JP4761615B2 - Method for producing thermoset - Google Patents

Method for producing thermoset Download PDF

Info

Publication number
JP4761615B2
JP4761615B2 JP2000334261A JP2000334261A JP4761615B2 JP 4761615 B2 JP4761615 B2 JP 4761615B2 JP 2000334261 A JP2000334261 A JP 2000334261A JP 2000334261 A JP2000334261 A JP 2000334261A JP 4761615 B2 JP4761615 B2 JP 4761615B2
Authority
JP
Japan
Prior art keywords
molding material
thermosetting
resin
liquid
thermosetting molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000334261A
Other languages
Japanese (ja)
Other versions
JP2002138148A (en
Inventor
朋孝 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan U-Pica Co Ltd
Original Assignee
Japan U-Pica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan U-Pica Co Ltd filed Critical Japan U-Pica Co Ltd
Priority to JP2000334261A priority Critical patent/JP4761615B2/en
Publication of JP2002138148A publication Critical patent/JP2002138148A/en
Application granted granted Critical
Publication of JP4761615B2 publication Critical patent/JP4761615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、未硬化の熱硬化性成形材料から、粗粉砕可能な硬さの熱硬化物を製造する方法に関し、特に、ガラス繊維強化プラスチック(以下FRPと略す)廃棄物から、かかる熱硬化物を製造する方法に関する。
【0002】
【従来の技術】
近年、環境保全に対する住民の意識がますます向上し、従来からの石油資源の有効利用(再利用)のみならず、環境保護の立場から、大気、水域、及び土壌への産業廃棄物の排出や廃棄は、抑制せねばならない方向にある。
【0003】
このため、固化した粉砕可能なFRP廃棄物の再利用法が産業界の間で真剣に検討され、次の三通りの処理方法が技術的に確立されている。
【0004】
(1)粉砕して補強材や充填材として利用する、(2)熱分解して、可燃ガスや油を回収し、燃料として利用したり、又は回収油を更に分解、精製して、原料として利用する、(3)焼却し、その燃焼熱を回収し、熱風、蒸気、温水、又は発電機を回して電気として利用する方法等である。
【0005】
現在、FRP廃棄物の最も効率的な処理方法の一つは、セメント工場で再利用する方法であり、該廃棄物は、粗粉砕した後、キルンで焼成して、その中の有機物を先ず燃料として利用し、残滓となるガラス繊維や充填材等の無機物は、スラグとしてセメントの原料に使用する。
【0006】
【発明が解決しようとする課題】
一般に、FRP廃棄物の形態は、硬化物と未硬化物とに分類出来、硬化物、即ち固化物については、前述のいずれかの方法で再利用出来る。
【0007】
FRP廃棄物に含まれる未硬化の熱硬化性成形材料は、充填材やガラス繊維等の無機物の含有量が高いため、熱分解法や燃焼法による再利用だけでは不十分であり、燃焼後の残滓の再利用は不可避である。
【0008】
しかしながら、本発明者の研究によれば、かかる未硬化の熱硬化性成形材料は、スチレンモノマー(以下SMと略す)やメチルメタクリレート(以下MMAと略す)等の引火性の液体である重合性単量体を含有した、消防法上の可燃性固形物で、これは粗粉砕することが出来ず、又安全性や臭気の問題も伴うので、硬化物と同じ処理方法は不適切であると考えられた。
【0009】
また、本発明者の研究によれば、未硬化の熱硬化性成形材料をそのまま燃焼させることは不可能に近いことが分かった。本発明者によれば、この理由は、かかる成形材料が極めて燃え難いからであると考えられた。
【0010】
おそらく、未硬化の材料が、ブロック又はシート状では、空気(酸素)に接触しているごく表面は燃えるものの、その内部まで空気が入って行かないためと考えられる。それ故に、かかる成形材料を再利用するためには、固化と粗粉砕の工程が必要且つ不可欠である。
【0011】
そのため、本発明者は、かかる成形材料を外部からの熱源で加熱し、硬化を進めて固化させ、かかるFRP廃棄物を固化と粗粉砕の工程を経て再利用することを考えた。
【0012】
しかしながら、本発明者は、外部から熱源で加熱する方法には、(1)固化に時間がかかり経済的でない、(2)引火性の液体を含有しているため、熱源の種類によっては安全性に心配がある、(3)周囲に臭気を漂わせる危険性がある、等の問題点が存在することを見出した。
【0013】
今や、環境保全の立場から、成形時に発生する未硬化及び硬化を問わず熱硬化性成形材料廃棄物の再利用は避けて通れない。そのため、該未硬化の成形材料を安全且つ経済的に、しかも周辺に臭気を漂わせることなく、硬化を進め粗粉砕可能な硬さまで固化する技術の確立は、緊急且つ重要な課題である。
【0014】
本発明は、未硬化の熱硬化性成形材料を、安全且つ経済的に、しかも周辺に臭気を漂わせることなく、粗粉砕可能な硬さに硬化させることを課題とする。
【0015】
【課題を解決するための手段】
本発明は、未硬化の熱硬化性成形材料を硬化させて、熱硬化物を得るにあたり、前記熱硬化性成形材料を圧力容器の中に入れ、前記圧力容器の中に一定圧力の水蒸気を吹き込み、前記圧力容器内の空気を前記水蒸気によって置換し、前記圧力容器内で前記水蒸気の飽和状態を維持しながら、前記熱硬化性成形材料を蒸煮し、前記熱硬化性成形材料を粗粉砕可能な硬さに硬化させる、熱硬化物の製造方法に係るものである。
【0016】
本発明者は、FRP廃棄物等に含まれる未硬化の熱硬化性成形材料を固化させる方法について、鋭意検討を進めた。
【0017】
本発明者の研究によれば、かかる未硬化の熱硬化性成形材料は、セメント工場等で再利用する場合、SMやMMA等の引火性の可燃性液体を含んでいるが、極めて燃え難いため、粗粉砕機等によって、20mmパス程度の粒度に粗粉砕可能な状態まで硬化させなければならないことが見出された。
【0018】
また、本発明者の研究によれば、未硬化の熱硬化性成形材料の硬化を進めるには、通常、かかる材料に熱を供給すればよいが、(1)かかる材料は、熱伝導率が低くて、熱が伝わり難く、硬化に長時間を要し、不経済である、(2)かかる材料には、SM(第4類・第2石油類)やMMA(第4類・第1石油類)等の揮発性が高く、人に嫌な臭いを感じさせる重合性単量体が含有されている、(3)これらの重合性単量体は、引火性の液体であるため、熱源の供給方法には細心の注意を払う必要がある等の問題点を抱えていることが見出された。
【0019】
かかる知見の下、本発明者は、該未硬化の熱硬化性成形材料の固化工程において、安全性、経済性及び臭気対策に配慮した固化方法について、より一層詳細に検討した。
【0020】
その結果、本発明者は、未硬化の熱硬化性成形材料を、安全且つ経済的に、しかも周辺に臭気を漂わせることなく、粗粉砕可能な硬さに硬化させる方法を突き止め、本発明を完成するに至った。
【0021】
即ち、本発明は、未硬化の熱硬化性成形材料を、圧力容器の中で所定圧力の飽和水蒸気下に蒸煮することで、周辺に臭気を漂わせることなく、安全且つ経済的に、粗粉砕可能な硬さに硬化させるものである。
【0022】
本発明では、未硬化の熱硬化性成形材料とは、基本的に架橋剤を含有する液状の不飽和ポリエステル樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、アクリル樹脂等からなる群より選ばれる少なくとも1種のラジカル硬化型樹脂と硬化剤とから構成され、さらに必要に応じて低収縮剤、離型剤、充填材、増粘剤、強化材等を含有してなる、未だ3次元化していないバルクモルディングコンパウンド(以下BMCと略す)、ダフモルディングコンパウンド(以下DMCと略す)及びシートモルディングコンパウンド(以下SMCと略す)からなる群より選ばれた少なくとも1種の材料を意味する。
【0023】
本発明では、粗粉砕可能な硬さとは、グラニュレーター(GRANULATOR)(ホーライ製)を用いて行われるような通常の粗粉砕が可能な硬さをいう。その際の固化した成形材料の硬さは、バーコル硬さで50以上(23℃、934−1)あれば十分である。したがって、硬化物のバーコル硬さが50以上になるまで硬化を進めればよい。
【0024】
本発明によれば、BMC材料(ブッロク状)、DMC材料(ブロック状)やSMC材料(シート状)を、安全且つ経済的で、しかも周辺に臭気を漂わせることなく、粗粉砕可能な硬さに硬化させることができる。
【0025】
また、本発明によれば、所定の熱硬化性成形材料を、種々の所望の形状に硬化成形させ、熱硬化成形体を得ることができる。
【0026】
本発明にかかる熱硬化物は、FRP廃棄物として、セメント工場等で粗粉砕して再利用に供することができる。
【0027】
【発明の実施の形態】
本発明の実施の形態を説明する。
本発明にかかる未硬化熱硬化性成形材料は、一般に、不飽和ポリエステル樹脂、エポキシアクリレート樹脂(ビニルエステル樹脂ともいう)、ウレタンアクリレート樹脂、及びアクリル樹脂(アクリールシラップともいう)等の液状樹脂成分(A成分)、ポリスチレン系、ポリメチルメタクリレート系、ポリ酢酸ビニル系、又はポリエステル系等の固形ポリマーをSMやMMA等の液状の重合性単量体に溶解した、いわゆる低収縮剤(B成分)、炭酸カルシウム、水酸化アルミニウム又は硅砂等の無機充填材(C成分)、ガラス繊維等の強化材(D成分)、その他少量の硬化剤(主に過酸化物)(E成分)、内部離型剤(F成分)、着色剤(顔料)(G成分)、及び酸化マグネシウム等の増粘剤(H成分)等から構成されている。但し、湿式DMC材料は、H成分を含まない。
【0028】
各成分の比率は、BMC、DMC及びSMCそれぞれの用途や成形条件等で異なるため、割合の表示は難しいが、およそ(A+B)成分が20〜35重量%、C成分が30〜65重量%、D成分が10〜30重量%を占め、その他(E+F+G+H)が残りを占めている。
【0029】
これらの成分中で、重合性単量体であるSMやMMA等は、ほとんどA成分とB成分に含まれる。A成分中の該単量体の含有量は、用途やメーカーによって異なるため一概に言えないが、およそ30〜60重量%である。B成分中にも、同様に、およそ60〜70重量%の該単量体が含まれている。
【0030】
このように、未硬化の熱硬化性成形材料には、かなりの揮発性液体の有機化合物と(C+D)成分からなる無機化合物とが含まれていることが分かる。
【0031】
本発明にかかる液状不飽和ポリエステル樹脂は、グリコール類を主成分とする多価アルコール類と、α,β−不飽和二塩基酸及び/又はその無水物、更に必要に応じて、飽和二塩基酸及び/又はその無水物とを重縮合して得られる不飽和ポリエステルをSM等の液状の重合性単量体に溶解した液状樹脂である。
【0032】
該液状樹脂は、日本ユピカ(株)、大日本インキ化学工業(株)、三井化学(株)、(株)日本触媒、昭和高分子(株)、武田薬品工業(株)、日立化成工業(株)等の主要メーカーで製造・販売されており、容易に入手できる。特に、BMC、DMC及びSMC用途の銘柄が好適に使用される。
【0033】
本発明にかかる液状エポキシアクリレート樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂に、アクリル酸、又はメタクリル酸を付加して得られるエポキシアクリレートを、SM等の液体の重合性単量体に溶解した液状樹脂である。
【0034】
該液状樹脂は、日本ユピカ(株)、大日本インキ化学工業(株)、三井化学(株)、(株)日本触媒、昭和高分子(株)、武田薬品工業(株)、日立化成工業(株)等の主要メーカーで製造されたり、販売されており、容易に入手できる。特に、BMC、DMC及びSMC用途の銘柄が好適に使用される。
【0035】
本発明にかかる液状ウレタンアクリレート樹脂は、ポリエステルポリオール又はポリエーテルポリオールとジイソシアネートとを反応させて、分子末端をイソシアネート化し、これにアルコール性水酸基を有するアクリレート又はメタクリレートを反応させるか、又はアルコール性水酸基を有するアクリレート又はメタクリレートとジイソシアネートとを反応させてイソシアネート基を残し、これとポリエステルポリオール又はポリエーテルポリオールとを反応させて得られる、分子末端にアクリレート又はメタクリレートの二重結合を有するウレタンアクリレートをSMやMMA等の液状の重合性単量体に溶解した液状樹脂である。日本ユピカ(株)製のユピカ8921、8940、8932等がこれに該当する。
【0036】
本発明にかかる液状アクリル樹脂は、アクリルシラップとも呼ばれ、MMAを主成分として部分共重合するか、もしくはその重合体をMMAに溶解して得られる液状樹脂である。該樹脂は、三菱レイヨン(株)、日本油脂(株)、(株)日本触媒、(株)クラレ等が主要なメーカーである。BMC用樹脂も販売されている。
【0037】
低収縮剤は、それぞれ、上記樹脂メーカーにおいて、液状の熱硬化性樹脂とセットで販売されるケースが多いので、同時に入手可能である。その他、日本油脂(株)等は、独自に低収縮剤を販売している。
【0038】
本発明において、液状の熱硬化性樹脂(A成分)や低収縮剤(B成分)に含まれる液状の引火性重合性単量体は、SMやMMAが使用されるケースが多いが、しかし、これ等に限定するものではない。また、使用される重合性単量体が引火性の液体で臭気を発するものであれば、本発明は一層効果を発揮する。
【0039】
E成分の硬化剤(一般には過酸化物)は、成形品の用途や成形条件等で異なるが、一般的には、t−ブチルパーオキシベンゾエートが使用されることが多い。これは、未硬化の熱硬化性成形材料が、一般的に、140℃前後の温度で成形されることが多いためである。
【0040】
したがって、該材料を本発明の方法で固化する場合、使用されている硬化剤の分解温度の高低によって硬化条件も変わってくる。すなわち、使用している硬化剤の分解温度が低いほど、水蒸気の圧力は低く、又蒸煮時間は短く設定出来る。また、硬化剤の分解温度が高いと、その逆になる。
【0041】
本発明の方法を達成するのに好適な圧力容器として、(株)タカハシキカンのKTドライヤーとして知られている、二重缶圧力容器式前処理装置を一例として挙げることが出来る。本装置は、蒸気加熱であるため安全なこと、又一定圧力の蒸気を連続して系内に送り込むことが可能であり、好ましい。
【0042】
本装置を使用して廃棄する未硬化の熱硬化性成形材料を硬化すると、安全且つ経済的で(短時間で)、しかも、何ら周辺に臭気を漂わせることなく、材料を粗粉砕可能な硬さに固化することが出来る。
【0043】
本発明では、未硬化の熱硬化性成形材料を、所定の圧力容器の中で出来るだけ早く中まで蒸気が浸透するように、好ましくは小さなブロック状、望ましくは10cm角以下のブロック状にして配置する。
【0044】
次に、一定圧力の水蒸気を容器内に吹き込み、系内の空気を置換後、該水蒸気の飽和状態を維持しながら、該材料を蒸煮する。
【0045】
本発明において、圧力容器内に供給する水蒸気の圧力は、20〜1000kPaの範囲が望ましい。20kP a未満の圧力であると、水蒸気の温度が低くなって、蒸煮時間が長くなったり、又圧力が低いため、飽和状態の維持が難しく、そのため、臭気が残る危険性等がある。圧力が1000kPaを超えると、その温度は183℃を超えることになり、これ以上の高温は、高エネルギーを要し、且つ圧力容器の耐圧性を高くせねばならず、不経済である。
【0046】
この時の水蒸気の圧力は、例えば、系内の温度を110℃まで上げたいならば49kPaの水蒸気を、120℃まで上げたいならば98kPaの水蒸気を、130℃まで上げたいならば176kPaの水蒸気を、系内の圧力を維持しながら吹き込む。
【0047】
この時の水蒸気の圧力と該材料への蒸煮時間は、該材料の硬化特性とブロックの形状によって異なる。即ち、出来るだけ短時間で硬化させたい場合は、水蒸気の圧力を高く設定し、該材料はできるだけ小さな形状、即ち、表面積を広くする必要がある。
【0048】
一定時間蒸煮後、固化した材料を取り出し、冷却する。冷却後に得られた固化物は、適切な粗粉砕機で粗粉砕して、再利用に供する。セメント工場で再利用する場合、粉砕の粒度は、20mmパスにする必要があるといわれているので、この条件に適した粉砕機を選択する必要がある。
【0049】
本発明では、未硬化熱硬化性成形材料を適切な形状で圧力容器内に投入し、蒸煮することによって、周辺に臭気を漂わせることがなく、粗粉砕可能な硬さの熱硬化成形体を製造できる。
【0050】
本発明は、熱硬化成形体の、安全且つ経済的な、新規な成形方法としても応用出来る。
【0051】
本発明の特徴として、(1)未硬化の熱硬化性成形材料に直接水蒸気を当てて加熱するため、引火の危険性がない、(2)本材料は水蒸気を透過し易いため、短時間に内部まで加熱できる、従って経済的である、(3)本材料の重合熱が水蒸気に逆供給されるため、加熱水蒸気の供給量は、極めて少なくて済み経済的である、(4)容器内が加圧飽和水蒸気で満たされているので、SMやMMA等の重合性単量体の気化が抑制され十分重合反応(架橋反応)に関与し、はとんど周辺に臭気は漂わない、等が挙げられる。
【0052】
【実施例】
以下、実施例について記載するが、本発明は、本実施例のみに限定されるものではない。尚、実施例及び比較例における「部」は「重量部」を示し、「%」は「重量%」を示す。
【0053】
未硬化熱硬化性成形材料の作製
作製例1
日本ユピカ(株)製の液状不飽和ポリエステル樹脂「ユピカ 7670」を使用して、次の表1に示す組成の未硬化湿式BMC材料を常法(ニーダー使用)に従って作製した。
【0054】
【表1】

Figure 0004761615
【0055】
作製例2
日本ユピカ(株)製の液状エポキシアクリレート樹脂「ネオポール 8025」を使用して、次の表2に示す組成の未硬化湿式BMC材料を常法(ニーダー使用)に従って作製した。
【0056】
【表2】
Figure 0004761615
【0057】
作製例3
日本ユピカ(株)製の液状ウレタンアクリレート樹脂樹脂「ユピカ 8921」を使用して、次の表3に示す組成の未硬化湿式DMC材料を常法(ニーダー使用)に従って作製した。
【0058】
【表3】
Figure 0004761615
【0059】
作製例4
三菱ガス化学(株)製の液状メタクリル樹脂を使用して、次の表4に示す組成の未硬化湿式BMC材料を常法(プラネクリー混練機使用)に従って作製した。
【0060】
【表4】
Figure 0004761615
【0061】
作製例5
日本ユピカ(株)製の液状不飽和ポリエステル樹脂「ユピカ 7506」を使用して、次の表5に示す組成の未硬化湿式SMC材料を常法(SMCマシーン使用)に従って作製した。
【0062】
【表5】
Figure 0004761615
【0063】
実施例1〜6
(株)タカハシキカン製の内容積が約200Lの二重缶圧力容器式前処理装置に網状の棚を設け、その棚の上に、作製例1〜5で作製した未硬化の湿式成形材料を、それぞれ、平均形状がおよそ10×200×100mmの大きさにして、設置する。この時、各材料の容積は、該容器内容積の約1/3とした。
【0064】
各成形材料を設置後、容器の蓋を閉め、所定圧力の水蒸気を吹き込み蒸煮し、各成形材料の硬化を進めて固化させた。各未硬化成形材料について実施した水蒸気の圧力、容器内の温度、粗粉砕可能な硬化までの水蒸気の蒸煮時間、固化した材料のバーコル硬さ(23℃、934−1)、粗粉砕性、及び容器内雰囲気中のSM又はMMAの濃度(ガスクロマトグラフによる)を測定した。結果を、それぞれ表6及び7に示した。なお、ガスクロマトグラフィの測定条件は次の通りである。
Figure 0004761615
【0065】
比較例1〜2
実施例と同様に、(株)タカハシキカン製の内容積が約200Lの二重缶圧力容器式前処理装置に設けた網状の棚の上に、作製例1及び4で作製した未硬化の湿式成形材料を、それぞれ平均形状がおよそ10×200×100mmの大きさになるようにして設置する。この時、各材料の容積は該容器内容積の約1/3とした。
【0066】
各成形材料を設置後、容器の蓋を閉め、所定圧力の水蒸気を二重缶に吹き込み外部加熱(材料に直接蒸煮しない)で、各成形材料の硬化を進めて固化させた。結果を、各未硬化成形材料について、表7に、実施例と同様の、水蒸気の圧力、粗粉砕可能な固化までの加熱時間、容器内雰囲気中のSM又はMMAの濃度と共に示した。ガスクロマトグラフィの測定条件等は、実施例と同じである。
【0067】
【表6】
Figure 0004761615
【0068】
【表7】
Figure 0004761615
【0069】
表6及び7に示すように、いずれの実施例でも、比較例に比べて、処理時間が短く、容器雰囲気中及び周辺に臭気を漂わせることなく、安全で且つ経済的に、粗粉砕可能な硬さの熱硬化物を製造できる。
【0070】
【発明の効果】
本発明の熱硬化物の製造方法は、(1)所定の未硬化の材料に水蒸気を直接蒸煮して容器内を飽和状態にするので、引火の危険性がなく安全である、(2)かかる材料は水蒸気を透過し易く、熱の伝達が速いので、短時間で固化する、(3)かかる材料の重合熱が水蒸気に供給されるため、加熱水蒸気の供給量は極めて少なくて済む、(4)容器内が加圧飽和水蒸気で満たされているので、SMやMMA等の重合性単量体の気化が抑制され、十分重合反応に関与し、ほとんど周辺に臭気は漂わない、等の利点を有する。
【0071】
また、本発明の熱硬化物の製造方法は、未硬化の熱硬化性成形材料の再利用に極めて有用な技術である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thermoset having a hardness that can be roughly pulverized from an uncured thermosetting molding material, and in particular, from such a glass fiber reinforced plastic (hereinafter abbreviated as FRP) waste, such a thermoset. It relates to a method of manufacturing.
[0002]
[Prior art]
In recent years, residents' awareness of environmental conservation has increased, and not only the effective use (reuse) of conventional petroleum resources, but also the discharge of industrial waste into the atmosphere, water and soil from the standpoint of environmental protection. Disposal is in the direction that must be controlled.
[0003]
For this reason, the recycling method of the solidified pulverizable FRP waste has been seriously studied by the industry, and the following three processing methods have been technically established.
[0004]
(1) Crush and use as a reinforcing material or filler (2) Pyrolysis to recover combustible gas and oil, use as fuel, or further decompose and refine recovered oil as raw material (3) Incineration, recovering combustion heat, turning hot air, steam, hot water, or a generator to use as electricity.
[0005]
At present, one of the most efficient methods for treating FRP waste is a method of reusing it in a cement factory. The waste is roughly pulverized and then calcined in a kiln. Inorganic materials such as glass fiber and filler used as a residue are used as raw materials for cement as slag.
[0006]
[Problems to be solved by the invention]
In general, the form of the FRP waste can be classified into a cured product and an uncured product, and the cured product, that is, the solidified product, can be reused by any of the methods described above.
[0007]
The uncured thermosetting molding material contained in the FRP waste has a high content of inorganic materials such as fillers and glass fibers, so it is not sufficient to recycle by the pyrolysis method or combustion method. Reuse of residue is inevitable.
[0008]
However, according to the research of the present inventors, such an uncured thermosetting molding material is a polymerizable single material which is a flammable liquid such as styrene monomer (hereinafter abbreviated as SM) or methyl methacrylate (hereinafter abbreviated as MMA). It is a flammable solid in the Fire Service Act that contains a mass, which cannot be coarsely pulverized, and also involves safety and odor problems. It was.
[0009]
Further, according to the research of the present inventors, it has been found that it is almost impossible to burn an uncured thermosetting molding material as it is. According to the present inventor, this reason was considered that such a molding material is extremely difficult to burn.
[0010]
Presumably, in the form of an uncured material in the form of a block or sheet, the very surface in contact with air (oxygen) burns, but air does not enter the interior. Therefore, in order to reuse such a molding material, solidification and coarse pulverization steps are necessary and indispensable.
[0011]
Therefore, the present inventor considered that such a molding material was heated with an external heat source, cured to be solidified, and the FRP waste was reused through solidification and coarse pulverization steps.
[0012]
However, the present inventor found that the method of heating with a heat source from the outside is (1) time consuming to solidify and is not economical, and (2) contains a flammable liquid. We found that there are problems such as (3) there is a risk of odor drifting around.
[0013]
Now, from the standpoint of environmental conservation, it is inevitable to reuse the thermosetting molding material waste regardless of whether it is uncured or cured. Therefore, it is an urgent and important issue to establish a technique for hardening and solidifying the uncured molding material to a hardness that can be coarsely pulverized by curing it safely and economically without causing odors to drift around the molding material.
[0014]
An object of the present invention is to cure an uncured thermosetting molding material to a hardness that can be coarsely pulverized safely and economically without causing odors to drift around.
[0015]
[Means for Solving the Problems]
In the present invention, when an uncured thermosetting molding material is cured to obtain a thermoset, the thermosetting molding material is placed in a pressure vessel, and steam of a constant pressure is blown into the pressure vessel. The air in the pressure vessel is replaced with the water vapor, and the thermosetting molding material is steamed and the thermosetting molding material can be coarsely pulverized while maintaining the saturated state of the water vapor in the pressure vessel. The present invention relates to a method for producing a thermoset that is hardened.
[0016]
The present inventor has intensively studied a method for solidifying an uncured thermosetting molding material contained in FRP waste or the like.
[0017]
According to the inventor's research, such an uncured thermosetting molding material contains a flammable combustible liquid such as SM or MMA when reused in a cement factory or the like, but it is extremely difficult to burn. It has been found that it must be cured to a state where it can be roughly pulverized to a particle size of about 20 mm by a coarse pulverizer or the like.
[0018]
Further, according to the research of the present inventor, in order to proceed with the curing of the uncured thermosetting molding material, it is usually sufficient to supply heat to such a material. (1) Such a material has a thermal conductivity. Low, difficult to transmit heat, takes a long time to cure, and is uneconomical. (2) Such materials include SM (Class 4 and 2 Petroleum) and MMA (Class 4 and 1 Petroleum). (3) These are highly volatile and contain polymerizable monomers that make people feel an unpleasant odor. (3) Since these polymerizable monomers are flammable liquids, It was found that the supply method had problems such as the need to pay close attention.
[0019]
Under such knowledge, the present inventor has examined in more detail a solidification method in consideration of safety, economical efficiency, and odor countermeasures in the solidification step of the uncured thermosetting molding material.
[0020]
As a result, the present inventor has found a method for curing an uncured thermosetting molding material to a hardness that can be coarsely pulverized safely and economically without causing odors in the vicinity. It came to be completed.
[0021]
That is, the present invention is a method for steaming an uncured thermosetting molding material under saturated steam at a predetermined pressure in a pressure vessel, so that rough pulverization can be performed safely and economically without causing odor to drift around. It is to be cured to a possible hardness.
[0022]
In the present invention, the uncured thermosetting molding material is basically at least one selected from the group consisting of a liquid unsaturated polyester resin containing a crosslinking agent, an epoxy acrylate resin, a urethane acrylate resin, an acrylic resin, and the like. It is composed of a radical curable resin and a curing agent, and further contains a low shrinkage agent, a release agent, a filler, a thickener, a reinforcing material, etc. It means at least one material selected from the group consisting of a molding compound (hereinafter abbreviated as BMC), a duff molding compound (hereinafter abbreviated as DMC), and a sheet molding compound (hereinafter abbreviated as SMC).
[0023]
In the present invention, the hardness that can be coarsely pulverized refers to the hardness that allows normal coarse pulverization as performed using a granulator (manufactured by Horai). The hardness of the solidified molding material at that time is sufficient if it is 50 or more in Barcol hardness (23 ° C., 934-1). Therefore, curing may be advanced until the Barcol hardness of the cured product is 50 or more.
[0024]
According to the present invention, BMC material (block-like), DMC material (block-like) and SMC material (sheet-like) can be safely and economically hardened without rough odor. Can be cured.
[0025]
Further, according to the present invention, a predetermined thermosetting molding material can be cured and molded into various desired shapes to obtain a thermosetting molded body.
[0026]
The thermosetting product according to the present invention can be reused after being roughly pulverized as a FRP waste in a cement factory or the like.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
The uncured thermosetting molding material according to the present invention generally includes liquid resin components such as unsaturated polyester resins, epoxy acrylate resins (also referred to as vinyl ester resins), urethane acrylate resins, and acrylic resins (also referred to as acryl reels). (A component), a so-called low shrinkage agent (B component) in which a solid polymer such as polystyrene, polymethyl methacrylate, polyvinyl acetate, or polyester is dissolved in a liquid polymerizable monomer such as SM or MMA , Inorganic fillers (C component) such as calcium carbonate, aluminum hydroxide or cinnabar, reinforcing materials (D component) such as glass fiber, other small amount of curing agent (mainly peroxide) (E component), internal mold release It consists of an agent (F component), a colorant (pigment) (G component), and a thickener (H component) such as magnesium oxide. However, the wet DMC material does not contain an H component.
[0028]
Since the ratio of each component differs depending on the use and molding conditions of BMC, DMC and SMC, it is difficult to display the ratio, but the (A + B) component is approximately 20 to 35% by weight, the C component is 30 to 65% by weight, The D component accounts for 10 to 30% by weight, and the other (E + F + G + H) accounts for the rest.
[0029]
Among these components, SM and MMA, which are polymerizable monomers, are mostly contained in the A component and the B component. Although the content of the monomer in the component A varies depending on the application and manufacturer, it cannot be generally stated, but is about 30 to 60% by weight. Similarly, the component B contains approximately 60 to 70% by weight of the monomer.
[0030]
Thus, it can be seen that the uncured thermosetting molding material contains a considerable volatile liquid organic compound and an inorganic compound composed of the (C + D) component.
[0031]
The liquid unsaturated polyester resin according to the present invention includes a polyhydric alcohol mainly composed of glycols, an α, β-unsaturated dibasic acid and / or an anhydride thereof, and, if necessary, a saturated dibasic acid. And / or a liquid resin obtained by dissolving an unsaturated polyester obtained by polycondensation with an anhydride thereof in a liquid polymerizable monomer such as SM.
[0032]
The liquid resin is manufactured by Nippon Iupika Co., Ltd., Dainippon Ink Chemical Co., Ltd., Mitsui Chemicals Co., Ltd., Nippon Shokubai Co., Ltd., Showa Polymer Co., Ltd., Takeda Pharmaceutical Co., Ltd., Hitachi Chemical Co., Ltd. It is manufactured and sold by major manufacturers such as Co., Ltd. and is easily available. In particular, brands for BMC, DMC and SMC are preferably used.
[0033]
The liquid epoxy acrylate resin according to the present invention comprises an epoxy acrylate obtained by adding acrylic acid or methacrylic acid to an epoxy resin having two or more epoxy groups in one molecule, and a liquid polymerizable monomer such as SM. A liquid resin dissolved in a polymer.
[0034]
The liquid resin is manufactured by Nippon Iupika Co., Ltd., Dainippon Ink Chemical Co., Ltd., Mitsui Chemicals Co., Ltd., Nippon Shokubai Co., Ltd., Showa Polymer Co., Ltd., Takeda Pharmaceutical Co., Ltd., Hitachi Chemical Co., Ltd. It is manufactured and sold by major manufacturers such as Co., Ltd. and is easily available. In particular, brands for BMC, DMC and SMC are preferably used.
[0035]
The liquid urethane acrylate resin according to the present invention is obtained by reacting a polyester polyol or polyether polyol and a diisocyanate to form an isocyanate at a molecular end and reacting with an acrylate or methacrylate having an alcoholic hydroxyl group, or reacting an alcoholic hydroxyl group. SM or MMA is a urethane acrylate having a acrylate or methacrylate double bond at the molecular end, which is obtained by reacting an acrylate or methacrylate with a diisocyanate to leave an isocyanate group and reacting it with a polyester polyol or polyether polyol. A liquid resin dissolved in a liquid polymerizable monomer such as This is the case with Iupika 8921, 8940, 8932, etc., manufactured by Nippon Iupika Co., Ltd.
[0036]
The liquid acrylic resin according to the present invention is also called acrylic syrup and is a liquid resin obtained by partially copolymerizing MMA as a main component or by dissolving the polymer in MMA. The major manufacturers of the resin are Mitsubishi Rayon Co., Ltd., Nippon Oil & Fats Co., Ltd., Nippon Shokubai Co., Ltd., Kuraray Co., Ltd. and the like. Resins for BMC are also sold.
[0037]
Each of the low shrinkage agents can be obtained at the same time because they are often sold as a set together with a liquid thermosetting resin in the resin manufacturer. In addition, Nippon Oil & Fats Co., Ltd. sells its own low shrinkage agent.
[0038]
In the present invention, the liquid flammable polymerizable monomer contained in the liquid thermosetting resin (component A) or the low shrinkage agent (component B) is often used in SM or MMA, however, It is not limited to these. Moreover, if the polymerizable monomer used is a flammable liquid and emits an odor, the present invention is more effective.
[0039]
The E component curing agent (generally a peroxide) varies depending on the application of the molded product, molding conditions, and the like, but in general, t-butyl peroxybenzoate is often used. This is because an uncured thermosetting molding material is generally molded at a temperature of around 140 ° C.
[0040]
Therefore, when the material is solidified by the method of the present invention, the curing conditions vary depending on the decomposition temperature of the curing agent used. That is, the lower the decomposition temperature of the curing agent used, the lower the steam pressure and the shorter the cooking time. Moreover, the reverse is true when the decomposition temperature of the curing agent is high.
[0041]
An example of a pressure vessel suitable for achieving the method of the present invention is a double-can pressure vessel type pretreatment device known as a KT dryer of Takahashi Kican Co., Ltd. Since this apparatus is steam heating, it is safe, and it is possible to continuously feed steam at a constant pressure into the system, which is preferable.
[0042]
Curing uncured thermosetting molding materials to be discarded using this device is safe and economical (in a short time), and can be used to hard crush the material without causing any odors around it. It can be solidified.
[0043]
In the present invention, the uncured thermosetting molding material is preferably arranged in a small block shape, desirably a block shape of 10 cm square or less, so that the vapor can penetrate into the pressure vessel as quickly as possible. To do.
[0044]
Next, steam at a constant pressure is blown into the container, and after the air in the system is replaced, the material is cooked while maintaining the saturated state of the steam.
[0045]
In the present invention, the pressure of water vapor supplied into the pressure vessel is preferably in the range of 20 to 1000 kPa. If the pressure is less than 20 kPa, the temperature of the steam becomes low, the cooking time becomes long, and the pressure is low, so that it is difficult to maintain a saturated state, so there is a risk that an odor remains. When the pressure exceeds 1000 kPa, the temperature exceeds 183 ° C., and a higher temperature requires high energy and the pressure resistance of the pressure vessel must be increased, which is uneconomical.
[0046]
The steam pressure at this time is, for example, that if the temperature in the system is raised to 110 ° C., the steam is 49 kPa, if the temperature is raised to 120 ° C., the steam is 98 kPa, if the temperature is 130 ° C., the steam is 176 kPa. , Blow while maintaining the pressure in the system.
[0047]
At this time, the pressure of water vapor and the cooking time for the material vary depending on the curing characteristics of the material and the shape of the block. That is, when it is desired to cure in as short a time as possible, it is necessary to set the water vapor pressure as high as possible and to make the material as small as possible, that is, to increase the surface area.
[0048]
After cooking for a certain time, the solidified material is taken out and cooled. The solidified product obtained after cooling is coarsely pulverized with an appropriate coarse pulverizer and is reused. When reusing at a cement factory, it is said that the particle size of pulverization needs to be 20 mm pass, so it is necessary to select a pulverizer suitable for this condition.
[0049]
In the present invention, an uncured thermosetting molding material is put into a pressure vessel in an appropriate shape and steamed, thereby producing a thermosetting molded body having a hardness that can be roughly pulverized without causing odor to drift around. Can be manufactured.
[0050]
The present invention can also be applied as a safe and economical new molding method for thermosetting molded articles.
[0051]
The characteristics of the present invention are as follows: (1) Since there is no danger of ignition because water vapor is directly applied to an uncured thermosetting molding material, and (2) since this material is easy to permeate water vapor, it can be used in a short time. (3) Since the polymerization heat of this material is reversely supplied to the steam, the supply amount of the heated steam is very small and economical. (4) The inside of the container is Since it is filled with pressurized saturated water vapor, the vaporization of polymerizable monomers such as SM and MMA is suppressed, and it is fully involved in the polymerization reaction (crosslinking reaction). Can be mentioned.
[0052]
【Example】
Hereinafter, although an Example is described, this invention is not limited only to a present Example. In the examples and comparative examples, “part” represents “part by weight”, and “%” represents “% by weight”.
[0053]
Production preparation example 1 of uncured thermosetting molding material
An uncured wet BMC material having the composition shown in the following Table 1 was prepared according to a conventional method (using a kneader) by using a liquid unsaturated polyester resin “Iupica 7670” manufactured by Iupika Japan.
[0054]
[Table 1]
Figure 0004761615
[0055]
Production Example 2
Using a liquid epoxy acrylate resin “Neopol 8025” manufactured by Nippon Iupika Co., Ltd., an uncured wet BMC material having the composition shown in the following Table 2 was prepared according to a conventional method (using a kneader).
[0056]
[Table 2]
Figure 0004761615
[0057]
Production Example 3
An uncured wet DMC material having the composition shown in the following Table 3 was prepared according to a conventional method (using a kneader) using a liquid urethane acrylate resin resin “Iupica 8921” manufactured by Iupika Japan.
[0058]
[Table 3]
Figure 0004761615
[0059]
Production Example 4
Using a liquid methacrylic resin manufactured by Mitsubishi Gas Chemical Co., Inc., an uncured wet BMC material having the composition shown in Table 4 below was prepared according to a conventional method (using a planetary kneader).
[0060]
[Table 4]
Figure 0004761615
[0061]
Production Example 5
Using a liquid unsaturated polyester resin “Iupica 7506” manufactured by Iupika Japan Co., Ltd., an uncured wet SMC material having the composition shown in the following Table 5 was prepared according to a conventional method (using an SMC machine).
[0062]
[Table 5]
Figure 0004761615
[0063]
Examples 1-6
A net-like shelf is provided in a double-can pressure vessel type pretreatment device made by Takahashi Kikkan Co., Ltd., and the uncured wet molding material produced in Production Examples 1 to 5 is formed on the shelf. , Respectively, the average shape is set to a size of approximately 10 × 200 × 100 mm. At this time, the volume of each material was about 1/3 of the volume in the container.
[0064]
After setting each molding material, the lid of the container was closed, steam of a predetermined pressure was blown into the steam, and curing of each molding material was promoted to solidify. Steam pressure carried out for each uncured molding material, temperature in the container, steaming time until curing capable of coarse grinding, Barcol hardness (23 ° C., 934-1) of the solidified material, coarse grindability, and The concentration of SM or MMA in the atmosphere in the container (by gas chromatograph) was measured. The results are shown in Tables 6 and 7, respectively. The measurement conditions for gas chromatography are as follows.
Figure 0004761615
[0065]
Comparative Examples 1-2
Similar to the examples, the uncured wet produced in Production Examples 1 and 4 on a net-like shelf provided in a double-can pressure vessel type pretreatment device manufactured by Takahashi Kican Co., Ltd. The molding material is placed so that the average shape is approximately 10 × 200 × 100 mm. At this time, the volume of each material was about 1/3 of the internal volume of the container.
[0066]
After installing each molding material, the lid of the container was closed, steam of a predetermined pressure was blown into the double can, and the external curing (not directly steaming the material) promoted the curing of each molding material to solidify. The results are shown in Table 7 for each uncured molding material together with the water vapor pressure, the heating time until solidification capable of coarse pulverization, and the concentration of SM or MMA in the atmosphere in the container. Gas chromatography measurement conditions and the like are the same as in the examples.
[0067]
[Table 6]
Figure 0004761615
[0068]
[Table 7]
Figure 0004761615
[0069]
As shown in Tables 6 and 7, in any of the examples, the processing time is shorter than that of the comparative example, and it is possible to coarsely pulverize safely and economically without causing odor in and around the container atmosphere. A hard thermoset can be produced.
[0070]
【The invention's effect】
The method for producing a thermosetting product of the present invention is (1) because steam is directly steamed to a predetermined uncured material to saturate the inside of the container, so that there is no risk of ignition and (2) it is safe Since the material is easily permeable to water vapor and heat transfer is fast, it solidifies in a short time. (3) Since the polymerization heat of such material is supplied to the water vapor, the amount of heating water vapor supplied is extremely small. ) Since the inside of the container is filled with pressurized saturated water vapor, the vaporization of polymerizable monomers such as SM and MMA is suppressed, it is fully involved in the polymerization reaction, and there is no odor drifting in the vicinity. Have.
[0071]
Moreover, the manufacturing method of the thermosetting material of this invention is an extremely useful technique for the reuse of an uncured thermosetting molding material.

Claims (4)

未硬化のラジカル重合型の熱硬化性成形材料を硬化させて、熱硬化物を得るにあたり、
前記熱硬化性成形材料を圧力容器の中に入れ、前記圧力容器の中に一定圧力の水蒸気を吹き込み、前記圧力容器内の空気を前記水蒸気によって置換し、前記圧力容器内で前記水蒸気の飽和状態を維持しながら、前記熱硬化性成形材料を蒸煮し、前記熱硬化性成形材料を粗粉砕可能な硬さに硬化させることを特徴とする、熱硬化物の製造方法。
When curing an uncured radical polymerization type thermosetting molding material to obtain a thermoset,
The thermosetting molding material is placed in a pressure vessel, steam at a constant pressure is blown into the pressure vessel, the air in the pressure vessel is replaced by the water vapor, and the water vapor is saturated in the pressure vessel. The method for producing a thermoset is characterized in that the thermosetting molding material is cooked while maintaining the temperature, and the thermosetting molding material is cured to a hardness that can be coarsely pulverized.
前記熱硬化性成形材料に使用される熱硬化性樹脂が、液状不飽和ポリエステル樹脂、液状エポキシアクリレート樹脂、液状ウレタンアクリレート樹脂及び液状アクリル樹脂からなる群より選ばれる少なくとも1種の樹脂であることを特徴とする、請求項1記載の熱硬化物の製造方法。The thermosetting resin used for the thermosetting molding material is at least one resin selected from the group consisting of a liquid unsaturated polyester resin, a liquid epoxy acrylate resin, a liquid urethane acrylate resin, and a liquid acrylic resin. The method for producing a thermoset according to claim 1, wherein 前記熱硬化性成形材料が、湿式のバルクモルディングコンパウンド、湿式のダフモルディングコンパウンド及びシートモルディングコンパウンドからなる群より選ばれる少なくとも1種の材料であることを特徴とする、請求項1記載の熱硬化物の製造方法。2. The thermosetting molding material according to claim 1, wherein the thermosetting molding material is at least one material selected from the group consisting of a wet bulk molding compound, a wet duff molding compound, and a sheet molding compound. A method for producing a thermoset. 前記水蒸気が20〜1000kPaの圧力を有することを特徴とする、請求項1記載の熱硬化物の製造方法。The said water vapor | steam has a pressure of 20-1000 kPa, The manufacturing method of the thermosetting material of Claim 1 characterized by the above-mentioned.
JP2000334261A 2000-11-01 2000-11-01 Method for producing thermoset Expired - Fee Related JP4761615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000334261A JP4761615B2 (en) 2000-11-01 2000-11-01 Method for producing thermoset

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000334261A JP4761615B2 (en) 2000-11-01 2000-11-01 Method for producing thermoset

Publications (2)

Publication Number Publication Date
JP2002138148A JP2002138148A (en) 2002-05-14
JP4761615B2 true JP4761615B2 (en) 2011-08-31

Family

ID=18810213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000334261A Expired - Fee Related JP4761615B2 (en) 2000-11-01 2000-11-01 Method for producing thermoset

Country Status (1)

Country Link
JP (1) JP4761615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358934B2 (en) * 2007-12-06 2013-12-04 信越化学工業株式会社 Method for producing silicone rubber
KR102012306B1 (en) 2012-06-04 2019-08-20 니혼 유피카 가부시키가이샤 Crystalline unsaturated polyester resin composition for led reflector, granular material comprising said composition, led reflector produced by molding said granular material, surface-mount-type light-emitting device, and lighting device and image display device each equipped with said light-emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238868B2 (en) * 1974-01-08 1977-10-01
DE4113282C1 (en) * 1991-04-24 1992-10-22 Fa. Carl Freudenberg, 6940 Weinheim, De
JPH069793A (en) * 1992-06-25 1994-01-18 Toyota Motor Corp Process for molding plastic material
JP2001185435A (en) * 1999-12-27 2001-07-06 Hitachi Chem Co Ltd Manufacturing method of coil for electric apparatus processed by thermosetting resin
JP4562231B2 (en) * 2000-03-07 2010-10-13 日立化成工業株式会社 Thermosetting resin composition cured product manufacturing equipment

Also Published As

Publication number Publication date
JP2002138148A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
Kandelbauer et al. Unsaturated polyesters and vinyl esters
JP7264958B2 (en) Reuse of carbon fiber materials
JP5127549B2 (en) Method for modifying polymer compound, low shrinkage material for plastic, and method for using polymer compound
JP2010007074A (en) Method for decomposing plastic
US6353036B1 (en) Process for producing unsaturated polyester and unsaturated polyester resin composition
JP4761615B2 (en) Method for producing thermoset
JP4720463B2 (en) Decomposition treatment method for cured resin
JP2003128834A (en) Method for decomposing thermosetting resin
JP2008031412A (en) Modified styrene-fumaric acid copolymer, low shrinkage material using it, method of recovery/reuse of thermoplastic resin and manufacturing process of modified styrene-fumaric acid copolymer
JP5270871B2 (en) Low shrinkage material for plastic, plastic molded product using the same, method for producing low shrinkage material for plastic, and method for recovering and reusing plastic
JP4699785B2 (en) How to recycle plastic
Kandelbauer et al. Handbook of thermoset plastics: 6. Unsaturated polyesters and vinyl esters
JP3199791B2 (en) Method for producing crystalline resin finely dispersed organic composition
JPH08253619A (en) Method for treating plastic molded form
JP3880950B2 (en) Resin composition and method for producing the same
JP4718868B2 (en) Decomposition method of thermosetting resin
JP3944762B2 (en) Method for producing unsaturated polyester, unsaturated polyester resin composition and molding material thereof
JP4754246B2 (en) Plastic disassembly method
JP4002790B2 (en) Sheet molding compound material processing method
JP2008088357A (en) Method and facility for frp waste treatment
JPS5835224B2 (en) Asphalt materials
JPH10158481A (en) Unsaturated polyester resin and shrinkage lowering agent
JP2002138122A (en) Photocurable resin composition, photocurable sheet material and method of reinforcing
JP2011127081A (en) Method for reusing thermosetting resin-decomposed product, and low-shrinkage agent for thermosetting resin molded product
Cao Integrated analysis of low profile unsaturated polyester and vinylester resins cured at low temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees