上げること、若しくはNH3ガスの導入量を下げることで、無数の穴を有した凹凸構造の光取り出し層19の作製が可能となる。 Then, while flowing H 2 as a carrier gas at a rate of 10 L / min, NH 3 at a rate of 5 L / min at 900 ° C., TMG at a rate of 50 μmol / min, and further as a dopant gas for Si for n-type SiH 4 is introduced into the apparatus, and a light extraction layer 19 having a concavo-convex structure made of n-type GaN having a maximum thickness of 400 nm is grown. At 900 ° C., the light extraction layer 19 having a concavo-convex structure having innumerable holes can be produced by increasing the growth rate of the light extraction layer 19 or decreasing the amount of NH 3 gas introduced.

これら上記の手法で凹凸を形成した窒化物系半導体発光素子上の一部に、n電極110、ボンディング電極111を形成し、最後にその基板をダイシング装置で一辺300μm角に分割して本実施例の窒化物系半導体発光素子が完成する。   In this embodiment, an n-electrode 110 and a bonding electrode 111 are formed on a part of the nitride-based semiconductor light-emitting element having irregularities formed by the above-described method, and finally the substrate is divided into 300 μm squares by a dicing apparatus. This completes the nitride-based semiconductor light-emitting device.

上述したように、加工性の高いSi基板上に、窒化物系半導体発光素子をエピタキシャル成長させ、p型GaN側に反射率の高い電極を設けた後、支持基板11を用い反転し、n型GaN層側に同じ窒化物結晶からなる凹凸を設けることによって、光の外部取り出し効率が高く、かつ電気伝導性にも支障のない、高輝度の窒化物系半導体発光素子を作製することができる。   As described above, a nitride-based semiconductor light-emitting device is epitaxially grown on a highly workable Si substrate, an electrode having a high reflectance is provided on the p-type GaN side, and then inverted using the support substrate 11 to form an n-type GaN. By providing irregularities made of the same nitride crystal on the layer side, it is possible to produce a high-brightness nitride-based semiconductor light-emitting device that has high light extraction efficiency and does not interfere with electrical conductivity.

(実施例2)
図4に本発明の実施例2の窒化物系半導体発光素子の模式的な斜視図を示す。本実施例の窒化物系半導体発光素子は、凹凸を有するn型GaN光取り出し層29の上面にAlからなる透光性電極層213が蒸着法により形成されていることを特徴とする。
(Example 2)
FIG. 4 shows a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 2 of the present invention. The nitride-based semiconductor light-emitting device of this example is characterized in that a translucent electrode layer 213 made of Al is formed on the upper surface of an uneven n-type GaN light extraction layer 29 by vapor deposition.

本実施例の窒化物系半導体発光素子は、電極を兼ねたNiメッキからなる支持基板21上にp型用電極22が形成され、p型用電極22上にp型GaNクラッド層23、p型AlGaInNキャリアブロック層24、InxGa1-xNからなる発光層25、Siドープn型In0.03Ga0.97Nクラッド層26、Siドープn型In0.1Ga0.9N層27およびSiドープn型GaN層クラッド層28が順次積層されている。そして、n型GaNクラッド層28の上面には、再成長を行なうことで作製した凹凸を有するn型GaN光取り出し層29が形成されている。 In the nitride-based semiconductor light-emitting device of this example, a p-type electrode 22 is formed on a support substrate 21 made of Ni plating that also serves as an electrode, and a p-type GaN cladding layer 23 and a p-type are formed on the p-type electrode 22. AlGaInN carrier block layer 24, light emitting layer 25 made of In x Ga 1-x N, Si-doped n-type In 0.03 Ga 0.97 N cladding layer 26, Si-doped n-type In 0.1 Ga 0.9 N layer 27 and Si-doped n-type GaN layer The clad layer 28 is sequentially laminated. On the upper surface of the n-type GaN clad layer 28, an n-type GaN light extraction layer 29 having irregularities produced by regrowth is formed.

さらに、実施例2の窒化物系半導体発光素子においては、凹凸を有するn型GaN光取り出し層29の上面にAlからなる透光性電極層213が蒸着法により形成されており、透光性電極層213の上面の一部にn型用電極210、n型用ボンディング電極211が形成されている。上述した本実施例においても、光の外部取り出し効率が高く駆動電圧の低い、高輝度の窒化物系半導体発光素子を作製することができる。その他は実施例1と同様である。   Furthermore, in the nitride-based semiconductor light-emitting device of Example 2, a translucent electrode layer 213 made of Al is formed on the upper surface of the n-type GaN light extraction layer 29 having irregularities by a vapor deposition method. An n-type electrode 210 and an n-type bonding electrode 211 are formed on part of the upper surface of the layer 213. Also in the present embodiment described above, a high-brightness nitride-based semiconductor light-emitting element with high light extraction efficiency and low driving voltage can be manufactured. Others are the same as in the first embodiment.

(実施例3)
図5に本発明の実施例3の窒化物系半導体発光素子の模式的な斜視図を示す。本実施例の窒化物系半導体発光素子は、Siドープn型GaN層クラッド層38の上面にはSiO2からなるマスク314が形成されており、選択的に成長されたn型GaN光取り出し層39にピラミッド状の光取り出し面39aが形成されていることを特徴とする。
(Example 3)
FIG. 5 shows a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 3 of the present invention. In the nitride-based semiconductor light-emitting device of this embodiment, a mask 314 made of SiO 2 is formed on the upper surface of the Si-doped n-type GaN layer cladding layer 38, and the selectively grown n-type GaN light extraction layer 39 is formed. Is formed with a pyramidal light extraction surface 39a.

本実施例の窒化物系半導体発光素子は、電極を兼ねたNiメッキからなる支持基板31上にp型用電極32が形成され、p型用電極32上にp型GaNクラッド層33、p型AlGaInNキャリアブロック層34、InxGa1-xNからなる発光層35、Siドープn型In0.03Ga0.97Nクラッド層36、Siドープn型In0.1Ga0.9N層37およびSiドープn型GaN層クラッド層38が順次積層されている。また、n型GaNクラッド層38の上面には再成長を行なうことで作製した凹凸を有するn型GaN光取り出し層39が形成されている。n型GaN光取り出し層39の一部にn型用電極310、n型用ボンディング電極311が形成されている。さらに、n型GaN層クラッド層38の上面にはSiO2からなるマスク314が形成されており、選択的に成長されたn型GaN光取り出し層39にピラミッド状の光取り出し面39aが形成されている。上述した本実施例においても、光の外部取り出し効率が高く駆動電圧の低い、高輝度の窒化物系半導体発光素子を作製することができる。その他は実施例1と同様である。 In the nitride semiconductor light emitting device of this example, a p-type electrode 32 is formed on a support substrate 31 made of Ni plating which also serves as an electrode, and a p-type GaN cladding layer 33 and a p-type are formed on the p-type electrode 32. AlGaInN carrier block layer 34, light emitting layer 35 made of In x Ga 1-x N, Si-doped n-type In 0.03 Ga 0.97 N cladding layer 36, Si-doped n-type In 0.1 Ga 0.9 N layer 37 and Si-doped n-type GaN layer A clad layer 38 is sequentially laminated. Further, an n-type GaN light extraction layer 39 having irregularities produced by regrowth is formed on the upper surface of the n-type GaN cladding layer 38. An n-type electrode 310 and an n-type bonding electrode 311 are formed on part of the n-type GaN light extraction layer 39. Further, a mask 314 made of SiO 2 is formed on the upper surface of the n-type GaN layer cladding layer 38, and a pyramidal light extraction surface 39a is formed on the selectively grown n-type GaN light extraction layer 39. Yes. Also in the present embodiment described above, a high-brightness nitride-based semiconductor light-emitting element with high light extraction efficiency and low driving voltage can be manufactured. Others are the same as in the first embodiment.

(実施例4)
図6に本発明の実施例4の窒化物系半導体発光素子の模式的な斜視図を示す。実施例4の窒化物系半導体発光素子においてはn型GaN光取り出し層49にかまぼこ状の光取り出し面49aが形成されており、光取り出し面49aの間はテーパ構造となっていることを特徴とする。
Example 4
FIG. 6 shows a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 4 of the present invention. In the nitride-based semiconductor light-emitting device of Example 4, a kamaboko-shaped light extraction surface 49a is formed in the n-type GaN light extraction layer 49, and a taper structure is formed between the light extraction surfaces 49a. To do.

本実施例の窒化物系半導体発光素子は、電極を兼ねたNiメッキからなる支持基板41上にp型用電極42が形成され、p型用電極42上にp型GaNクラッド層43、p型AlGaInNキャリアブロック層44、InxGa1-xNからなる発光層45、Siドープn型In0.03Ga0.97Nクラッド層46、Siドープn型In0.1Ga0.9N層47およびSiドープn型GaN層クラッド層48が順次積層されている。また、n型GaNクラッド層48の上面にはn型GaN光取り出し層49が形成されている。n型GaN光取り出し層49の一部にn型用の電極410、n型用ボンディング電極411が形成されている。さらに、n型GaN光取り出し層49にはかまぼこ状の光取り出し面49aが形成されており、光取り出し面49aの間はテーパ構造となっている。 In the nitride-based semiconductor light-emitting device of this example, a p-type electrode 42 is formed on a support substrate 41 made of Ni plating which also serves as an electrode, and a p-type GaN cladding layer 43 and a p-type are formed on the p-type electrode 42. AlGaInN carrier block layer 44, light emitting layer 45 made of In x Ga 1-x N, Si-doped n-type In 0.03 Ga 0.97 N cladding layer 46, Si-doped n-type In 0.1 Ga 0.9 N layer 47 and Si-doped n-type GaN layer A clad layer 48 is sequentially laminated. An n-type GaN light extraction layer 49 is formed on the upper surface of the n-type GaN cladding layer 48. An n-type electrode 410 and an n-type bonding electrode 411 are formed on a part of the n-type GaN light extraction layer 49. Further, the n-type GaN light extraction layer 49 is formed with a semi-cylindrical light extraction surface 49a, and a taper structure is formed between the light extraction surfaces 49a.

このかまぼこ状の光取り出し面49aは以下のようにして作製される。まず、n型GaNクラッド層48上に幅約1μmのストライプからなるマスクパターンを形成した後、180℃で30分間熱処理を行なうことでマスクパターンをかまぼこ状の形に変形させる。そして、RIEを用いて垂直にエッチングすることによりかまぼこ状の形をn型GaN光取り出し層49に転写して作製される。上述した本実施例においても、光の取り出し効率が高く駆動電圧の低い、高輝度の窒化物系半導体発光素子を作製することができる。その他は実施例1と同様である。   This kamaboko-shaped light extraction surface 49a is produced as follows. First, after forming a mask pattern composed of stripes having a width of about 1 μm on the n-type GaN cladding layer 48, heat treatment is performed at 180 ° C. for 30 minutes to deform the mask pattern into a kamaboko shape. Then, the kamaboko shape is transferred to the n-type GaN light extraction layer 49 by etching vertically using RIE. Also in the present embodiment described above, a high-brightness nitride-based semiconductor light-emitting element with high light extraction efficiency and low driving voltage can be manufactured. Others are the same as in the first embodiment.

(実施例5)
図7に本発明の実施例5の窒化物系半導体発光素子の模式的な斜視図を示す。本実施例の窒化物系半導体発光素子においてはn型GaN光取り出し層59がプリズム状に形成されていることを特徴とする。
(Example 5)
FIG. 7 shows a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 5 of the present invention. The nitride-based semiconductor light-emitting device of this example is characterized in that the n-type GaN light extraction layer 59 is formed in a prism shape.

本実施例の窒化物系半導体発光素子は、電極を兼ねたNiメッキからなる支持基板51上にp型用電極52が形成され、p型用電極52上にp型GaNクラッド層53、p型Al0.20Ga0.75In0.05Nキャリアブロック層54、発光層55およびSiドープn型GaN層クラッド層58が順次積層されており、n型GaNクラッド層58の上面には再成長を行なうことで作製した凹凸を有するn型GaN光取り出し層59がプリズム状に形成されている。このn型GaN光取り出し層59の一部にn型用の電極510、n型用ボンディング電極511が形成されている。 In the nitride semiconductor light emitting device of this embodiment, a p-type electrode 52 is formed on a support substrate 51 made of Ni plating which also serves as an electrode, and a p-type GaN cladding layer 53 and a p-type are formed on the p-type electrode 52. The Al 0.20 Ga 0.75 In 0.05 N carrier block layer 54, the light emitting layer 55, and the Si-doped n-type GaN layer clad layer 58 are sequentially stacked, and the upper surface of the n-type GaN clad layer 58 is formed by regrowth. An n-type GaN light extraction layer 59 having irregularities is formed in a prism shape. An n-type electrode 510 and an n-type bonding electrode 511 are formed on a part of the n-type GaN light extraction layer 59.

以下に、本実施例の窒化物系半導体発光素子の製造方法について説明する。まず、図8(a)はSi基板20の(001)主面60と(111)ファセット面61の関係を示した図であり、図8(b)および図8(c)はSi基板20を7.3°オフした(001)面、(111)ファセット面61および(1−101)ファセット面70を有した窒化物半導体膜の関係を表した断面図および概念図である。   Below, the manufacturing method of the nitride type semiconductor light-emitting device of a present Example is demonstrated. First, FIG. 8A is a diagram showing the relationship between the (001) main surface 60 and the (111) facet surface 61 of the Si substrate 20, and FIG. 8B and FIG. FIG. 7 is a cross-sectional view and a conceptual diagram showing the relationship of a nitride semiconductor film having a (001) plane, a (111) facet plane 61, and a (1-101) facet plane 70 off by 7.3 °.

この図8(a)〜(c)に示すように、(001)主面60より[01−1]軸のまわりで7.3°回転したSi基板20若しくは、この面から任意の方向に3°以内の範囲で傾いた面に対して、部分的にSiO2514によるマスクを施し、そのSiO2514からなるマスクのない開口部分に対してエッチングを行なうことで、この(001)主面60となす角が62°となる(111)ファセット面61を持つ溝を形成し、その面に窒化物系半導体膜をエピタキシャル成長させることで、(1−101)ファセット面70を成長面としたGaN系半導体膜を得ることが可能である。 As shown in FIGS. 8A to 8C, the Si substrate 20 rotated by 7.3 ° around the [01-1] axis from the (001) main surface 60 or 3 in an arbitrary direction from this surface. relative inclined plane within a range of °, partially masked by SiO 2 514, by performing the etching with respect to free the opening portion of the mask of the SiO 2 514, the (001) principal surface 60 A groove having a (111) facet surface 61 with an angle of 62 ° is formed, and a nitride-based semiconductor film is epitaxially grown on the groove to thereby form a GaN-based material having the (1-101) facet surface 70 as a growth surface. A semiconductor film can be obtained.

ここで用いたSi基板20は(001)主面60から7.3°[0−1−1]方向に傾けた、すなわち(001)主面60から[01−1]軸のまわりで7.3°回転した主面60を持つものであり、これにより(1−101)ファセット面70はSi基板20の主面60とほぼ同じ面方位を持つことができる。なお、この面から任意の方向に3°以内の範囲で傾いている場合でも(1−101)面を有する極めて平坦な面が得られる。   The Si substrate 20 used here is inclined 7.3 ° [0-1-1] from the (001) main surface 60, that is, 7. (xi) around the (01-1) axis from the (001) main surface 60. With the main surface 60 rotated by 3 °, the (1-101) facet surface 70 can have substantially the same plane orientation as the main surface 60 of the Si substrate 20. In addition, even when it is inclined within a range of 3 ° in any direction from this surface, a very flat surface having the (1-101) surface can be obtained.

そこで、図9(a)、図9(b)、図9(c)および図9(d)の順に、次第に溝上にのみ窒化物系半導体膜の結晶成長を進行させ、できた連続膜の上に窒化物系半導体発光素子を形成させ、さらにその上にp型電極52およびNiメッキ51を支持基板として作製した後、Si基板20を除去することで、このSi基板20の(111)ファセット面61によって形成されたプリズム状の凹凸を有する光り取り出し面を用いた本実施例の窒化物系半導体発光素子を完成させることができる。   Therefore, in the order of FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D, the crystal growth of the nitride-based semiconductor film gradually progresses only on the groove, A nitride-based semiconductor light emitting device is formed on the substrate, and a p-type electrode 52 and a Ni plating 51 are formed thereon as a support substrate. Then, the Si substrate 20 is removed, whereby the (111) facet surface of the Si substrate 20 is removed. The nitride-based semiconductor light-emitting device of this example using the light extraction surface having prism-like irregularities formed by 61 can be completed.

以下、具体的に説明すると、まず、上記で説明したSi基板20を洗浄し、その上に、スパッタもしくはCVDの技術を用い、図10(a)に示すようにSiO2マスク514を100nm堆積させる。その後、フォトリソグラフの技術を行なうことで、部分的にSiO2マスク514をストライプ状に除去する。さらにそのウエハをバッファードフッ酸などの酸エッチング等によって、図10(b)に示すように(111)ファセット面61をもつ溝を形成する。この溝は、Si基板20の[01−1]方向に延伸したストライプ状の溝である。ここで、Si基板20の主面60と(111)ファセット面61とのなす角は約62°である。次に、図10(c)に示すように(111)ファセット面61の対向面にSiO2マスク514aを形成する。 More specifically, the Si substrate 20 described above is first cleaned, and then a SiO 2 mask 514 is deposited to a thickness of 100 nm as shown in FIG. . Thereafter, the SiO 2 mask 514 is partially removed in a stripe shape by performing a photolithographic technique. Further, a groove having a (111) facet surface 61 is formed on the wafer by acid etching such as buffered hydrofluoric acid as shown in FIG. This groove is a stripe-shaped groove extending in the [01-1] direction of the Si substrate 20. Here, the angle formed between the main surface 60 of the Si substrate 20 and the (111) facet surface 61 is about 62 °. Next, as shown in FIG. 10C, a SiO 2 mask 514a is formed on the opposite surface of the (111) facet surface 61.

次に、Si基板20のファセット面61上にMOCVD(有機金属化学気相成長)法を用いて、以下の成長条件で窒化物半導体膜を成長させる。以下、具体的に説明する。   Next, a nitride semiconductor film is grown on the facet surface 61 of the Si substrate 20 using MOCVD (metal organic chemical vapor deposition) under the following growth conditions. This will be specifically described below.

まず、上記で記したプロセスによって溝を形成したシリコン基板20をMOCVD装置内に導入し、H2雰囲気の中で、約1100℃の高温でクリーニングを行なう。 First, the silicon substrate 20 having grooves formed by the process described above is introduced into an MOCVD apparatus, and cleaning is performed at a high temperature of about 1100 ° C. in an H 2 atmosphere.

次に、キャリアガスとしてH2を10L/minの割合で流しながら、800℃でNH3を5L/minの割合で、TMAを10μmol/minの割合で、それぞれ装置内に導入して、図11(a)に示すように約50nmの厚みのAlNバッファ層120を成長させ、その後同じ温度で、TMAの供給を停止し、TMGを約20μmol/minの割合で、SiH4ガスを0.05μmol/minの割合でそれぞれ装置内に導入し、約3μmの厚さのSiドープn型GaNクラッド層58を成長させる。 Next, while flowing H 2 as a carrier gas at a rate of 10 L / min, NH 3 was introduced at a rate of 5 L / min and TMA at a rate of 10 μmol / min at 800 ° C. into the apparatus, respectively. As shown in (a), an AlN buffer layer 120 having a thickness of about 50 nm is grown, and then at the same temperature, the supply of TMA is stopped, TMG is added at a rate of about 20 μmol / min, and SiH 4 gas is added at 0.05 μmol / min. Each is introduced into the apparatus at a rate of min, and a Si-doped n-type GaN cladding layer 58 having a thickness of about 3 μm is grown.

次に、TMA、TMI、TMGの供給を停止して、基板温度を760℃まで降温し、TMIを6.5μmol/minの割合で、TMGを2.8μmol/minの割合でそれぞれ装置内に導入し、In0.18Ga0.82Nよりなる3nm厚の井戸層を成長する。その後再び、850℃まで昇温し、TMGを14μmol/minの割合で装置内に導入しGaNよりなる障壁層を成長する。同様に井戸層,障壁層の成長を繰り返し、図11(b)に示すように、4ペアからなる多重量子井戸(MQW)からなる発光層55を成長させる。 Next, supply of TMA, TMI, and TMG is stopped, the substrate temperature is lowered to 760 ° C., and TMI is introduced into the apparatus at a rate of 6.5 μmol / min and TMG at a rate of 2.8 μmol / min. A 3 nm thick well layer made of In 0.18 Ga 0.82 N is grown. Thereafter, the temperature is raised again to 850 ° C., TMG is introduced into the apparatus at a rate of 14 μmol / min, and a barrier layer made of GaN is grown. Similarly, the growth of the well layer and the barrier layer is repeated, and as shown in FIG. 11B, the light emitting layer 55 made up of four pairs of multiple quantum wells (MQW) is grown.

上記発光層の成長が終了した後、最後の障壁層と同じ温度で、TMGを11μmol/minの割合で、TMAを1.1μmol/minの割合で、TMIを40μmol/minの割合で、Cp2Mgを10nmol/minの割合で装置内に流し、50nm厚のp型Al0.20Ga0.75In0.05Nキャリアブロック層54を成長させる。次にp型Al0.20Ga0.75In0.05Nキャリアブロック層54の成長が終了すると、同じ成長温度においてTMAの供給を停止し80nm厚のp型In0.1Ga0.9Nクラッド層53の成長を行ない、図11(c)に示す段階で、発光素子構造の成長を終了する。その後、TMG,TMI及びCp2Mgの供給を停止した後、室温まで冷却し、MOCVD装置より取り出す。 After the growth of the light emitting layer is completed, at the same temperature as the last barrier layer, TMG is 11 μmol / min, TMA is 1.1 μmol / min, TMI is 40 μmol / min, Cp 2 Mg is allowed to flow into the apparatus at a rate of 10 nmol / min, and a p-type Al 0.20 Ga 0.75 In 0.05 N carrier block layer 54 having a thickness of 50 nm is grown. Next, when the growth of the p-type Al 0.20 Ga 0.75 In 0.05 N carrier blocking layer 54 is completed, the supply of TMA is stopped at the same growth temperature, and the p-type In 0.1 Ga 0.9 N cladding layer 53 having a thickness of 80 nm is grown. At the stage shown in FIG. 11C, the growth of the light emitting device structure is completed. Thereafter, the supply of TMG, TMI and Cp 2 Mg is stopped, and then cooled to room temperature and taken out from the MOCVD apparatus.

上記成長条件を用いてSi基板20上に作製した窒化物半導体発光素子上に、電子ビーム(EB)蒸着装置を用いて、p型用電極52を100nmの膜厚で蒸着する。このp型用電極52上に、Niメッキを100μm施し、図11(d)に示すように半導体発光素子の支持基板51とした。   On the nitride semiconductor light emitting device fabricated on the Si substrate 20 using the above growth conditions, the p-type electrode 52 is deposited to a thickness of 100 nm using an electron beam (EB) deposition apparatus. Ni plating was applied to the p-type electrode 52 by 100 μm to form a support substrate 51 of the semiconductor light emitting device as shown in FIG.

引き続き、n型GaNクラッド層58側のSi基板20をフッ酸系のエッチャントを用いエッチングを行なうことで除去し、さらには、n型-GaN側の導電性を上げることを目的とし、AlNバッファ層120およびSi基板界面付近の結晶性の低い層をRIE装置を用い除去してプリズム状の光取り出し層59を形成する。最後に光取り出し層59上に、部分的にn電極510およびボンディング電極511を形成し、できたウエハをダイシング装置で300μm角に分割する。上述した本実施例においても、光の取り出し効率が高く駆動電圧の低い、高輝度の窒化物系半導体発光素子を作製することができる。   Subsequently, the SiN 20 on the n-type GaN cladding layer 58 side is removed by etching using a hydrofluoric acid-based etchant, and further, the AlN buffer layer is intended to increase the conductivity on the n-type-GaN side. The prismatic light extraction layer 59 is formed by removing a layer having low crystallinity in the vicinity of 120 and the Si substrate interface using an RIE apparatus. Finally, an n-electrode 510 and a bonding electrode 511 are partially formed on the light extraction layer 59, and the resulting wafer is divided into 300 μm squares by a dicing apparatus. Also in the present embodiment described above, a high-brightness nitride-based semiconductor light-emitting element with high light extraction efficiency and low driving voltage can be manufactured.

(比較例1)
実施例1の窒化物系半導体発光素子の構成において、光取り出し面19を形成せずに、n型GaN層クラッド層18上に直接n型用電極110を設けた構成のものを比較例1の窒化物系半導体発光素子とした。
(Comparative Example 1)
In the configuration of the nitride-based semiconductor light-emitting device of Example 1, the configuration in which the n-type electrode 110 is directly provided on the n-type GaN layer cladding layer 18 without forming the light extraction surface 19 is the same as that of Comparative Example 1. A nitride semiconductor light emitting device was obtained.

(比較例2)
実施例1の窒化物系半導体発光素子の構成において、n型とp型とを入れ替えた構成のものを比較例2の窒化物系半導体発光素子とした。
(Comparative Example 2)
In the configuration of the nitride-based semiconductor light-emitting device of Example 1, a configuration in which n-type and p-type are interchanged was used as the nitride-based semiconductor light-emitting device of Comparative Example 2.

(測定結果)
実施例1〜5および比較例1〜2の窒化物系半導体発光素子の駆動電圧と光取り出し効率の測定を行なった。下記表1に実施例1〜5および比較例1〜2の窒化物系半導体発光素子の測定結果を示す。
(Measurement result)
The drive voltage and light extraction efficiency of the nitride-based semiconductor light emitting devices of Examples 1 to 5 and Comparative Examples 1 to 2 were measured. Table 1 below shows the measurement results of the nitride semiconductor light emitting devices of Examples 1 to 5 and Comparative Examples 1 and 2.

Figure 0004767303
Figure 0004767303

表1からもわかるように、実施例1〜5の窒化物系半導体発光素子は比較例1の窒化物系半導体発光素子と駆動電圧は3.5Vで同等であるが、実施例1〜5の窒化物系半導体発光素子の光取り出し効率は2.0mWであり、比較例1の窒化物系半導体発光素子の光取り出し効率は1.5mWであることから、実施例1〜5の窒化物系半導体発光素子は比較例1の窒化物系半導体発光素子よりも光取り出し効率に優れていた。   As can be seen from Table 1, the nitride-based semiconductor light-emitting devices of Examples 1 to 5 are equivalent to the nitride-based semiconductor light-emitting device of Comparative Example 1 at a driving voltage of 3.5 V. The light extraction efficiency of the nitride-based semiconductor light-emitting device is 2.0 mW, and the light extraction efficiency of the nitride-based semiconductor light-emitting device of Comparative Example 1 is 1.5 mW. Therefore, the nitride-based semiconductor of Examples 1 to 5 The light emitting device was superior in light extraction efficiency than the nitride-based semiconductor light emitting device of Comparative Example 1.

また、実施例1〜5の窒化物系半導体発光素子の駆動電圧は3.5Vであり、比較例2の窒化物系半導体発光素子の駆動電圧は4.5Vであることから、実施例1〜5の窒化物系半導体発光素子は比較例2の窒化物系半導体発光素子よりも駆動電圧を低下させることができた。   Further, the driving voltage of the nitride-based semiconductor light-emitting elements of Examples 1 to 5 is 3.5V, and the driving voltage of the nitride-based semiconductor light-emitting element of Comparative Example 2 is 4.5V. The nitride-based semiconductor light-emitting device of No. 5 was able to lower the drive voltage than the nitride-based semiconductor light-emitting device of Comparative Example 2.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

実施例1の窒化物系半導体発光素子の模式的な斜視図である。1 is a schematic perspective view of a nitride-based semiconductor light-emitting element of Example 1. FIG. p型クラッド層形成後の実施例1の窒化物系半導体発光素子の模式的な斜視図である。It is a typical perspective view of the nitride-type semiconductor light-emitting device of Example 1 after forming a p-type cladding layer. Si基板除去後の実施例1の窒化物系半導体発光素子の模式的な斜視図である。It is a typical perspective view of the nitride-type semiconductor light-emitting device of Example 1 after Si substrate removal. 実施例2の窒化物系半導体発光素子の模式的な斜視図である。6 is a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 2. FIG. 実施例3の窒化物系半導体発光素子の模式的な斜視図である。6 is a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 3. FIG. 実施例4の窒化物系半導体発光素子の模式的な斜視図である。6 is a schematic perspective view of a nitride-based semiconductor light-emitting element of Example 4. FIG. 実施例5の窒化物系半導体発光素子の模式的な斜視図である。6 is a schematic perspective view of a nitride-based semiconductor light-emitting element according to Example 5. FIG. Si基板とファセット面との関係を示した模式的な概念図である。It is the typical conceptual diagram which showed the relationship between Si substrate and a facet surface. 窒化物系半導体膜の結晶成長の進行を示した模式的な概念図である。It is the typical conceptual diagram which showed progress of the crystal growth of the nitride-type semiconductor film. Si基板の一部を除去してファセット面を形成する過程の一例を示した模式的な概念図である。It is the typical conceptual diagram which showed an example of the process in which a part of Si substrate is removed and a facet surface is formed. 実施例5の窒化物系半導体発光素子の作製過程の一例を示した模式的な概念図である。FIG. 6 is a schematic conceptual diagram showing an example of a manufacturing process of the nitride-based semiconductor light-emitting element of Example 5. 従来の窒化物系半導体発光素子の模式的な斜視図である。It is a typical perspective view of the conventional nitride semiconductor light-emitting device.

符号の説明Explanation of symbols

11,21,31,41,51 支持基板、12,22,32,42,52 p型用電極、13,23,33,43,53 p型クラッド層、14,24,34,44,54 p型キャリアブロック層、15,25,35,45,55 発光層、16,26,36,46 n型In0.03Ga0.97Nクラッド層、17,27,37,47 n型In0.1Ga0.9N層、18,28,38,48,58 n型GaN層クラッド層、19,29,39,49,59 光取り出し層、39a,49a 光取り出し面、110,210,310,410,510 n型用電極、111,211,311,411,511 n型用ボンディング電極、112,101,120 バッファ層、113 Al0.5Ga0.5N層、213 透光性電極層、314,514,514a マスク、10,20,100 Si基板、60 主面、61,70 ファセット面、102 n型GaN層、103 InGaN発光層、104 p型AlGaNキャリアブロック層、105 p型GaNコンタクト層、106 透光性電極、107 n型用の電極、108 p型用パッド電極、109 n型用パッド電極。 11, 21, 31, 41, 51 Support substrate, 12, 22, 32, 42, 52 p-type electrode, 13, 23, 33, 43, 53 p-type cladding layer, 14, 24, 34, 44, 54 p Type carrier block layer, 15, 25, 35, 45, 55 light emitting layer, 16, 26, 36, 46 n-type In 0.03 Ga 0.97 N cladding layer, 17, 27, 37, 47 n-type In 0.1 Ga 0.9 N layer, 18, 28, 38, 48, 58 n-type GaN layer cladding layer, 19, 29, 39, 49, 59 light extraction layer, 39a, 49a light extraction surface, 110, 210, 310, 410, 510 n-type electrode, 111,211,311,411,511 n-type bonding electrode, 112,101,120 buffer layer, 113 Al 0.5 Ga 0.5 n layer, 213 transparent electrode layer, 314,514,514A trout 10, 20, 100 Si substrate, 60 main surface, 61, 70 facet surface, 102 n-type GaN layer, 103 InGaN light emitting layer, 104 p-type AlGaN carrier block layer, 105 p-type GaN contact layer, 106 translucent electrode 107 n-type electrode, 108 p-type pad electrode, 109 n-type pad electrode.

Claims (2)

支持基板上に形成された反射層と、反射層上方に順次積層されたp型窒化物系半導体層、発光層およびn型窒化物系半導体層とを含み、前記n型窒化物系半導体層上方に位置する光取り出し面に凹凸が形成された窒化物系半導体発光素子を製造する方法であって、
Si基板を準備する工程と、
前記Si基板に(111)ファセット面を有する溝を形成する工程と、
前記(111)ファセット面の対向面にSiO 2 マスクを形成する工程と、
前記対向面に前記SiO 2 マスクを形成した状態で、前記(111)ファセット面上に、前記n型窒化物系半導体層、前記発光層、および前記p型窒化物系半導体層を順次積層する工程と、
前記p型窒化物系半導体層上に前記反射層を形成する工程と、
前記反射層上に前記支持基板を形成する工程と、
前記Si基板を除去する工程と、
前記Si基板を除去する工程によって形成された前記n型窒化物系半導体層の凹凸上に高屈折率膜を形成する工程とを含み、
記高屈折率膜は前記n型窒化物系半導体層よりも屈折率が小さい膜であり、かつ前記高屈折率膜の上面が前記光取り出し面であることを特徴とする窒化物系半導体発光素子の製造方法
And formed on the support substrate reflective layer, the reflective layer above sequentially laminated p-type nitride semiconductor layer, seen including a light emitting layer and the n-type nitride semiconductor layer, the n-type nitride semiconductor layer A method of manufacturing a nitride-based semiconductor light-emitting device having irregularities formed on a light extraction surface located above ,
Preparing a Si substrate;
Forming a groove having a (111) facet surface in the Si substrate;
Forming a SiO 2 mask on the opposite surface of the (111) facet surface ;
A step of sequentially laminating the n-type nitride semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer on the (111) facet surface with the SiO 2 mask formed on the opposing surface. When,
Forming the reflective layer on the p-type nitride-based semiconductor layer;
Forming the support substrate on the reflective layer;
Removing the Si substrate;
Forming a high refractive index film on the irregularities of the n-type nitride semiconductor layer formed by the step of removing the Si substrate,
Before Symbol high refractive index film is the film refractive index is smaller than the n-type nitride semiconductor layer, and a nitride-based semiconductor light-emitting, characterized in that the upper surface of the high refractive index film is the light extraction surface Device manufacturing method .
前記高屈折率膜は、窒化シリコン、酸化インジウム、酸化ネオジム、酸化ジルコニウム、酸化チタン、酸化セリウムおよび酸化ビスマスの群からなるいずれか1種からなることを特徴とする請求項1に記載の窒化物系半導体発光素子の製造方法2. The nitride according to claim 1, wherein the high refractive index film is made of any one of a group consisting of silicon nitride, indium oxide, neodymium oxide, zirconium oxide, titanium oxide, cerium oxide, and bismuth oxide. For manufacturing a semiconductor light emitting device.
JP2008278332A 2008-10-29 2008-10-29 Method for manufacturing nitride-based semiconductor light-emitting device Expired - Fee Related JP4767303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278332A JP4767303B2 (en) 2008-10-29 2008-10-29 Method for manufacturing nitride-based semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278332A JP4767303B2 (en) 2008-10-29 2008-10-29 Method for manufacturing nitride-based semiconductor light-emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002120576A Division JP4233268B2 (en) 2002-04-23 2002-04-23 Nitride-based semiconductor light-emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009021642A JP2009021642A (en) 2009-01-29
JP4767303B2 true JP4767303B2 (en) 2011-09-07

Family

ID=40360923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278332A Expired - Fee Related JP4767303B2 (en) 2008-10-29 2008-10-29 Method for manufacturing nitride-based semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP4767303B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232478A (en) 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3643225B2 (en) * 1997-12-03 2005-04-27 ローム株式会社 Optical semiconductor chip
JP3469484B2 (en) * 1998-12-24 2003-11-25 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
US6133589A (en) * 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction

Also Published As

Publication number Publication date
JP2009021642A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4233268B2 (en) Nitride-based semiconductor light-emitting device and manufacturing method thereof
JP5246213B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP4786430B2 (en) Manufacturing method of light emitting diode
KR100634340B1 (en) Nitride semiconductor device and its manufacturino method
JP5521981B2 (en) Manufacturing method of semiconductor light emitting device
US8779463B2 (en) Sapphire substrate and nitride semiconductor light emitting device
US20110244610A1 (en) Method for producing group iii nitride semiconductor light-emitting device
JP2009081374A (en) Semiconductor light-emitting device
WO2007126158A1 (en) Semiconductor light emitting element and wafer
JPH11251631A (en) Nitride semiconductor element and its manufacture
JP3843245B2 (en) Semiconductor light emitting element and semiconductor light emitting device
JP2006339427A (en) Method for producing epitaxial wafer for nitride semiconductor light-emitting diode, epitaxial wafer for the nitride semiconductor light-emitting diode, and the nitride semiconductor light-emitting diode
JP2008227542A (en) Nitride-based semiconductor light emitting element and manufacturing method thereof
JP2012033521A (en) Substrate and light-emitting element
JP5516191B2 (en) Substrate and light emitting device
JP2005085932A (en) Light-emitting diode and its manufacturing method
JP4751093B2 (en) Semiconductor light emitting device
JP5450847B2 (en) Nitride semiconductor light emitting device
JP4767303B2 (en) Method for manufacturing nitride-based semiconductor light-emitting device
JP2010050487A (en) Nitride-based semiconductor light-emitting device
JPH0955536A (en) Group iii nitride based compound semiconductor light emitting element and its manufacture
JP3759746B2 (en) Method for producing group III nitride compound semiconductor light emitting diode
JP3870869B2 (en) Manufacturing method of nitride semiconductor substrate
TW201419580A (en) Nitride light emitting device having high luminance and method for manufacturing of the same
KR101181018B1 (en) Light emitting device with periodic deflector embedded structure and fabrication method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100414

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Ref document number: 4767303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees