JP4764991B2 - Contact-type electric welding pipe welding power supply - Google Patents

Contact-type electric welding pipe welding power supply Download PDF

Info

Publication number
JP4764991B2
JP4764991B2 JP2005169700A JP2005169700A JP4764991B2 JP 4764991 B2 JP4764991 B2 JP 4764991B2 JP 2005169700 A JP2005169700 A JP 2005169700A JP 2005169700 A JP2005169700 A JP 2005169700A JP 4764991 B2 JP4764991 B2 JP 4764991B2
Authority
JP
Japan
Prior art keywords
type electric
contact
welding
load
contact type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005169700A
Other languages
Japanese (ja)
Other versions
JP2006341286A (en
Inventor
敏栄 三浦
英俊 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005169700A priority Critical patent/JP4764991B2/en
Publication of JP2006341286A publication Critical patent/JP2006341286A/en
Application granted granted Critical
Publication of JP4764991B2 publication Critical patent/JP4764991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Description

この発明は、コンタクト(接触)式電縫管溶接電源装置に関する。   The present invention relates to a contact type electric resistance welding pipe welding power source apparatus.

電縫管は金属板を管状に形成し、その端部を高周波電流で溶接して製造されるもので、土木,建築,鉄塔,支柱その他の構造物に広く一般的に使用されている。
図4にコンタクト式電縫管溶接電源装置の主回路構成図を、図5にその装置の外観図を示す。
まず、図5により、電縫管の製造方法を説明する。図5において、4は誘導性インピーダンス、5は電縫管溶接電源、8はコンタクト式電縫管負荷、10はコンタクトチップ、11はスクイズロールを示す。
An electric sewing tube is manufactured by forming a metal plate into a tubular shape and welding its end with a high-frequency current, and is widely used in civil engineering, architecture, steel towers, columns, and other structures.
FIG. 4 shows a main circuit configuration diagram of a contact type electric welding pipe welding power source apparatus, and FIG. 5 shows an external view of the apparatus.
First, referring to FIG. 5, a method for manufacturing an electric resistance welded tube will be described. In FIG. 5, 4 is an inductive impedance, 5 is an electric welding pipe welding power source, 8 is a contact type electric welding pipe load, 10 is a contact tip, and 11 is a squeeze roll.

図5に示すように、帯状の金属をオープンパイプ状に曲げ成形しながら示矢方向に移動させる。その端部同士の接触部の溶接は、電縫管溶接電源5から数10〜数100kW,数10〜数100kHzの電力を供給し、コンタクト式電縫管負荷8にコンタクトチップ10を接触させることで行なわれる。スクイズロール11は、溶接部を圧接する役目を果たしている。ここで、コンタクト式電縫管負荷8は、数m/分〜数10m/分で常に移動しているため、コンタトチップ10から見てコンタクト式電縫管負荷8は上下左右に変動し、お互いに頻繁に接触,開放を繰り返している。   As shown in FIG. 5, the band-shaped metal is moved in the direction indicated by the arrow while being bent into an open pipe. The welding of the contact portion between the ends is performed by supplying electric power of several tens to several hundred kW and several tens to several hundred kHz from the electric sewing tube welding power source 5 to bring the contact tip 10 into contact with the contact type electric welding tube load 8. Is done. The squeeze roll 11 plays the role of press-contacting the welded portion. Here, since the contact-type electric sewing tube load 8 is constantly moving at several meters / minute to several tens of meters / minute, the contact-type electric sewing tube load 8 fluctuates vertically and horizontally as viewed from the contact tip 10, and Repeated contact and release frequently.

次に、図4により主回路構成を説明する。
電力変換器1は、真空管や最近はMOSFET(金属酸化膜電界効果トランジスタ)などの半導体素子を用いて構成され、電圧源として動作する電圧型インバータであり、数10〜数100kW,数10〜数100kHzの電力を供給する。その出力には、誘導性インピーダンス2を介して、コンデンサ3が並列に接続され、全体として電縫管溶接電源5を形成している。
Next, the main circuit configuration will be described with reference to FIG.
The power converter 1 is a voltage type inverter that is configured by using a semiconductor element such as a vacuum tube or recently a MOSFET (metal oxide field effect transistor) and operates as a voltage source. Supply 100 kHz power. A capacitor 3 is connected in parallel to the output via an inductive impedance 2 to form an electric resistance welding power source 5 as a whole.

電縫管溶接電源5の出力には、誘導性インピーダンス6と抵抗成分7からなるコンタクト式電縫管負荷8が接続されている。スイッチ9は実際には無いもので、電縫管負荷8の位置変化により発生する電縫管溶接電源5とコンタクト式電縫管負荷8との接触,開放動作を分かり易く示すものである。一般的に、加熱負荷の抵抗は数10〜数100mΩであり、大電流を必要とするため様々な共振回路が用いられる。
その1つとして複合共振回路があるが、これには例えば非特許文献1に示すものがあり、また、電圧源に電流型インバータを用いるもの(例えば、特許文献1参照)もある。
Connected to the output of the ERW welding power source 5 is a contact type ERW pipe load 8 composed of an inductive impedance 6 and a resistance component 7. The switch 9 is not actually provided, and shows the contact / opening operation between the electric welding pipe welding power source 5 and the contact type electric welding pipe load 8 generated by the position change of the electric sewing pipe load 8 in an easy-to-understand manner. Generally, the resistance of the heating load is several tens to several hundreds mΩ, and a large current is required, so various resonance circuits are used.
One of them is a composite resonance circuit, for example, as shown in Non-Patent Document 1, and another using a current-type inverter as a voltage source (for example, see Patent Document 1).

図4の共振回路では、誘導性インピーダンス2(L2)と、誘導性インピーダンス6(L6)とコンデンサ3(C3)との並列回路となる。ここで、誘導性インピーダンス2と6には、図示しない電縫管溶接電源5とコンタクト式電縫管負荷8の配線などによる誘導性インピーダンスも含まれる。   The resonant circuit of FIG. 4 is a parallel circuit of inductive impedance 2 (L2), inductive impedance 6 (L6), and capacitor 3 (C3). Here, the inductive impedances 2 and 6 include inductive impedance due to the wiring of the electric welding pipe welding power source 5 and the contact type electric welding pipe load 8 (not shown).

図4で、電力変換器1の出力電圧,電流をVo,Io、負荷電流をILとした場合の、これらの関係を図6に示す。ここでは具体的に、L2=1μH、L6=0.08μH、C3=2μFのとき、共振周波数fr=1/[2×π×√[(L2×L6)/(L2+L6)×C3]]=413kHzとなり、その近傍の周波数で電力変換器1を運転するとき、IoとILの関係はIL≒Io×(L2/L6)で、Ioの10倍程度のILを流すことができることを示している。   FIG. 6 shows these relationships when the output voltage and current of the power converter 1 are Vo and Io and the load current is IL in FIG. Specifically, when L2 = 1 μH, L6 = 0.08 μH, and C3 = 2 μF, the resonance frequency fr = 1 / [2 × π × √ [(L2 × L6) / (L2 + L6) × C3]] = 413 kHz. Thus, when the power converter 1 is operated at a frequency in the vicinity thereof, the relationship between Io and IL is IL≈Io × (L2 / L6), indicating that an IL that is about 10 times Io can flow.

図4において、コンタクト式電縫管負荷8が開放されると、共振周波数fr=1/[ 2×π×√(L2×C3)]=113kHzとなり、電力変換器1の運転周波数も大幅に低くなる。
さらに、図5のように、溶接部の手前にコンタクト式電縫管負荷8を予熱する機能を持たせる場合は、予熱電源12から予熱コイル13に高周波電力を供給し、誘導加熱することにより行なう。その例としては、例えば特許文献2に示すものがある。
In FIG. 4, when the contact type ERW pipe load 8 is released, the resonance frequency fr = 1 / [2 × π × √ (L2 × C3)] = 113 kHz, and the operating frequency of the power converter 1 is also significantly low. Become.
Further, as shown in FIG. 5, when the contact-type electric sewing tube load 8 has a function of preheating before the welded portion, high frequency power is supplied from the preheating power source 12 to the preheating coil 13 and induction heating is performed. . As an example, there is one shown in Patent Document 2, for example.

Transformerless Inverters for Induction Heating Applications,E.J.DEDE,PCIM INTER ‘98 JAPAN PROCEEDINGS,p227〜231Transformerless Inverters for Induction Heating Applications, E.I. J. et al. DEDE, PCIM INTER '98 JAPAN PROCEEDINGS, p227-231 特開2000−218380号公報JP 2000-218380 A 特開平11−285856号公報Japanese Patent Laid-Open No. 11-285856

上述のように、コンタクト式電縫管負荷の開放時において、電力変換器の運転周波数が大幅に低くなるため、制御が不安定となり、さらに電力変換器の出力側に変圧器が接続されている場合に、変圧器鉄心の飽和を引き起こすと云う問題がある。また、予熱する場合は、別の予熱電源を必要とすると云う問題もある。
したがって、この発明の課題は、電縫管負荷の安定な制御を可能とし予熱電源を不要にすることにある。
As described above, when the contact type ERW pipe load is released, the operation frequency of the power converter is significantly reduced, so that the control becomes unstable, and a transformer is connected to the output side of the power converter. In some cases, there is a problem of causing saturation of the transformer core. Further, when preheating, there is a problem that a separate preheating power source is required.
Therefore, an object of the present invention is to enable stable control of the electric sewing tube load and eliminate the need for a preheating power source.

このよう課題を解決するため、この発明では、電力変換器に直列に接続された誘導性インピーダンスを介して、コンデンサとコンタクト式電縫管負荷とを並列に接続してなるコンタクト式電縫管溶接電源装置において、
前記コンタクト式電縫管負荷と並列に別の誘導性インピーダンスを接続し、この別の誘導性インピーダンスを予熱コイルとして用いることにより、予熱のための電源を省略可能にしたことを特徴とする。
In order to solve such a problem, in the present invention, a contact type electric welded pipe welding in which a capacitor and a contact type electric pipe load are connected in parallel via an inductive impedance connected in series to the power converter. In power supply,
By connecting another inductive impedance in parallel with the contact type electric resistance tube load and using this another inductive impedance as a preheating coil, it is possible to omit a power source for preheating .

この発明によれば、コンタクト式電縫管負荷と並列に誘導性インピーダンスを接続することにより、コンタクト式電縫管負荷の開放時においても、電力変換器の運転周波数の低下をコンタクト式電縫管負荷の接触時のほぼ1/2程度に抑えられため、安定な制御が可能となる。さらに、新たに追加する誘導性インピーダンスが予熱コイルを兼ねるため、予熱電源を省略でき、大幅な設備省略,小型化が可能となる。   According to the present invention, the inductive impedance is connected in parallel with the contact type electric resistance tube load, so that even when the contact type electric resistance pipe load is opened, the operating frequency of the power converter is reduced. Stable control is possible because the load is reduced to about half of the load contact. Furthermore, since the newly added inductive impedance also serves as a preheating coil, the preheating power source can be omitted, and the equipment can be greatly reduced and downsized.

図1はこの発明の実施の形態を示すコンタクト式電縫管溶接電源装置の主回路構成図、図2はその装置の外観図を示す。
図1と図4との相違は、誘導性インピーダンス4をコンタクト式電縫管負荷に並列に接続した点にあり、図2と図5との相違は、予熱コイルとしての誘導性インピーダンス4を電縫管溶接電源5に接続し、図2からは新たな予熱電源および予熱コイルを省略した点にある。
FIG. 1 is a main circuit configuration diagram of a contact type electric welding tube welding power source apparatus showing an embodiment of the present invention, and FIG. 2 is an external view of the apparatus.
The difference between FIG. 1 and FIG. 4 is that the inductive impedance 4 is connected in parallel to the contact type electric resistance tube load. The difference between FIG. 2 and FIG. 5 is that the inductive impedance 4 as a preheating coil is electrically connected. It is connected to the sewing tube welding power source 5 and a new preheating power source and preheating coil are omitted from FIG.

図1の場合の共振回路は、誘導性インピーダンス2(L2)と、誘導性インピーダンス6(L6)と4(L4)とコンデンサ3(C3)との並列回路となる。ここで、誘導性インピーダンス2,4および6には、図示しない電縫管溶接電源5とコンタクト式電縫管負荷8の配線などによる誘導性インピーダンスも含まれる。   The resonant circuit in the case of FIG. 1 is a parallel circuit of inductive impedance 2 (L2), inductive impedances 6 (L6) and 4 (L4), and a capacitor 3 (C3). Here, the inductive impedances 2, 4 and 6 also include inductive impedances due to the wiring of the electric welding pipe welding power source 5 and the contact type electric welding pipe load 8 (not shown).

図3に、電力変換器1の出力電圧,電流と負荷電流との関係を示す。ここでは具体的に、L2=1μH、L4=0.4μH、L6=0.08μH、C3=2μFのとき、共振周波数fr=1/[2×π×√[(L2×L4×L6)/(L2×L4+L2×L6+L4×L6)×C3]]=450kHzとなり、その近傍の周波数で電力変換器1を運転するとき、IoとILの関係はIL≒Io×(L2/L6)で、Ioの10倍程度のILを流すことができることを示している。   FIG. 3 shows the relationship between the output voltage and current of the power converter 1 and the load current. Specifically, when L2 = 1 μH, L4 = 0.4 μH, L6 = 0.08 μH, and C3 = 2 μF, the resonance frequency fr = 1 / [2 × π × √ [(L2 × L4 × L6) / ( L2 × L4 + L2 × L6 + L4 × L6) × C3]] = 450 kHz. When the power converter 1 is operated at a frequency in the vicinity thereof, the relationship between Io and IL is IL≈Io × (L2 / L6), and Io is 10 It shows that about twice as much IL can flow.

図1において、コンタクト式電縫管負荷8が開放されると、共振周波数fr=1/[2×π×√[(L2×L4)/(L2+L4)×C3]]=210kHzであり、電力変換器1の運転周波数が大幅に低くなることはない。つまり、図3と図6とを比較すれば明らかなように、電縫管負荷8の開放時における電力変換器1の運転周波数は、図6では大幅に低くなっているのに対し、図3ではそれほど低下していないことが分かる。   In FIG. 1, when the contact type ERW pipe load 8 is released, the resonance frequency fr = 1 / [2 × π × √ [(L2 × L4) / (L2 + L4) × C3]] = 210 kHz, and power conversion The operating frequency of the vessel 1 is not significantly lowered. That is, as apparent from a comparison between FIG. 3 and FIG. 6, the operating frequency of the power converter 1 when the electric sewing tube load 8 is opened is significantly lower in FIG. It turns out that it has not decreased so much.

この発明の実施の形態を示すコンタクト式電縫管溶接電源装置の主回路構成図The main circuit block diagram of the contact-type electric resistance welding pipe welding power supply which shows embodiment of this invention 図1の装置外観図Device external view of FIG. 図1の動作説明図FIG. 1 is an explanatory diagram of the operation. 従来のコンタクト式電縫管溶接電源装置の主回路構成図Main circuit configuration diagram of conventional contact-type ERW welding power supply 図4の装置外観図Device external view of FIG. 図4の動作説明図Operation explanatory diagram of FIG.

符号の説明Explanation of symbols

1…電力変換器、2,4,6…誘導性インピーダンス、3…コンデンサ、5…電縫管溶接電源、7…抵抗成分、8…コンタクト式電縫管負荷、9…スイッチ、10…コンタクトチップ、11…スクイズロール、12…予熱電源、13…予熱コイル。

DESCRIPTION OF SYMBOLS 1 ... Power converter, 2, 4, 6 ... Inductive impedance, 3 ... Capacitor, 5 ... Electric welding pipe welding power supply, 7 ... Resistance component, 8 ... Contact-type electric sewing tube load, 9 ... Switch, 10 ... Contact tip , 11 ... squeeze roll, 12 ... preheating power source, 13 ... preheating coil.

Claims (1)

電力変換器に直列に接続された誘導性インピーダンスを介して、コンデンサとコンタクト式電縫管負荷とを並列に接続してなるコンタクト式電縫管溶接電源装置において、
前記コンタクト式電縫管負荷と並列に別の誘導性インピーダンスを接続し、この別の誘導性インピーダンスを予熱コイルとして用いることにより、予熱のための電源を省略可能にしたことを特徴とするコンタクト式電縫管溶接電源装置。
In a contact type electric welding pipe welding power source device in which a capacitor and a contact type electric pipe load are connected in parallel via an inductive impedance connected in series to the power converter,
A contact type characterized in that another inductive impedance is connected in parallel with the contact type electric welded tube load, and the power source for preheating can be omitted by using this other inductive impedance as a preheating coil. ERW welding power supply.
JP2005169700A 2005-06-09 2005-06-09 Contact-type electric welding pipe welding power supply Expired - Fee Related JP4764991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169700A JP4764991B2 (en) 2005-06-09 2005-06-09 Contact-type electric welding pipe welding power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169700A JP4764991B2 (en) 2005-06-09 2005-06-09 Contact-type electric welding pipe welding power supply

Publications (2)

Publication Number Publication Date
JP2006341286A JP2006341286A (en) 2006-12-21
JP4764991B2 true JP4764991B2 (en) 2011-09-07

Family

ID=37638633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169700A Expired - Fee Related JP4764991B2 (en) 2005-06-09 2005-06-09 Contact-type electric welding pipe welding power supply

Country Status (1)

Country Link
JP (1) JP4764991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029127A (en) * 2009-07-29 2011-02-10 Fuji Electric Systems Co Ltd Load opening detecting method in contact-type electric resistance welded tube welding power source device
US20110297270A1 (en) * 2010-06-08 2011-12-08 Alstom Technology Ltd Technique for applying protective covering to pipes and tubes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910341B2 (en) * 1991-08-01 1999-06-23 株式会社明電舎 ERW pipe welding method
EP0537565A3 (en) * 1991-10-14 1993-05-26 Siemens Aktiengesellschaft Induction heating circuit
JP2848759B2 (en) * 1993-05-26 1999-01-20 川崎製鉄株式会社 ERW steel pipe welding equipment
JP3309622B2 (en) * 1995-02-17 2002-07-29 株式会社明電舎 High frequency power supply
JP3321040B2 (en) * 1997-08-19 2002-09-03 川崎製鉄株式会社 Open pipe edge preheating device
JPH11285856A (en) * 1998-04-02 1999-10-19 Sumitomo Metal Ind Ltd Manufacture of electric resistance welded tube having small diameter and thick wall
JP2000218380A (en) * 1999-01-29 2000-08-08 Kawasaki Steel Corp Welding device for producing electroseam steel pipe

Also Published As

Publication number Publication date
JP2006341286A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP5174013B2 (en) Generator for spectroscopic analysis
CN101331579A (en) Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator
DE60234775D1 (en) PLANAR INDUCTIVE COMPONENT AND FLAT TRANSFORMER
CN104641448B (en) For the device of plasma is produced and maintained for corona treatment
JP4764991B2 (en) Contact-type electric welding pipe welding power supply
JP2008178205A (en) Switching power supply
JP2007097320A (en) Power conversion circuit
JP5003602B2 (en) Induction heating device
JP2017192206A (en) AC power supply unit
JP5016075B2 (en) Inverter circuit
JP5965820B2 (en) Power supply
JP2017054646A (en) Rf power supply, plasma processing system including the same, and non-contact power supply system
JP2010148221A (en) Noncontact feeding power supply
TW200304163A (en) Circuit arrangement for igniting high pressure discharge lamps
JP2007333553A (en) Resonance frequency measuring method
JP2006271099A (en) Series resonance converter
JP4347636B2 (en) Discharge lamp lighting device
JP2018164326A (en) Resonance inverter
AU1196102A (en) Ballast for gas discharge lamps with shutdown of the filament heating
US20090059634A1 (en) Switching power supply
JP4539067B2 (en) ERW pipe manufacturing equipment
JP6069728B2 (en) Power supply
TWI504123B (en) Flow Transformer Transformer and Its Transforming Method
TWI492512B (en) Open loop power conversion apparatus
JP2009272268A (en) Induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees