JP4765019B2 - Solar cell module sealing structure and manufacturing method - Google Patents

Solar cell module sealing structure and manufacturing method Download PDF

Info

Publication number
JP4765019B2
JP4765019B2 JP2006227670A JP2006227670A JP4765019B2 JP 4765019 B2 JP4765019 B2 JP 4765019B2 JP 2006227670 A JP2006227670 A JP 2006227670A JP 2006227670 A JP2006227670 A JP 2006227670A JP 4765019 B2 JP4765019 B2 JP 4765019B2
Authority
JP
Japan
Prior art keywords
adhesive
solar cell
sealing material
roof substrate
side sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006227670A
Other languages
Japanese (ja)
Other versions
JP2008053419A (en
Inventor
克彦 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006227670A priority Critical patent/JP4765019B2/en
Publication of JP2008053419A publication Critical patent/JP2008053419A/en
Application granted granted Critical
Publication of JP4765019B2 publication Critical patent/JP4765019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、屋外に設置される架台上や、住宅の屋根、ビルディングの屋上等に敷設されて、太陽光を利用して電力を発生する太陽電池モジュール、特にフレキシブルタイプの太陽電池モジュールの封止構造及び該太陽電池モジュールの製造方法に関する。   The present invention relates to a solar cell module, particularly a flexible type solar cell module, which is laid on a stand installed outdoors, a roof of a house, a rooftop of a building, etc., and generates electric power using sunlight. The present invention relates to a structure and a method for manufacturing the solar cell module.

現在、環境保護のためクリーンなエネルギー供給体の研究開発が進められている。中でも、太陽電池はその資源が無限に近いこと、無公害であることから注目を集めている。
電力供給用や一般住宅用として太陽電池が使用される環境は、当然ながら日当たりの良好な屋外環境で年間の寒暖による温度差、気象の変化による風雨等に曝されての使用であっても、10年以上の製品寿命を維持し得る性能が求められる。
Currently, research and development of clean energy suppliers is underway to protect the environment. Above all, solar cells are attracting attention because of their infinite resources and non-pollution.
Naturally, the environment in which solar cells are used for power supply and general housing, even if it is used in outdoor environments with good sunlight, exposed to temperature differences due to annual warming and cold weather, wind and rain due to weather changes, Performance that can maintain a product life of 10 years or more is required.

図2は、従来技術に係る太陽電池モジュールの一例を示す断面図である。図2において、100は太陽電池モジュールであり、次のような封止構造を備えている。
すなわち、101は定尺に加工された屋根用基板であり、該屋根用基板101の上に、裏面側封止材102を載せ、その上に太陽電池セル103を載せてから、該太陽電池セル103の上に表面側封止材104とその上に表面保護材105を順次積層して、太陽電池モジュールの組立てを行う。
かかる組立て後、上記太陽電池セル103からの内部リード線(図示省略)を出力端子として裏面側封止材102と屋根用基板101に形成された貫通孔(図示省略)から取出し、図示しない真空加熱ラミネート装置に載置し、真空度1Torrで30min程度減圧した後に、150℃で30分(min)程度の条件にて熱融着封止される。
また、折り曲げ加工代Wを、いわゆるハット構造に加工することにより、構造物としての剛性が付与された太陽電池モジュール100が完成されることになる。
FIG. 2 is a cross-sectional view showing an example of a solar cell module according to the prior art. In FIG. 2, 100 is a solar cell module, which has the following sealing structure.
That is, reference numeral 101 denotes a roof substrate processed into a fixed size. After the back surface side sealing material 102 is placed on the roof substrate 101 and the solar battery cell 103 is placed thereon, the solar battery cell is placed. The surface side sealing material 104 and the surface protection material 105 are sequentially stacked on the surface 103 and the solar cell module is assembled.
After such assembly, internal lead wires (not shown) from the solar cells 103 are taken out as output terminals from through-holes (not shown) formed in the back surface side sealing material 102 and the roof substrate 101, and are not shown in vacuum heating. After being placed on a laminating apparatus and depressurized for about 30 minutes at a vacuum degree of 1 Torr, heat sealing is performed at 150 ° C. for about 30 minutes (min).
Further, by processing the bending allowance W into a so-called hat structure, the solar cell module 100 imparted with rigidity as a structure is completed.

かかる太陽電池モジュール100の構成材料としては、上記裏面側封止材102及び表面側封止材104はブリヂストン社製EVA(エチレンビニルアセテート:商品名EVASAFE1425厚さ0.4mm)を使用している。また、上記表面保護材105には、旭硝子社製ETFE(商品名:アフレックス25N1030D・CS厚さ25μm)を使用している。
そして、上記太陽電池セル103は、別工程で製造されたアモルファスシリコン太陽電池セル(厚さ0.35mm程度)を使用している。さらに、上記屋根用基板101としては、屋外で使用可能なガルバリウム鋼板のポリエステル塗装鋼板、あるいはフッ素塗装鋼板を使用している。
以上のようにして完成した太陽電池モジュール100には、屋根用基板101と裏面側封止材102、裏面側封止材102と太陽電池セル103の裏面側、太陽電池セル103の表面側と表面側封止材104、表面側封止材104と表面保護材105、そして裏面側封止材102と表面側封止材104の5箇所の封止界面が存在するが、いずれの界面も熱融着封止された後は、充分な接着性能を有している状態となっている。
As a constituent material of the solar cell module 100, the back side sealing material 102 and the front side sealing material 104 are made of EVA (ethylene vinyl acetate: trade name EVASAFE 1425 thickness 0.4 mm) manufactured by Bridgestone. As the surface protective material 105, ETFE (trade name: Aflex 25N1030D / CS thickness 25 μm) manufactured by Asahi Glass Co., Ltd. is used.
The solar battery cell 103 uses an amorphous silicon solar battery cell (thickness of about 0.35 mm) manufactured in a separate process. Further, as the roof substrate 101, a galvalume steel-coated polyester-coated steel plate or a fluorine-coated steel plate that can be used outdoors is used.
The solar cell module 100 completed as described above includes the roof substrate 101 and the back surface side sealing material 102, the back surface side sealing material 102 and the back surface side of the solar cells 103, the front surface side and the surface of the solar cells 103. There are five sealing interfaces, the side sealing material 104, the front surface sealing material 104 and the surface protection material 105, and the back surface sealing material 102 and the front surface sealing material 104. After being sealed, it has a sufficient adhesive performance.

また、特許文献1(特開平7−302925号公報)には、定尺に加工された補強板(屋根用基板)の上に、裏面被覆フィルムを挟んだ裏面充填材(裏面側封止材)を載せ、その上に光起電力素子(太陽電池セル)を載せてから、該光起電力素子の上に透明な表面充填材(表面側封止材)とその上に透明な表面保護材を順次積層してなる太陽電池モジュールであって、上記表面充填材(表面側封止材)の主な構成樹脂が、ビニリデンフルオライドとヘキサフルオロプロピンを主成分とする60〜80%のフッ素含有量の多元共重合体の架橋物であり、また上記表面保護材が40〜60%のフッ素含有量のフィルムから構成された太陽電池モジュールが開示されている。
特開平7−302925号公報
Patent Document 1 (Japanese Patent Laid-Open No. 7-302925) discloses a back surface filling material (back surface side sealing material) in which a back surface coating film is sandwiched on a reinforcing plate (roof substrate) processed to a regular size. After placing the photovoltaic element (solar cell) thereon, a transparent surface filler (surface side sealing material) and a transparent surface protective material thereon are placed on the photovoltaic element. It is a solar cell module formed by sequentially laminating, and the main constituent resin of the surface filler (surface side sealing material) contains 60 to 80% fluorine containing vinylidene fluoride and hexafluoropropyne as main components. There is disclosed a solar cell module which is a cross-linked product of an amount of a multi-component copolymer, and wherein the surface protective material is composed of a film having a fluorine content of 40 to 60%.
JP-A-7-302925

図2に示される従来の太陽電池モジュールにおいては、太陽電池モジュール100を構成する補強板としての屋根用基板101に使用される材料が、該屋根用基材101として例えばチタン金属等の金属類からテント材のプラスチック材料に至るまで、接着剤では接着しにくい材料が使用されている。このため、太陽電池モジュール100において上記屋根用基板101に接着される部分は、幅広い材料に対して接着性能と信頼性を有した接着構造が必要になる。
しかしながら、図2に示される従来技術にあっては、補強板として設けた屋根用基板101に、単に裏面側封止材102を接着しているにとどまり、また上記特許文献1(特開平7−302925号公報)においても、補強板に裏面充填材を直接接着させているにとどまり、いずれの技術においても上記課題を解決する手段は開示されていない。
In the conventional solar cell module shown in FIG. 2, the material used for the roof substrate 101 as the reinforcing plate constituting the solar cell module 100 is made of a metal such as titanium metal as the roof base material 101. Materials that are difficult to bond with adhesives are used up to tent plastic materials. For this reason, the part bonded to the roof substrate 101 in the solar cell module 100 requires a bonding structure having bonding performance and reliability with respect to a wide range of materials.
However, in the prior art shown in FIG. 2, the back-side sealing material 102 is merely bonded to the roof substrate 101 provided as a reinforcing plate, and the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 7-86). No. 302925), the back surface filler is directly adhered to the reinforcing plate, and no means for solving the above problem is disclosed in any of the techniques.

本発明はこのような実状に鑑みてなされたものであって、その目的は、屋根用基板として使用される各種金属材料やプラスチック材料など幅広い材料に対して安定した接着強度を有し、屋外環境での長時間使用に耐え得る太陽電池モジュールの封止構造及び太陽電池モジュールの製造方法を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is to have a stable adhesive strength with respect to a wide range of materials such as various metal materials and plastic materials used as a substrate for a roof, and an outdoor environment. An object of the present invention is to provide a solar cell module sealing structure and a solar cell module manufacturing method that can withstand long-term use.

上記従来技術の有する課題を解決するために、請求項1の本発明は、裏面側封止材と表面側封止材との間に太陽電池セルが内設され、前記表面側封止材の表面側に表面保護材が配置されてラミネート封止されたサブモジュールを形成し、該サブモジュールを屋根用基板の表面に貼り合せ、前記サブモジュール及び前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する部分が折り曲げ加工されるように構成された太陽電池モジュールにおいて、前記屋根用基板と前記サブモジュールの裏面側封止材との間に、感圧型シート状接着剤及び反応硬化型接着剤を配置する一方、前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する前記折り曲げ加工される部分の近傍に前記反応硬化型接着剤を配置し、前記反応硬化型接着剤よりも内周側に前記感圧型シート状接着剤を配置している。 In order to solve the above-described problems of the prior art, the present invention of claim 1 is configured such that a solar battery cell is provided between a back surface side sealing material and a front surface side sealing material, A surface protection material is disposed on the surface side to form a laminate-sealed submodule, and the submodule is bonded to the surface of the roof substrate, in the vicinity of the outer periphery of the submodule and the roof substrate, In a solar cell module configured such that a portion located outside the solar cell is bent , a pressure-sensitive sheet-like adhesive and a back surface side sealing material of the sub-module are provided between the roof substrate and the sub-module. While disposing the reaction curable adhesive, the reaction curable adhesive is disposed in the vicinity of the outer periphery of the roof substrate and in the vicinity of the bent portion located outside the solar cell, reaction And placing the pressure sensitive adhesive sheets to the inner peripheral side than the reduction adhesives.

また、請求項の本発明は、前記のように構成された太陽電池モジュールの製造方法に係り、裏面側封止材と表面側封止材との間に太陽電池セルを内設し、前記表面側封止材の表面側に表面保護材を配置するとともに、真空加圧により熱融着してラミネート封止されたサブモジュールを形成し、該サブモジュールを屋根用基板の表面に貼り合せ、前記サブモジュール及び前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する部分を折り曲げ加工するように構成した太陽電池モジュールの製造方法であって、前記屋根用基板の上面に沿って感圧型シート状接着剤と反応硬化型接着剤とを塗布する際に、前記屋根用基板上の中央部近傍に前記感圧型シート状接着剤を塗布し、次いで前記屋根用基板上の前記感圧型シート状接着剤よりも外周寄りの部分であって、前記太陽電池セルの外側に位置する前記折り曲げ加工される部分の近傍に前記反応硬化型接着剤を塗布し、前記感圧型シート状接着剤及び反応硬化型接着剤に前記ラミネート封止されたサブモジュールの前記裏面側封止材を貼り合せて、前記屋根用基板と前記サブモジュールとを接着している。 Moreover, this invention of Claim 2 is related with the manufacturing method of the solar cell module comprised as mentioned above, and installs a photovoltaic cell between the back surface side sealing material and the surface side sealing material, A surface protection material is arranged on the surface side of the surface side sealing material, and heat-sealed by vacuum press to form a laminated sub-module, and the sub-module is bonded to the surface of the roof substrate , A method of manufacturing a solar cell module configured to bend a portion located near the outer periphery of the sub-module and the roof substrate and located outside the solar cell, the method being provided on an upper surface of the roof substrate. When applying the pressure sensitive sheet adhesive and the reaction curable adhesive along, the pressure sensitive sheet adhesive is applied in the vicinity of the center on the roof substrate, and then the roof top substrate Pressure sensitive sheet adhesive A near the outer periphery portion than the sun is located outside of the battery cell is applied to the reaction-curing adhesive in the vicinity of the bending is in part, the pressure sensitive adhesive sheets and a reactive curing adhesive The roof-side sealing material and the sub-module are bonded together by bonding the back-side sealing material of the laminate-sealed sub-module to an agent.

上述の如く、本発明によれば、裏面側封止材と表面側封止材との間に太陽電池セルが内設され、前記表面側封止材の表面側に表面保護材が配置されてラミネート封止されたサブモジュールを形成し、該サブモジュールを屋根用基板の表面に貼り合せ、前記サブモジュール及び前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する部分が折り曲げ加工されるように構成された太陽電池モジュールにおいて、前記屋根用基板と前記サブモジュールの裏面側封止材との間に、感圧型シート状接着剤及び反応硬化型接着剤を配置する一方、前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する前記折り曲げ加工される部分の近傍に前記反応硬化型接着剤を配置し、前記反応硬化型接着剤よりも内周側に前記感圧型シート状接着剤を配置しているので、屋根用基板に使用する材料に対して種類を選ばず高い接着力を有するが、折り曲げ加工等で生じる剥離に対する耐剥離性に課題がある感圧型シート状接着剤と、折り曲げ加工等で生じる剥離に対して剥がれ難い性質を備えた反応硬化型接着剤とを併用することにより、前記2種類の接着剤の長所、短所がお互いの接着剤でカバーされ、安定した接着性能が得られる。
また、本発明によれば、裏面側封止材と表面側封止材との間に太陽電池セルを内設し、前記表面側封止材の表面側に表面保護材を配置するとともに、真空加圧により熱融着してラミネート封止されたサブモジュールを形成し、該サブモジュールを屋根用基板の表面に貼り合せ、前記サブモジュール及び前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する部分を折り曲げ加工するように構成した太陽電池モジュールの製造方法であって、前記屋根用基板の上面に沿って感圧型シート状接着剤と反応硬化型接着剤とを塗布する際に、前記屋根用基板上の中央部近傍に前記感圧型シート状接着剤を塗布し、次いで前記屋根用基板上の前記感圧型シート状接着剤よりも外周寄りの部分であって、前記太陽電池セルの外側に位置する前記折り曲げ加工される部分の近傍に前記反応硬化型接着剤を塗布し、前記感圧型シート状接着剤及び反応硬化型接着剤に前記ラミネート封止されたサブモジュールの前記裏面側封止材を貼り合せて、前記屋根用基板と前記サブモジュールとを接着しているので、上記発明と同様の効果を得ることができる。
これにより、屋根用基板として使用される各種金属材料やプラスチック材料など幅広い材料に対して安定した接着性能を有し、接着不良はなくなって、屋外環境での長時間使用に耐え得る耐久性に優れた太陽電池モジュールを提供することができる。
As described above, according to the present invention, a solar battery cell is provided between the back surface side sealing material and the front surface side sealing material, and the surface protection material is disposed on the surface side of the front surface side sealing material. A laminated sub-module is formed, and the sub-module is bonded to the surface of the roof substrate, and the portion located near the outer periphery of the sub-module and the roof substrate is located outside the solar cell. In the solar cell module configured to be bent , a pressure sensitive sheet adhesive and a reaction curable adhesive are disposed between the roof substrate and the back side sealing material of the submodule , Near the outer periphery of the roof substrate, the reactive curable adhesive is disposed in the vicinity of the bent portion located outside the solar cell, and the inner peripheral side of the reactive curable adhesive. To the pressure sensitive Since placing a sheet-like adhesive has a high adhesion choosing the type to the material used for roofing substrate, the pressure-sensitive sheet which is a problem in peeling resistance against peeling caused by bending or the like By using an adhesive and a reaction-curing adhesive having properties that are difficult to peel off due to peeling caused by bending or the like, the advantages and disadvantages of the two types of adhesive are covered with each other's adhesive, Stable adhesion performance can be obtained.
Further, according to the present invention, a solar battery cell is provided between the back surface side sealing material and the front surface side sealing material, the surface protection material is disposed on the surface side of the front surface side sealing material, and vacuum is provided. A sub-module that is heat-sealed by pressurization to form a laminated seal is formed, the sub-module is bonded to the surface of the roof substrate, and the solar cell is in the vicinity of the outer periphery of the sub-module and the roof substrate. A method for manufacturing a solar cell module configured to bend a portion located outside a cell, wherein a pressure sensitive sheet adhesive and a reactive curable adhesive are applied along an upper surface of the roof substrate. In this case, the pressure-sensitive sheet-like adhesive is applied to the vicinity of the center on the roof substrate, and then the portion closer to the outer periphery than the pressure-sensitive sheet-like adhesive on the roof substrate, Located outside the battery cell The reaction-curing adhesive is applied in the vicinity of the portion to be bent, and the back-side sealing material of the laminate-sealed submodule is attached to the pressure-sensitive sheet-like adhesive and the reaction-curing adhesive. In addition, since the roof substrate and the submodule are bonded, the same effect as the above invention can be obtained.
As a result, it has stable adhesion performance to a wide range of materials such as various metal materials and plastic materials that are used as roof substrates, eliminates poor adhesion, and is durable enough to withstand long-term use in outdoor environments. A solar cell module can be provided.

また、折り曲げ加工等で生じる剥離に対して剥がれ難い性質を備えた反応硬化型接着剤を折り曲げ加工部が形成される屋根用基板の外周近傍に配置し、該反応硬化型接着剤よりも内周側の主たる接着部に、屋根用基板に使用する材料に対して種類を選ばず高い接着力を有する感圧型シート状接着剤を配置することにより、屋根用基板とサブモジュールとを高い接着性能で均一に接着することができる。   In addition, a reaction curable adhesive having a property that is difficult to peel off due to peeling caused by bending or the like is disposed near the outer periphery of the roof substrate on which the bent portion is formed, and the inner periphery of the reaction curable adhesive is more By placing a pressure-sensitive sheet-like adhesive with high adhesive strength on the main adhesive part on the side, regardless of the type of material used for the roof substrate, the roof substrate and submodule can be bonded with high adhesion performance. Can be bonded evenly.

以下に、本発明に係る太陽電池モジュールの封止構造及び太陽電池モジュールの製造方法について、その実施形態を詳細に説明する。   Below, the embodiment is described in detail about the sealing structure of a solar cell module concerning the present invention, and the manufacturing method of a solar cell module.

図1は、本発明の実施形態に係る太陽電池モジュールの断面図である。
図1において、本実施形態の太陽電池モジュール100は、屋根用基板202、裏面側封止材102、太陽電池セル103、表面側封止材104及び表面保護材105を積層しって互いに接着することにより構成されている。
屋根用基板202は定尺に加工されたものが使用され、住宅等の屋根の上に敷設されている。裏面側封止材102と止表面側封材104との間には太陽電池セル103が内設されており、太陽電池セル103の下側には裏面側封止材102が接着され、太陽電池セル103の上側には表面側封止材104が接着されている。また、屋根用基板202の上側には感圧型シート状接着剤201が塗布され、屋根用基板202の外周近傍と裏面側封止材102との間には反応硬化型接着剤201が塗布されている。
FIG. 1 is a cross-sectional view of a solar cell module according to an embodiment of the present invention.
In FIG. 1, a solar cell module 100 according to the present embodiment includes a roof substrate 202, a back surface side sealing material 102, a solar cell 103, a surface side sealing material 104, and a surface protection material 105, which are bonded to each other. It is constituted by.
The roof substrate 202 is processed into a standard size and is laid on a roof of a house or the like. A solar battery cell 103 is provided between the back surface side sealing material 102 and the stop surface side sealing material 104, and the back surface side sealing material 102 is bonded to the lower side of the solar battery cell 103. A surface side sealing material 104 is bonded to the upper side of the cell 103. Further, a pressure-sensitive sheet-like adhesive 201 is applied to the upper side of the roof substrate 202, and a reaction-curing adhesive 201 is applied between the vicinity of the outer periphery of the roof substrate 202 and the back-side sealing material 102. Yes.

次に、以上のように構成される太陽電池モジュール100の製造方法について説明する。
まず、定尺に加工された裏面側封止材102を積層し、次に該裏面側封止材102の上側に太陽電池セル103を積層し、次に該太陽電池セル103の上側に表面側封止材104とその上側に表面保護材105を順次積層して積層体を形成する。
次いで、図示しない真空加熱ラミネート装置に前記積層体を載置し、この状態において真空度1Torrで30分(min)程度減圧した後、150℃で30分(min)程度の条件にてラミネート加工を行い、熱融着封止された上記積層体からなるサブモジュール300が形成される。
Next, the manufacturing method of the solar cell module 100 comprised as mentioned above is demonstrated.
First, the back surface side sealing material 102 processed into a regular size is laminated, then the solar cell 103 is laminated on the upper side of the back surface side sealing material 102, and then the surface side on the upper side of the solar cell 103. The sealing material 104 and the surface protection material 105 are sequentially laminated on the upper side to form a laminated body.
Next, the laminate is placed on a vacuum heating laminating apparatus (not shown), and in this state, the pressure is reduced for about 30 minutes (min) at a degree of vacuum of 1 Torr, and then laminated at 150 ° C. for about 30 minutes (min). Then, the submodule 300 made of the above laminated body heat sealed is formed.

次に、屋根用基板202の上に感圧型シート状接着剤201を塗布し、その後、屋根用基板202の外周近傍に反応硬化型接着剤201を塗布し、さらに上記ラミネート加工が完了したサブモジュール300の裏面側封止材102の下面を感圧型シート状接着剤200及び反応硬化型接着剤201に貼り合せる。このとき、サブモジュール300からの内部リード線(図示省略)を出力端子として屋根用基板202の貫通孔(図示省略)から取出し、さらに上方から加圧荷重を加えて接着を完了する。外周部近傍の反応硬化型接着剤201は大気中の湿気と反応し、室温で3〜4時間程度で硬化する。
また、折り曲げ加工代Wを、いわゆるハット構造に加工することにより、構造物としての剛性が付与された太陽電池モジュール100が完成されることになる。
Next, the pressure sensitive sheet-like adhesive 201 is applied onto the roof substrate 202, and then the reaction-curable adhesive 201 is applied to the vicinity of the outer periphery of the roof substrate 202, and the above-described laminating process is completed. The bottom surface of the back side sealing material 102 of 300 is bonded to the pressure sensitive sheet adhesive 200 and the reaction curable adhesive 201. At this time, an internal lead wire (not shown) from the submodule 300 is taken out from a through hole (not shown) of the roof substrate 202 as an output terminal, and a pressure load is further applied from above to complete the bonding. The reactive curable adhesive 201 in the vicinity of the outer periphery reacts with moisture in the atmosphere and cures at room temperature in about 3 to 4 hours.
Further, by processing the bending allowance W into a so-called hat structure, the solar cell module 100 imparted with rigidity as a structure is completed.

かかる太陽電池モジュール100の構成材料として、裏面側封止材102及び表面側封止材104は、ブリヂストン社製EVA(エチレンビニルアセテート:商品名EVASAFE1425厚さ0.4mm)を使用している。また、表面保護材105には旭硝子社製ETFE(商品名:アフレックス25N1030D・CS厚さ25μm)を使用している。
また、太陽電池セル103は、別工程で製造されたアモルファスシリコン太陽電池セル(厚さ0.35mm程度)を使用している。さらに、屋根用基板101としては、屋外で使用可能なガルバリウム鋼板のポリエステル塗装鋼板、あるいはフッ素塗装鋼板を使用している。
As a constituent material of the solar cell module 100, EVA (ethylene vinyl acetate: trade name EVASAFE1425 thickness 0.4 mm) manufactured by Bridgestone is used for the back surface side sealing material 102 and the front surface side sealing material 104. Further, ETFE (trade name: Aflex 25N1030D / CS thickness 25 μm) manufactured by Asahi Glass Co., Ltd. is used for the surface protective material 105.
Moreover, the solar cell 103 uses an amorphous silicon solar cell (thickness of about 0.35 mm) manufactured in a separate process. Further, as the roof substrate 101, a polyester-coated steel plate of a galvalume steel plate that can be used outdoors or a fluorine-coated steel plate is used.

そしてまた、感圧型シート状接着剤200としては、アクリル系感圧型シート状接着剤で住友3M社製Y4920が好適であり、反応硬化型接着剤201にはシリコーン変性型の接着剤でセメダイン社製スーパーXが好適である。また、屋根用基板202としては、本実施形態ではチタン基板が使用されているが、鋼板等の強度を有する板材であればよい。   The pressure sensitive sheet adhesive 200 is preferably an acrylic pressure sensitive sheet adhesive Y4920 manufactured by Sumitomo 3M, and the reaction curable adhesive 201 is a silicone-modified adhesive manufactured by Cemedine. Super X is preferred. Further, as the roof substrate 202, a titanium substrate is used in the present embodiment, but a plate material having strength such as a steel plate may be used.

屋根用基板202と裏面側封止材102との接着用として、感圧型シート状接着剤200及び反応硬化型接着剤201の2種類を使用する理由としては、屋根用基板202に使用する材料に対して種類を選ばず接着することができるのが感圧シート状接着剤200であるが、該感圧シート状接着剤200は折り曲げ加工等で生じる剥離に対しては剥がれ易い性能を持っているため、この剥離を補うために反応硬化型接着剤201を使用するのである。かかる反応硬化型接着剤201は、上記剥離が発生し易い外周部に用いるのが好ましい。
また、反応硬化型接着剤201は、室温で3〜4時間の硬化時間が必要であるが、図1に示すように、この間の接着形態の維持は感圧シート状接着剤200により保たれる構造となっており、これにより、2種類の接着剤200,201の長所、短所がお互いの接着剤でカバーされることになる。
The reason for using two types of pressure-sensitive sheet-like adhesive 200 and reaction-curing adhesive 201 for bonding the roof substrate 202 and the back surface side sealing material 102 is the material used for the roof substrate 202. The pressure-sensitive sheet-like adhesive 200 can be bonded to any type, but the pressure-sensitive sheet-like adhesive 200 has a performance that is easy to peel off due to peeling caused by bending or the like. Therefore, the reactive curable adhesive 201 is used to compensate for this peeling. Such a reaction curable adhesive 201 is preferably used in the outer peripheral portion where the peeling is likely to occur.
Further, the reaction curable adhesive 201 requires a curing time of 3 to 4 hours at room temperature. However, as shown in FIG. 1, the maintenance of the adhesive form during this time is maintained by the pressure-sensitive sheet-like adhesive 200. Thus, the advantages and disadvantages of the two types of adhesives 200 and 201 are covered with each other's adhesive.

以上の構成及び製造方法によって完成した太陽電池モジュール100において、屋根用基板202の金属材料としてチタン基板を使用したものについて、接着性能確認実験を行った結果、図1に示すように、屋根用基板202とサブモジュール300とを感圧型シート状接着剤200及び反応硬化型接着剤201を用いて接着して構成された太陽電池モジュール100は、十分な接着強度を有することが確認された。
さらに、以上の構成及び製造方法によって製作された太陽電池モジュール100を屋外環境に設置された架台や住宅の屋根に設置して、長期間の耐久性確認試験を行った結果、長期間の使用においても接着強度が低下するという問題は発生せず、良好な耐久性を示した。
In the solar cell module 100 completed by the above-described configuration and manufacturing method, as a result of conducting an adhesion performance confirmation experiment using a titanium substrate as the metal material of the roof substrate 202, as shown in FIG. It was confirmed that the solar cell module 100 configured by bonding 202 and the submodule 300 to each other using the pressure-sensitive sheet adhesive 200 and the reaction curable adhesive 201 has sufficient adhesive strength.
Furthermore, as a result of performing a long-term durability confirmation test by installing the solar cell module 100 manufactured by the above-described configuration and manufacturing method on a mount or a roof of a house installed in an outdoor environment, However, the problem that the adhesive strength was lowered did not occur, and good durability was exhibited.

このように本発明の実施形態によれば、裏面側封止材102と表面側封止材104との間に太陽電池セル103が内設され、表面側封止材104の表面側に表面保護材105が配置されてラミネート封止されたサブモジュール300を形成し、該サブモジュール300を屋外用基板202の表面に貼り合せて構成された太陽電池モジュール100において、屋根用基板202の上面に沿って感圧型シート状接着剤200と反応硬化型接着剤201とを塗布して、その上側に上記ラミネート封止されたサブモジュール300の裏面側封止材102を貼り合せて屋根用基板202とサブモジュール300とを接着するように構成したので、屋根用基板202に使用する材料(この実施形態ではチタン基板)に対して種類を選ばず高い接着力を有するが、折り曲げ加工等で生じる剥離に対する耐剥離性に課題がある感圧型シート状接着剤200と、折り曲げ加工等で生じる剥離に対して剥がれ難い性質を備えた反応硬化型接着剤201とを併用することにより、上記2種類の接着剤の長所、短所がお互いの接着剤でカバーされ、安定した接着性能が得られる。
これにより、屋根用基板202として使用される各種金属材料やプラスチック材料など幅広い材料に対して安定した接着強度を有し、屋外環境での長時間使用に耐え得る太陽電池モジュール100を提供することができる。
As described above, according to the embodiment of the present invention, the solar cell 103 is provided between the back surface side sealing material 102 and the front surface side sealing material 104, and surface protection is provided on the surface side of the front surface side sealing material 104. In the solar cell module 100 formed by laminating the material 105 and laminating and sealing the submodule 300 and bonding the submodule 300 to the surface of the outdoor substrate 202, along the upper surface of the roof substrate 202. The pressure sensitive sheet adhesive 200 and the reaction curable adhesive 201 are applied, and the back surface side sealing material 102 of the laminate-sealed submodule 300 is bonded to the upper side of the pressure sensitive sheet adhesive 200 and the reaction curing adhesive 201. Since the module 300 is bonded to the module 300, the material used for the roof substrate 202 (in this embodiment, a titanium substrate) has high adhesive strength regardless of the type. However, the pressure-sensitive sheet-like adhesive 200 having a problem in resistance to peeling caused by bending or the like and the reaction-curing adhesive 201 having a property difficult to peel against peeling caused by bending or the like are used in combination. As a result, the advantages and disadvantages of the two types of adhesives are covered with each other, and stable adhesive performance is obtained.
Thus, it is possible to provide a solar cell module 100 that has stable adhesive strength to a wide range of materials such as various metal materials and plastic materials used as the roof substrate 202 and can withstand long-term use in an outdoor environment. it can.

また、折り曲げ加工等で生じる剥離に対して剥がれ難い性質を備えた反応硬化型接着剤201を折り曲げ加工部が形成される屋根用基板202の外周近傍に配置し、該反応硬化型接着剤201よりも内周側の主たる接着部に、屋根用基板202に使用する材料に対して種類を選ばず高い接着力を有する感圧型シート状接着剤200を配置することにより、屋根用基板202とサブモジュール300とを高い接着性能で均一に接着することができる。   In addition, a reaction curable adhesive 201 having a property that is difficult to peel off due to peeling caused by bending or the like is disposed in the vicinity of the outer periphery of the roof substrate 202 where the bent portion is formed. In addition, the pressure sensitive sheet adhesive 200 having a high adhesive strength regardless of the type used for the material used for the roof substrate 202 is disposed at the main adhesion portion on the inner peripheral side, whereby the roof substrate 202 and the submodule are arranged. 300 can be bonded uniformly with high bonding performance.

以上、本発明の実施形態につき述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。   While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.

本発明の実施形態に係る太陽電池モジュールを示す断面図である。It is sectional drawing which shows the solar cell module which concerns on embodiment of this invention. 従来技術の太陽電池モジュールを示す断面図である。It is sectional drawing which shows the solar cell module of a prior art.

符号の説明Explanation of symbols

100 太陽電池モジュール
102 裏面側封止材
103 太陽電池セル
104 表面側封止材
105 表面保護材
200 感圧型シート状接着剤
201 反応硬化型接着剤
202 屋根用基板
300 サブモジュール
W 折曲げ加工代
DESCRIPTION OF SYMBOLS 100 Solar cell module 102 Back surface side sealing material 103 Solar cell 104 Front surface side sealing material 105 Surface protective material 200 Pressure sensitive sheet-like adhesive 201 Reaction hardening type adhesive 202 Roof substrate 300 Submodule W Folding processing allowance

Claims (2)

裏面側封止材と表面側封止材との間に太陽電池セルが内設され、前記表面側封止材の表面側に表面保護材が配置されてラミネート封止されたサブモジュールを形成し、該サブモジュールを屋根用基板の表面に貼り合せ、前記サブモジュール及び前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する部分が折り曲げ加工されるように構成された太陽電池モジュールにおいて、
前記屋根用基板と前記サブモジュールの裏面側封止材との間に、感圧型シート状接着剤及び反応硬化型接着剤を配置する一方、前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する前記折り曲げ加工される部分の近傍に前記反応硬化型接着剤を配置し、前記反応硬化型接着剤よりも内周側に前記感圧型シート状接着剤を配置したことを特徴とする太陽電池モジュールの封止構造。
A photovoltaic cell is installed between the back side sealing material and the front side sealing material, and a surface protection material is arranged on the surface side of the front side sealing material to form a laminate-sealed submodule. The solar cell is configured such that the submodule is bonded to the surface of the roof substrate, and a portion located near the outer periphery of the submodule and the roof substrate and positioned outside the solar cell is bent. In the battery module,
Between the roof substrate and the back-side sealing material of the submodule, a pressure-sensitive sheet-like adhesive and a reaction-curing adhesive are disposed, and in the vicinity of the outer periphery of the roof substrate, the solar cell The reaction curable adhesive is disposed in the vicinity of the portion to be bent located outside the cell, and the pressure sensitive sheet adhesive is disposed on the inner peripheral side of the reaction curable adhesive. The sealing structure of the solar cell module.
裏面側封止材と表面側封止材との間に太陽電池セルを内設し、前記表面側封止材の表面側に表面保護材を配置するとともに、真空加圧により熱融着してラミネート封止されたサブモジュールを形成し、該サブモジュールを屋根用基板の表面に貼り合せ、前記サブモジュール及び前記屋根用基板の外周近傍であって、前記太陽電池セルの外側に位置する部分を折り曲げ加工するように構成した太陽電池モジュールの製造方法であって、
前記屋根用基板の上面に沿って感圧型シート状接着剤と反応硬化型接着剤とを塗布する際に、前記屋根用基板上の中央部近傍に前記感圧型シート状接着剤を塗布し、次いで前記屋根用基板上の前記感圧型シート状接着剤よりも外周寄りの部分であって、前記太陽電池セルの外側に位置する前記折り曲げ加工される部分の近傍に前記反応硬化型接着剤を塗布し、前記感圧型シート状接着剤及び反応硬化型接着剤に前記ラミネート封止されたサブモジュールの前記裏面側封止材を貼り合せて、前記屋根用基板と前記サブモジュールとを接着することを特徴とする陽電池モジュールの製造方法
A solar battery cell is installed between the back surface side sealing material and the front surface side sealing material, and a surface protective material is disposed on the surface side of the front surface side sealing material, and is thermally fused by vacuum pressurization. A laminate-sealed submodule is formed, and the submodule is bonded to the surface of the roof substrate, and a portion located near the outer periphery of the submodule and the roof substrate and located outside the solar cell. A method of manufacturing a solar cell module configured to be bent,
When applying the pressure sensitive sheet adhesive and the reaction curable adhesive along the upper surface of the roof substrate, the pressure sensitive sheet adhesive is applied in the vicinity of the center on the roof substrate, The reaction-curable adhesive is applied to a portion closer to the outer periphery than the pressure-sensitive sheet-like adhesive on the roof substrate and in the vicinity of the bent portion located outside the solar battery cell. And bonding the back-side sealing material of the laminate-sealed submodule to the pressure-sensitive sheet-like adhesive and the reaction curable adhesive to bond the roof substrate and the submodule. method for manufacturing a solar cell module to be.
JP2006227670A 2006-08-24 2006-08-24 Solar cell module sealing structure and manufacturing method Expired - Fee Related JP4765019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227670A JP4765019B2 (en) 2006-08-24 2006-08-24 Solar cell module sealing structure and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227670A JP4765019B2 (en) 2006-08-24 2006-08-24 Solar cell module sealing structure and manufacturing method

Publications (2)

Publication Number Publication Date
JP2008053419A JP2008053419A (en) 2008-03-06
JP4765019B2 true JP4765019B2 (en) 2011-09-07

Family

ID=39237187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227670A Expired - Fee Related JP4765019B2 (en) 2006-08-24 2006-08-24 Solar cell module sealing structure and manufacturing method

Country Status (1)

Country Link
JP (1) JP4765019B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009714A (en) * 2009-05-29 2011-01-13 Fuji Electric Systems Co Ltd Solar cell module and method of manufacturing solar cell module
JP2011003657A (en) * 2009-06-17 2011-01-06 Fuji Electric Systems Co Ltd Solar cell module stack and method of manufacturing the same
JP2012004261A (en) * 2010-06-16 2012-01-05 Fuji Electric Co Ltd Structure and setting method of solar cell module
JP2015159209A (en) * 2014-02-25 2015-09-03 三菱化学株式会社 Battery module integrated film body
US10910989B2 (en) * 2018-02-28 2021-02-02 The Boeing Company Methods for forming solar panels
JP7302921B1 (en) * 2023-01-10 2023-07-04 株式会社Silfine Japan Construction method of flexible solar cell module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660138B2 (en) * 1992-09-03 1997-10-08 キヤノン株式会社 Solar cell module
JP3170105B2 (en) * 1993-07-01 2001-05-28 キヤノン株式会社 Solar cell module
JP3406956B2 (en) * 1995-10-26 2003-05-19 キヤノン株式会社 Terminal box for solar cell and method of mounting the same
JP3757498B2 (en) * 1996-11-07 2006-03-22 富士電機ホールディングス株式会社 Fixing method of solar cell module

Also Published As

Publication number Publication date
JP2008053419A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4869408B2 (en) Solar cell module and manufacturing method thereof
US20050224108A1 (en) Enhanced photovoltaic module
JP4143124B2 (en) SOLAR CELL MODULE HAVING IMPROVED BACKSKIN AND METHOD FOR FORMING THE SAME
US20090272436A1 (en) Non-glass photovoltaic module and methods for manufacture
US9972734B2 (en) Photovoltaic modules comprising light directing mediums and methods of making the same
JP4765019B2 (en) Solar cell module sealing structure and manufacturing method
JP5176268B2 (en) Solar cell module
JP2007036276A (en) Solar cell modules with integral mounting structure and methods for forming the same
JP2006310680A (en) Thin film solar cell module
JP2003324211A (en) Solar battery module and tape for temporary fixing used therefor
TW201104886A (en) Flameless solar battery panel and method for manufacturing the same
CN101765918B (en) Solar battery panel and method for manufacturing solar battery panel
JP3448198B2 (en) Method of manufacturing solar cell module
JP2011253836A (en) Solar cell module
JP2006294646A (en) Method of attaching terminal box for solar cell
JP2586865B2 (en) Roof material integrated solar cell and solar cell installation method
JPH10284745A (en) Solar battery module
AU2018101273A4 (en) Photovoltaic Building Material Sealed with a Solar Module
JP2002111014A (en) Solar light generating plastic module
JP2008053420A (en) Sealing structure and manufacturing process of solar battery module
JP2007311651A (en) Apparatus and method for vacuum laminate
JPS61272975A (en) Back protective sheet for solar cell
JP2011258786A (en) Solar cell module
JP2003209273A (en) Solar battery module and its manufacturing method
CN201523014U (en) Insulating back plate of solar energy photovoltaic battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees