JP4761794B2 - Helical conductive polymer nanowire / polysaccharide complex - Google Patents

Helical conductive polymer nanowire / polysaccharide complex Download PDF

Info

Publication number
JP4761794B2
JP4761794B2 JP2005059838A JP2005059838A JP4761794B2 JP 4761794 B2 JP4761794 B2 JP 4761794B2 JP 2005059838 A JP2005059838 A JP 2005059838A JP 2005059838 A JP2005059838 A JP 2005059838A JP 4761794 B2 JP4761794 B2 JP 4761794B2
Authority
JP
Japan
Prior art keywords
schizophyllan
conductive polymer
glucan
polythiophene
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005059838A
Other languages
Japanese (ja)
Other versions
JP2006241334A (en
Inventor
征治 新海
雅美 水
春 李
宗典 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mitsui Sugar Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Mitsui Sugar Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Mitsui Sugar Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005059838A priority Critical patent/JP4761794B2/en
Publication of JP2006241334A publication Critical patent/JP2006241334A/en
Application granted granted Critical
Publication of JP4761794B2 publication Critical patent/JP4761794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)

Description

本発明は、ナノテクノロジーの分野に属し、詳細には、キラルならせん状導電性高分子のナノワイヤーとβ−1,3−グルカンとから成る水溶性複合体、およびその製造方法に関する。   The present invention belongs to the field of nanotechnology, and in particular, relates to a water-soluble complex composed of a chiral helical conductive polymer nanowire and β-1,3-glucan, and a method for producing the same.

導電性ポリマーとして知られているポリチオフェンは、特異的なπ電子系の非局在化を特徴とする分子性のワイヤーを形成し、分子エレクトロニクス、シグナル増幅などの機能が期待されている物質である。また、このポリマーはコンフォメーションの変化に応じて多彩な色調変化を示すことも特徴である。ポリチオフェンそのものは一次元状のポリマーとなるが、凝集性が強く溶液あるいは固体状態において1本のワイヤーとして存在することは困難である。   Polythiophene, known as a conductive polymer, forms a molecular wire characterized by specific delocalization of the π-electron system, and is expected to have functions such as molecular electronics and signal amplification . In addition, this polymer is also characterized by exhibiting various color tone changes according to changes in conformation. Although polythiophene itself becomes a one-dimensional polymer, it is difficult to exist as a single wire in a solution or solid state because of its high cohesiveness.

ポリチオフェンそのものの機能を材料として引き出すためには、孤立分散化させることが重要であり、この観点から、これまで1本のポリチオフェン鎖を孤立分散化させる方法が研究・提案されている。その方法の一つに、剛直な環状分子の内部にポリチオフェンを取り込ませる手法がある。
J. Buey, T.M. Swager, Angew. Chem. Int. Ed., 39, 608(2000) J.-P.Sauvage, J.-M. Kern, G. Bidan, B. Divisia-Blohorn, P.-L. Vidal, New J. Chem., 26,1287(2002) F. Cacialli, et al. Nat. Mater., 1, 160(2002) J. J. Michels, M. J. O’Connell, P. N. Taylor, J. S. Wilson, F.Cacialli, H. L. Anderson, Chem. Eur. J., 9, 6167(2003)
In order to bring out the function of polythiophene itself as a material, it is important to make it isolated and dispersed. From this point of view, methods for isolating and dispersing one polythiophene chain have been studied and proposed. One method is to incorporate polythiophene into the inside of a rigid cyclic molecule.
J. Buey, TM Swager, Angew. Chem. Int. Ed., 39, 608 (2000) J.-P. Sauvage, J.-M. Kern, G. Bidan, B. Divisia-Blohorn, P.-L. Vidal, New J. Chem., 26, 1287 (2002) F. Cacialli, et al. Nat. Mater., 1, 160 (2002) JJ Michels, MJ O'Connell, PN Taylor, JS Wilson, F. Cacialli, HL Anderson, Chem. Eur. J., 9, 6167 (2003)

また、立体的に嵩高い置換基(デンドリマー)などを共有結合的にポリマー主鎖に導入する方法が試みられている。
R. E. Martin,F. Diederich, Angew. Chem. Int. Ed. 38, 1350(1999) S. Hecht, J.M. J. Frechet, Angew. Chem. Int. Ed., 40, 74(2001) T. Sato,D.-L. Jiang, T. Aida, J. Am. Chem. Soc., 121, 10658(1999)
In addition, a method of introducing a sterically bulky substituent (dendrimer) or the like into a polymer main chain in a covalent bond has been attempted.
RE Martin, F. Diederich, Angew. Chem. Int. Ed. 38, 1350 (1999) S. Hecht, JMJ Frechet, Angew. Chem. Int. Ed., 40, 74 (2001) T. Sato, D.-L. Jiang, T. Aida, J. Am. Chem. Soc., 121, 10658 (1999)

ポリチオフェンにおける隣り合わせのチオフェン環は、共役安定化のために固体状態では同一平面上に存在する傾向があるが、特にポリマー間の相互作用が存在しない溶液中ではランダムコイル状態として存在すると考えられる。ポリピロールなど他の導電性ポリマーについても同様である。もし、そのようなポリマーのコンフォメーションが変化し、一定方向に捩れ、らせん構造をとるようになると、ポリチオフェンの性状(色調、凝集性など)に変化が生じる。一般に生体物質がキラリティを有していることを勘案すると、キラリティを付与されたナノマテリアルは、ナノバイオの領域で新たな利用価値が生まれることも期待される。しかしながら、導電性ポリマーにそのようなキラリティを付与する技術の開発については、ほとんど見当たらない。   Adjacent thiophene rings in polythiophene tend to exist on the same plane in the solid state for conjugation stabilization, but are considered to exist as a random coil state, particularly in solutions where there is no interaction between polymers. The same applies to other conductive polymers such as polypyrrole. If the conformation of such a polymer is changed and twisted in a certain direction to take a helical structure, the property (color tone, cohesiveness, etc.) of polythiophene changes. Considering that biological materials generally have chirality, nanomaterials with chirality are expected to create new utility values in the nanobio field. However, there is almost no development of technology for imparting such a chirality to a conductive polymer.

本発明の目的は、溶液、特に水溶液中に単一分散化した導電性ポリマーのナノワイヤーの形成技術を提供することにある。   An object of the present invention is to provide a technique for forming nanowires of a conductive polymer monodispersed in a solution, particularly an aqueous solution.

本発明者らは、天然多糖の一種で、免疫賦活剤としても使用されているシゾフィラン(以下、SPGと略記することがある)およびSPGが属するβ−1,3−グルカン類が一次元状のナノ空間を有すること、およびその空間を利用することによってカーボンナノチューブや導電性ポリマーおよびそのモノマーなどの各種機能性物質と安定な複合体を形成することを明らかにしてきた。
M.Numata,M.Asai, K.Kaneko, T.Hasegawa, N.Fujita, Y.Kitada, K.Sakurai and S.Shinkai;Chem. Lett., 232 (2004) T. Hasegawa,T. Fujisawa, M. Numata, M. Umeda, T. Matsumoto, T. Kimura, S. Okumura, K.Sakurai and S. Shinkai, Chem. Commun., 2004,2150-2151 M. Numata,T. Hasegawa, T. Fujisawa, K. Sakurai and S. Shinkai, Org. Lett., 6(24),447-4450(2004) T. Hasegawa,S. Haraguchi, M. Numata T. Fujisawa, C. Li, K. Kaneko, K. Sakurai and S.Shinkai, Chem. Lett., 34, 40-41 (2005) 特願2003−339569 特願2004−138260 特願2004−321757 特願2004−349277 特願2005−20532
The present inventors have a one-dimensional form of schizophyllan (hereinafter sometimes abbreviated as SPG), which is a kind of natural polysaccharide and also used as an immunostimulant, and β-1,3-glucans to which SPG belongs. It has been clarified that having a nano-space and forming a stable complex with various functional materials such as carbon nanotubes, conductive polymers and monomers thereof by utilizing the space.
M. Numata, M. Asai, K. Kaneko, T. Hasegawa, N. Fujita, Y. Kitada, K. Sakurai and S. Shinkai; Chem. Lett., 232 (2004) T. Hasegawa, T. Fujisawa, M. Numata, M. Umeda, T. Matsumoto, T. Kimura, S. Okumura, K. Sakurai and S. Shinkai, Chem. Commun., 2004, 2150-2151 M. Numata, T. Hasegawa, T. Fujisawa, K. Sakurai and S. Shinkai, Org. Lett., 6 (24), 447-4450 (2004) T. Hasegawa, S. Haraguchi, M. Numata T. Fujisawa, C. Li, K. Kaneko, K. Sakurai and S. Shinkai, Chem. Lett., 34, 40-41 (2005) Japanese Patent Application No. 2003-339469 Japanese Patent Application No. 2004-138260 Japanese Patent Application No. 2004-321757 Japanese Patent Application No. 2004-349277 Japanese Patent Application No. 2005-20532

本発明者は、今回、このシゾフィラン(SPG)の一次元ホストとしての特性を利用し、水溶性の導電性ポリマーをSPGが形成するらせん構造の内部に包接させることによって孤立化・単一分散させることに成功し、本発明を導き出した。   The present inventor has now made use of the characteristics of this Schizophyllan (SPG) as a one-dimensional host to isolate and monodisperse by including a water-soluble conductive polymer inside the spiral structure formed by SPG. The present invention has been derived.

本発明によれば、らせん状の導電性ポリマーのナノワイヤーを、安全性の高い天然の素材であるβ−1,3−グルカンで包接(ラッピング)された状態の複合体として、水溶液中に得ることができる。   According to the present invention, a helical conductive polymer nanowire is incorporated into an aqueous solution as a complex in a state of being wrapped (wrapped) by β-1,3-glucan, which is a highly safe natural material. Obtainable.

本発明において用いられるβ−1,3−グルカンとは、よく知られているように、グルコースがβ−(1→3)−グルコシド結合により結合された多糖である。β−1,3−グルカンは、天然に存在する状態では、一般に三重のらせん構造を形成していることが知られている。また、非プロトン性極性溶媒またはアルカリ水溶液の中で一本鎖のランダムコイル状に解離すること、そして、そのランダムコイル状のβ−1,3−グルカンは水中で三重のらせん状に巻き戻ること、さらにその際に一本鎖の核酸などが共存すると、共存物を巻き込みながら、らせん状の複合体を形成することが本発明者らにより発見されている。
再表2001−034207
As is well known, β-1,3-glucan used in the present invention is a polysaccharide in which glucose is bound by a β- (1 → 3) -glucoside bond. It is known that β-1,3-glucan generally forms a triple helical structure in a naturally occurring state. Also, dissociate into a single-stranded random coil in an aprotic polar solvent or an alkaline aqueous solution, and the random coiled β-1,3-glucan rewinds into a triple helix in water. Furthermore, it has been discovered by the present inventors that when a single-stranded nucleic acid or the like coexists at that time, a helical complex is formed while entraining the coexisting substance.
Table 2001-034207

本発明は、β−1,3−グルカンのこのような特性を利用したものであり、本発明に従えば、予め非プロトン性極性溶媒に溶解させて一本鎖に解離させたβ−1,3−グルカンの溶液と導電性ポリマーの水溶液とを混合する。この簡単な工程により、β−1,3−グルカンが巻き戻る際に疎水性内部空間に取り込まれた導電性ポリマーが単分散し、ナノワイヤー状となってβ−1,3−グルカンと複合体を形成する。そして、そのナノワイヤー(単分散されたポリマー鎖)自身も、らせん状を呈している、すなわち、キラリティが付与されている(後述の実施例4,5,6および図1参照)。これは、β−1,3−グルカンのらせん構造の影響によりポリマー鎖にも捩れが生じるためと考えられる。   The present invention utilizes such characteristics of β-1,3-glucan, and according to the present invention, β-1,3-glucan previously dissolved in an aprotic polar solvent and dissociated into a single strand is used. A solution of 3-glucan and an aqueous solution of a conductive polymer are mixed. By this simple process, when β-1,3-glucan is unwound, the conductive polymer incorporated in the hydrophobic internal space is monodispersed and becomes nanowires to form a complex with β-1,3-glucan Form. And the nanowire (monodispersed polymer chain) itself also has a spiral shape, that is, is given chirality (see Examples 4, 5, 6 and FIG. 1 described later). This is probably because the polymer chain is twisted due to the influence of the helical structure of β-1,3-glucan.

本発明で適用可能な導電性高分子(ポリマー)の骨格としては、ポリチオフェン、ポリピロール、ポリアニリン、ポリフェニレンビニル、ポリフルオレン、ポリフェニレンビニレンなどが挙げられる。そして、導電性高分子に水溶性を付与するために各種のカチオンまたはアニオン性の官能基、ならびに親水性の官能基から選択された修飾基を側鎖に有するポリマーを使用する。
例えば、ポリチオフェンの場合は、下記の式(I)で表わされる繰り返し単位を有するポリチオフェン誘導体を用いる。なお、式(I)の繰り返し単位を有するチオフェン誘導体を本明細書および図面ではPT-1と称していることがある。
Examples of the skeleton of the conductive polymer (polymer) applicable in the present invention include polythiophene, polypyrrole, polyaniline, polyphenylene vinyl, polyfluorene, polyphenylene vinylene, and the like. In order to impart water solubility to the conductive polymer, a polymer having various cationic or anionic functional groups and a modifying group selected from hydrophilic functional groups in the side chain is used.
For example, in the case of polythiophene, a polythiophene derivative having a repeating unit represented by the following formula (I) is used. A thiophene derivative having a repeating unit of the formula (I) is sometimes referred to as PT-1 in the present specification and drawings.

本発明で使用するβ−1,3−グルカンには多くの種類のものが知られており、そのいずれもナノファイバー化に効果を示すが、中でも、シゾフィラン、レンチナンまたはスクレログルカンのような天然に産出するもので、6位の炭素にグルコース置換基を30%程度以上有するものは、水に良く溶けて取り扱いやすいため、好適に使用される。   Many types of β-1,3-glucans are known for use in the present invention, and all of them are effective in forming nanofibers. Among them, natural compounds such as schizophyllan, lentinan or scleroglucan Those having a glucose substituent of about 30% or more on the 6-position carbon are preferably used because they dissolve well in water and are easy to handle.

さらには、これらのグルカンの側鎖の一部が適当な官能基で修飾されたものを用いることにより、その官能基に対応した機能を、複合体中のナノワイヤーに付与することが可能である。   Furthermore, it is possible to impart a function corresponding to the functional group to the nanowire in the complex by using a part of these glucan side chains modified with an appropriate functional group. .

β−1,3−グルカンを溶解し、一本鎖のランダムコイル状に解離させる非プロトン性極性溶媒として好適な例はジメチルスルホキシド(DMSO)である。また、苛性ソーダ水溶液のようなアルカリ溶液を用いることもできる。   A suitable example of an aprotic polar solvent that dissolves β-1,3-glucan and dissociates it into a single-stranded random coil is dimethyl sulfoxide (DMSO). An alkaline solution such as an aqueous caustic soda solution can also be used.

生成する導電性高分子のナノワイヤーとβ−1,3−グルカンの複合体は、水に安定に分散・溶解している。必要に応じて、この複合体を酵素処理や酸処理を行うことにより、β−1,3−グルカンを除くことも可能である。
以下、導電性高分子として4級アンモニウムの側鎖を有するポリチオフェン(PT-1)を使った実施例に沿って本発明の詳細を説明する。但し、本発明はこれに限定されるものではなく、本発明の原理は、ポリチオフェンに留まらず他の導電性高分子、特に水溶性部位を付与し、水に分散性を持った物質に関しても適応可能である。
The resulting composite of conductive polymer nanowires and β-1,3-glucan is stably dispersed and dissolved in water. If necessary, β-1,3-glucan can be removed by subjecting this complex to an enzyme treatment or an acid treatment.
Hereinafter, the details of the present invention will be described along with examples using polythiophene (PT-1) having a quaternary ammonium side chain as a conductive polymer. However, the present invention is not limited to this, and the principle of the present invention is applicable not only to polythiophene but also to other conductive polymers, in particular, substances that impart water-soluble sites and are dispersible in water. Is possible.

シゾフィランの調製 三重らせん構造のシゾフィランを文献記載の定法に従って製造した。すなわち、ATCC(American Type Culture Collection)から入手したSchizophyllum commune. Fries(ATCC 44200)を、最小培地を用いて7日間静置培養した後、細胞成分および不溶残渣を遠心分離して得られた上清を超音波処理して分子量45万の三重らせんシゾフィランを得た。
Gregory G.Martin, Michael F. Richardson, Gordon C. Cannon and Charles L. McCormick, Am.Chem. Soc. Poly. Prep., 38, 253(1997) KengoTabata, Wataru Ito, Takemasa Kojima, Shozo Kawabata and Akira Misaki, CarbohydrateRes., 89, 121(1981)
Preparation of Schizophyllan Schizophyllan having a triple helix structure was prepared according to a standard method described in the literature. Specifically, Schizophyllum commune. Fries (ATCC 44200) obtained from ATCC (American Type Culture Collection) was left to stand for 7 days in a minimal medium, and then the supernatant obtained by centrifuging cell components and insoluble residues. Was sonicated to obtain a triple helix schizophyllan having a molecular weight of 450,000.
Gregory G. Martin, Michael F. Richardson, Gordon C. Cannon and Charles L. McCormick, Am. Chem. Soc. Poly. Prep., 38, 253 (1997) KengoTabata, Wataru Ito, Takemasa Kojima, Shozo Kawabata and Akira Misaki, CarbohydrateRes., 89, 121 (1981)

ポリチオフェンの調製 水溶性ポリチオフェン(PT-1)は、図2のスキ−ムに従って調製を行った。
H.-A. Ho, M. Boissinot, M. G. Bergeron, G. Corbeil, K. Dore, D. Boudreau,M. Leclerc, Angew. Chem. Int. Ed., 41,1548(2002)
Preparation of polythiophene Water-soluble polythiophene (PT-1) was prepared according to the scheme of FIG.
H.-A. Ho, M. Boissinot, MG Bergeron, G. Corbeil, K. Dore, D. Boudreau, M. Leclerc, Angew. Chem. Int. Ed., 41, 1548 (2002)

シゾフィランとポリチオフェンとの複合化 実施例1で調製した3重らせんのシゾフィランをDMSOに添加して一本鎖のシゾフィラン(s-SPG)とした。このシゾフィランのDMSO溶液とPT-1の水溶液を水/DMSOが95/5(v/v)となるように混合した。また、最終的なシゾフィランとPT-1の濃度はそれぞれ1.5×10-4 Mと6.0×10-4 Mとした。 Conjugation of schizophyllan and polythiophene Triple-stranded schizophyllan prepared in Example 1 was added to DMSO to form single-stranded schizophyllan (s-SPG). The DMSO solution of schizophyllan and the aqueous solution of PT-1 were mixed so that water / DMSO was 95/5 (v / v). The final concentrations of schizophyllan and PT-1 were 1.5 × 10 −4 M and 6.0 × 10 −4 M, respectively.

紫外(UV)および蛍光スペクトルによる複合体の構造解析 得られた複合体のUVスペクトルおよび蛍光スペクトルを図3に示す。図3ではUVスペクトルを実線、蛍光スペクトルを破線でそれぞれ示してある。シゾフィランが存在しない場合、PT-1のみでは403nmに極大を持つ。これはPT-1鎖がランダムコイル状態にあることを示している。一方、シゾフィラン存在下ではそのピークは454nmに長波長シフトするとともに、溶液の色が黄色からオレンジ色へと変化することが確かめられた。これはランダムコイル状のPT-1がシゾフィランの一次元疎水空間に取り込まれることにより、平面性が増しその有効共役長が伸びたことに由来する。また、蛍光スペクトルもPT-1のみでは520nmであった極大ピークがシゾフィランと複合化させることにより561nmに、しかもピーク強度がわずかに増大しながらシフトしていることが確認されている。これはシゾフィランによってPT-1のコンフォメーションがより平面にしかも1本の状態に孤立化されていることを示している。このシゾフィランによるポリチオフェン鎖の孤立化は、溶液のみならずフィルム化した複合体においても同様に確認できた。フィルム状態での孤立・分散化は複合体を基盤上で分子性ワイヤーとして利用するために不可欠な条件であり、それを十分満たしている。 Structural analysis of the composite by ultraviolet (UV) and fluorescence spectra FIG. 3 shows the UV spectrum and fluorescence spectrum of the obtained composite. In FIG. 3, the UV spectrum is indicated by a solid line, and the fluorescence spectrum is indicated by a broken line. In the absence of schizophyllan, PT-1 alone has a maximum at 403 nm. This indicates that the PT-1 chain is in a random coil state. On the other hand, in the presence of schizophyllan, the peak shifted to 454 nm for a long wavelength, and the color of the solution changed from yellow to orange. This is due to the fact that random coiled PT-1 is incorporated into the one-dimensional hydrophobic space of schizophyllan, resulting in increased planarity and increased effective conjugate length. In addition, it has been confirmed that the maximum peak, which was 520 nm with PT-1 alone, is shifted to 561 nm by complexing with schizophyllan, and the peak intensity is slightly increased. This indicates that the conformation of PT-1 is more flat and isolated in a single state by Schizophyllan. The isolation of the polythiophene chain by this schizophyllan was confirmed not only in the solution but also in the filmed complex. Isolation / dispersion in the film state is an indispensable condition for using the composite as a molecular wire on the substrate, and it satisfies it sufficiently.

円二色性(CD)スペクトルによる複合体の構造解析 PT-1そのものは不斉源を持っていないためCDスペクトルでピークは観察されない。一方、シゾフィランと複合体を形成したPT-1は誘起CDを与えた。CDシグナルのパターンからPT-1骨格が右向きのらせん構造を取っていることが認められる(図3B)。このCDはシゾフィランの空孔にPT-1が取り込まれた事に由来している。次に、CDスペクトルの温度依存性を調べ、複合体熱的安定性を評価した。温度変化に伴うCDスペクトルの変化を図4Aに、512nmのCD強度を温度に対してプロットした結果を図4Bに示す。この図より、複合体は約90℃までCD強度が保持され複合体が安定に存在することが示されている。CDスペクトルから複合体を構成しているシゾフィランとPT-1の化学量論比を見積もった。その結果、シゾフィラン鎖2本がPT-1の1本を被覆していることが確認された。 Structural analysis of complex by circular dichroism (CD) spectrum Since PT-1 itself has no chiral source, no peak is observed in the CD spectrum. On the other hand, PT-1 complexed with schizophyllan gave induced CD. From the CD signal pattern, it can be seen that the PT-1 skeleton has a right-handed helical structure (FIG. 3B). This CD is derived from the incorporation of PT-1 into the pores of schizophyllan. Next, the temperature dependence of the CD spectrum was examined, and the composite thermal stability was evaluated. FIG. 4A shows the change in the CD spectrum accompanying the change in temperature, and FIG. 4B shows the result of plotting the CD intensity at 512 nm against the temperature. From this figure, it is shown that the composite body has stable CD strength up to about 90 ° C. and the composite body exists stably. The stoichiometric ratio of schizophyllan and PT-1 constituting the complex was estimated from the CD spectrum. As a result, it was confirmed that two schizophyllan chains covered one PT-1.

原子間力顕微鏡(AFM)による複合体の構造解析 次に複合体の構造をAFMを用いて評価した。図5(A)に示すようにAFMから複合体はそれぞれが独立したファイバー構造を取っていることが解る。一方、同じ濃度のシゾフィランを同一条件で観察すると3重らせん構造の形成に伴いシゾフィラン鎖の架橋化が起こり、結果的にネットワーク化した構造を与えることも明らかとなった(図5(B))。これら複合体とシゾフィランの平均直径をAFMで評価した。その結果、複合体は0.43nm、3本鎖シゾフィランは0.99nmであることが解った。これらの値の絶対値には化学的な意味は無い。つまり、AFMチップのサイズを考慮しなければ実際の値は求められない。例えばエックス線による構造解析から三重鎖シゾフィランの直径は2.8nmであることが解っており、今回AFMで求めた値はこれよりかなり小さい。しかし、重要なことは複合体と三重鎖シゾフィランの相対的なサイズの差である。AFMからは複合体はシゾフィラン三重鎖に比べて半分以下のサイズと見積もられる。これは(1)PT-1鎖1本は天然シゾフィランの構造を歪める事無くその内部空間に十分収まる大きさであること、(2)さらに複合体を被覆するシゾフィラン鎖が2本になっていることが理由として考えられる。つまり、このAFMによる評価はCDスペクトルから求められた量論比を支持するものである。 Structural analysis of the composite by atomic force microscope (AFM) Next, the structure of the composite was evaluated using AFM. As shown in FIG. 5 (A), it can be seen from AFM that each composite has an independent fiber structure. On the other hand, when observing the same concentration of schizophyllan under the same conditions, it became clear that schizophyllan chain was cross-linked with the formation of triple helical structure, resulting in a networked structure (Fig. 5 (B)). . The average diameters of these complexes and schizophyllan were evaluated by AFM. As a result, it was found that the complex was 0.43 nm and the triple-stranded schizophyllan was 0.99 nm. The absolute values of these values have no chemical meaning. In other words, the actual value cannot be obtained without considering the size of the AFM chip. For example, X-ray structural analysis reveals that the diameter of triple-stranded schizophyllan is 2.8 nm, and the value obtained by AFM is much smaller than this. However, what is important is the relative size difference between the complex and the triple-stranded schizophyllan. AFM estimates that the complex is less than half the size of the schizophyllan triplex. This is because (1) one PT-1 chain is large enough to fit in the internal space without distorting the structure of natural schizophyllan, and (2) there are two schizophyllan chains covering the complex. The reason is considered. In other words, this evaluation by AFM supports the stoichiometric ratio obtained from the CD spectrum.

〔比較例〕
上記の結果は、他の多糖類(例えば、デキストラン、プルラン)を用いた場合には全く認められず、β−1,3−グルカンに特有の現象であることを確かめた。
[Comparative Example]
The above results were not observed at all when other polysaccharides (for example, dextran, pullulan) were used, and it was confirmed that this was a phenomenon peculiar to β-1,3-glucan.

β−1,3−グルカンが生体適合性であることに加え、様々な化学修飾を自在に行えることを考慮すると、本発明の導電性高分子/β−1,3−グルカン複合体は生体物質の高感度センサーやナノ配線などバイオからナノテクまで広範囲に及ぶ応用の可能性を秘めている。   Considering that β-1,3-glucan is biocompatible and that various chemical modifications can be freely performed, the conductive polymer / β-1,3-glucan complex of the present invention is a biological material. It has the potential for a wide range of applications from biotechnology to nanotechnology, such as high-sensitivity sensors and nanowiring.

本発明に従うポリチオフェン(PT-1)ナノワイヤー/SPG複合体の生成模式図、並びにPT-1およびSPGの化学構造式。The production | generation schematic diagram of the polythiophene (PT-1) nanowire / SPG composite according to this invention, and the chemical structural formula of PT-1 and SPG. PT-1の合成スキーム。Synthesis scheme of PT-1. 本発明に従うPT-1/SPG複合体の(A) UVスペクトル(実線)および蛍光スペクトル(破線)、(B) CDスペクトル図(CD強度の単位は104 deg cm2 dmol-1である)(実施例4)。(A) UV spectrum (solid line) and fluorescence spectrum (dashed line) of the PT-1 / SPG complex according to the present invention, (B) CD spectrum diagram (unit of CD intensity is 10 4 deg cm 2 dmol −1 ) ( Example 4). 本発明に従うPT-1/SPG複合体のCDスペクトルの強度変化(CD強度の単位は104 deg cm2 dmol-1である)(実施例5)。Change in intensity of CD spectrum of PT-1 / SPG complex according to the present invention (unit of CD intensity is 10 4 deg cm 2 dmol −1 ) (Example 5). 本発明に従うPT-1/SPG複合体のAFM像(実施例6)。AFM image of PT-1 / SPG complex according to the present invention (Example 6).

Claims (1)

らせん状導電性高分子のポリマー鎖がβ−1,3−グルカンの内部に包接されていることを特徴とする高分子ナノワイヤー/多糖水溶性複合体であって、前記β−1,3−グルカンが、シゾフィラン、スクレログルカンまたはレンチナンから選ばれたものであり、前記導電性高分子が下記の式(I)で表される繰り返し単位を有するポリチオフェンの誘導体であることを特徴とする複合体。
A polymer nanowire / polysaccharide water-soluble complex characterized in that a polymer chain of a helical conductive polymer is encapsulated in a β-1,3 -glucan , the β-1,3 The composite wherein the glucan is selected from schizophyllan, scleroglucan or lentinan, and the conductive polymer is a derivative of polythiophene having a repeating unit represented by the following formula (I): body.
JP2005059838A 2005-03-04 2005-03-04 Helical conductive polymer nanowire / polysaccharide complex Expired - Fee Related JP4761794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059838A JP4761794B2 (en) 2005-03-04 2005-03-04 Helical conductive polymer nanowire / polysaccharide complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059838A JP4761794B2 (en) 2005-03-04 2005-03-04 Helical conductive polymer nanowire / polysaccharide complex

Publications (2)

Publication Number Publication Date
JP2006241334A JP2006241334A (en) 2006-09-14
JP4761794B2 true JP4761794B2 (en) 2011-08-31

Family

ID=37048054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059838A Expired - Fee Related JP4761794B2 (en) 2005-03-04 2005-03-04 Helical conductive polymer nanowire / polysaccharide complex

Country Status (1)

Country Link
JP (1) JP4761794B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084307B2 (en) * 2007-03-09 2012-11-28 独立行政法人科学技術振興機構 Β-1,3-glucan / conductive polymer composite coated with silica
US8852750B2 (en) 2011-03-29 2014-10-07 Wintershall Holding GmbH Method for the coating of a cellulose material by using a glucan
BR112013023849A2 (en) * 2011-03-29 2019-09-24 Basf Se E Wintershall Holding Gmbh method for coating a lamina cellulose-containing material, composition, coated lamina cellulose-containing material, and use of a glucan
JP6152105B2 (en) 2012-07-24 2017-06-21 株式会社ダイセル Conductive fiber-coated particles, and curable composition and cured product thereof
CN105246940B (en) 2013-05-28 2018-09-04 株式会社大赛璐 Optical semiconductor sealing solidification compound
CN103936985B (en) * 2014-04-29 2017-06-23 中国科学院长春应用化学研究所 A kind of preparation method and applications of Nano particles of polyaniline
CN113429784B (en) * 2021-07-07 2022-03-11 西南交通大学 Graphene oxide chiral polypyrrole hybrid material, anti-corrosion wave-absorbing coating and preparation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898921A (en) * 1987-06-03 1990-02-06 Montclair State College Conducting polymer films, method of manufacture and applications therefor
FR2743371B1 (en) * 1996-01-08 1998-08-14 Atochem Elf Sa CONDUCTIVE CELLULOSE MICROFIBRILLES AND COMPOSITES INCORPORATING THEM
KR100390578B1 (en) * 1998-12-17 2003-12-18 제일모직주식회사 High refractive index conductive polymer thin film transparent film coating liquid composition
JP3876602B2 (en) * 2000-09-28 2007-02-07 富士ゼロックス株式会社 Polymer gel composition, production method thereof, and optical element using the same
JP4841825B2 (en) * 2004-11-05 2011-12-21 独立行政法人科学技術振興機構 Polyaniline / β-1,3-glucan complex

Also Published As

Publication number Publication date
JP2006241334A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4761794B2 (en) Helical conductive polymer nanowire / polysaccharide complex
Tao et al. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review
EP1749854B1 (en) Polysaccharide/carbon nanotube composite
Baker et al. Luminescent carbon nanodots: emergent nanolights
Yang et al. Preparation of magnesium, nitrogen-codoped carbon quantum dots from lignin with bright green fluorescence and sensitive pH response
He et al. Cyclodextrin-based aggregates and characterization by microscopy
US7476765B2 (en) Chemical synthesis of chiral conducting polymers
Chen et al. Multidimensional nanoarchitectures based on cyclodextrins
Jiang et al. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO−
Mohammadnia et al. Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications
Quintanilha et al. The use of gum Arabic as “Green” stabilizer of poly (aniline) nanocomposites: A comprehensive study of spectroscopic, morphological and electrochemical properties
Yan et al. Preparation and characterization of starch-grafted multiwall carbon nanotube composites
JP5646505B2 (en) Method for imparting water solubility or water dispersibility to hydrophobic cluster compounds
Wang et al. Versatile self‐assembly and biosensing applications of DNA and carbon quantum dots coordinated cerium ions
Kameta et al. Soft nanotubes acting as confinement effecters and chirality inducers for achiral polythiophenes
Zattar et al. Luminescent carbon dots obtained from chitosan: A comparison between different methods to enhance the quantum yield
Shiraki et al. A pH-responsive carboxylic β-1, 3-glucan polysaccharide for complexation with polymeric guests
Zhang et al. Advances in multi-dimensional cellulose-based fluorescent carbon dot composites
Yang et al. Formation and properties of a novel complex composed of an amylose-grafted chitosan derivative and single-walled carbon nanotubes
Tamano et al. Chiroptical properties of reporter-modified or reporter-complexed highly 1, 6-glucose-branched β-1, 3-glucan
Ren et al. Photoexcited State Properties of Poly (9-vinylcarbazole)-Functionalized Carbon Dots in Solution versus in Nanocomposite Films: Implications for Solid-State Optoelectronic Devices
JP5112716B2 (en) Ionic curdlan derivatives and composites comprising the curdlan derivatives and hydrophobic polymers
Jia et al. Lentinan greatly enhances the dispersibility of single-walled carbon nanotubes in water and decreases the cytotoxicity
JP4873396B2 (en) Metal oxide nanofiber / polysaccharide complex
JP4953860B2 (en) Nanostructures using ionic curdlan derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees